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Signal and Noise In
Communication Systems

In communication systems, the received waveform is usually
categorized into the desired part containing the information and the
extraneous or undesired part. The desired part is called the signal, and
the undesired part is called noise.

Noise is one of the most critical and fundamental concepts affecting
communication systems

The entire subject of communication systems is all about methods to
overcome the distorting or bad effects of noise

To do so, understanding random variables and random processes
becomes quite essential
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Topics to be Covered

2.1.Signals
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What is Signal?

= Any physical guantity that varies with time, space, or any
other independent variables is called a signal

= |n communication systems, signals are used to transmit

Information over a communication channel. Such signals
are called information-bearing signals
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Classification of Signals

= Signals can be characterized in several ways
= Continuous-time signal vs. discrete-time signal

= Continuous valued signal vs. discrete-valued signal
Continuous-time and continuous valued: analog signal (speech)
Discrete-time and discrete valued: digital signal (CD)
Discrete-time and continuous valued: sampled signal
Continuous-time and discrete valued: quantized signal
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= Deterministic signal vs. random signal

v(t)=V cos(3 1)
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Energy and Power

E, = T X(t)*|dt = lim Tj/z X(t)|dt

-T/2

Energy

T/2
Power P = lim— | x| dt
T—)ooT g
A signal is an energy signal if and only if Ex is finite
A signal is a power signal if and only if Px is finite
Physically realizable waveforms are of energy-type

Mathematical models are often of power-type
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Probability

* Let A be an event in a sample space S

= The probability P(A) is a real number that
measures the likelihood of the event A

= Axioms of Probability

1) P4a)>0
2) P(A)<1and P(A)=1when A=S

3) Let A and B are two mutually exclusive events, I.e.

ANB=0 Then P(AuB)=P(A)+ P(B)
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Elementary Properties of Probability

= P(A)=1- P(A)

P®) =0

= When A and B are NOT mutually exclusive
P(AUB) = P(A) 4+ P(B) — P(AN B)

= |f ACB then P(A) < P(B)
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Conditional Probability

Consider two events A and B in a random experiment

The probability that event A will occur GIVEN that B has
occurred, P(A|B), is called the conditional probability

The probability that both A and B occur,

IS called the joint probability P(AB) = P(AN B)

Joint and conditional probabilities are related by
P(AB)=P(B)P(A|B)=P(A)P(B|A)

P(AB) P(AB)

P() IV

Two events A and B are said statistically independent iff

P(AB) = P(A)P(B)
then P(A|B)=P(A) and P(B|A) = P(B)

Alternatively, P(A|B)=
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Law of Total Probability

= Let4;, j=1,2,...,n be mutually exclusive events
with 4;na; =0, vi#j

= Then for any event B we have

j=1
= ) P(BIA)P(4))
j=1

P(B)
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Bayes’ Theorem

= An extremely useful relationship for conditional
probabilities is Bayes’ theorem

= Let 4;, ¢=1,2,...,n are mutually exclusive events such
that U;—; A; =S and B is an arbitrary event with nonzero
probability. Then

P(B)
__ P(B|A)PA)
Yl P(BIA)P(A))

P(A;|B) =

= This formula will be used to derive the structure of the
optimal receiver
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Example

= Consider a binary communication system

P(0)=0.3 0o % ws0 Py = P(receive 1| sent 0) = 0.01
4 P,, = P(receive O | sent 0) = 1- P,, = 0.09

By

_ P,, = P(receive 0 | sent 1) = 0.1
P(1) = 1, |

P, = P(receive 1 |sent1) =1-P,,=0.9

= What is the probability that the output of this channel is 17

= Assuming that we have observed a 1 at the output, what is
the probability that the input to the channel was a 17
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Random Variables (r.v.)

= Ar.v.is areal-valued function assigned to the events of the
sample space S. denoted by capital letters X, Y, etc
I{.}: ACcS —xeR X{A}z X

= Ar.v. may be
= Discrete-valued: range is finite (e.g. {0,1}), or countable
infinite (e.g. {1,2,3 ...})

= Continuous-valued: range is uncountable infinite (e.g.R)
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= The Cumulative distribution function (CDF), or simply the
probabllity distribution of ar.v. X, Is

Fx(x)ip(x < x)

= Key properties of CDF
1.0<FyX)<1with Fx(—o00) =0 and Fx(c) =1
2. F,(X) Is a non-decreasing function of x
3. F (x) <X =x) =Fy(Xy) —Fy(x))
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Probability Density Function (PDF)

1. Py (X)=0
3. P(Xl <X < Xz): I:)x (Xz)_Px (Xl): - Px (X)dX

Fe ()1

P(x, < X <) | /1

The PDF, of ar.v. X, is defined as

A d
fx(x):&Fx (X)
= Key properties of PDF

X|

fx ()]

or F(X)= J‘_XOO fy (y)dy

2. fl Px (X)dx =1

Area =P(X, < X £X,)

Area = f, (x)dx

%

/LA

X X2 X X+dx Xnax X
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Joint Distribution

* |n many situation, one must consider TWO or more r.v.’s
= joint distribution function

= Consider 2r.v.’s X and Y, joint distribution function is
defined as ¢ (y)=P(x <x.Y <y)

0" Fyy (%, Y)
and joint PDF is T (X ¥) ==

= Key properties of joint distribution

Ji foo Py (X, y)dxdy =1

P(x, <X <X,,y,<Y<Y,)= J‘yylz LXIZ Dy, (X, y)dxdy

2009/2010 Meixia Tao @ SJTU
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= Marginal distribution
P,(X)=P(X <x,—o0<Y <o) = [ p,(a.pdadp
R =] [ pyla.pdadp

= Marginal density
Py (X) = f; Pxy (X, Aap

= XandY are said to be independent iff

PXY (X,y)= I:)x (X) PY (Y)
Pxy (X,y)= Px (X) Py (Y)

2009/2010 Meixia Tao @ SJTU
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Statistical Averages

= Let X be ar.v. Then X can either continuous or
discrete. For the moment, consider a discrete r.v.
which takes on the possible values x4, X, ..., X\, with
respective probabilities P, P,, ..., P,,. Then the mean
or expected value of X is

m, =E[X]=Y xR

where “E[]” denotes the expectation operation
(statistically averaging)
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E[X]=] xfy (x)dx
This is the first moment of the random variable X
Let g(X) be a function of X, then

Elg)]=]" g(x)py (x)dx

For the special case of g(X) =x", we obtain the n®
moment of X, that is

E[X"]=[" x"py (x)dx

Let n = 2, we have the mean-square value of X as

E[XZ]:_E:)X2 P, (X)dx

2009/2010 Meixia Tao @ SJTU
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Elx —mo)|= [ (x=m, ) £, (x)dx

= The expected value of second central moment
(n=2) Is called variance

(X _mx )2]
X2 —2m X +m? |
X2 ]-m;

I
m

2
Oy

I I
m m

" oy, Square-root of the variance, is called the
standard deviation. It is the average distance from
the mean, a measure of the concentration of X

around the mean
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Correlation

In considering multiple varaibles, the joint moments like
correlation and covariance between pairs of r.v.s are most
useful

Correlation of the two r.v. X and Y iIs defined as

Ryy = E[XY ] = _Eo _EO Xyfyy (X, y)dxdy

Correlation of X and Y is the mean of the product X and Y

Correlation of the two centered r.v. X-E[X] and Y-E[Y], Is
called the covariance of X and Y

Cov,, = E[(X —E[x])Y - E[y])]
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referred to the correlation coefficient of X and Y:

_ Cov(XY)

OOy

Lxy
X and Y are uncorrelated iff their correlation coefficient is O
Py =0 = FE[XY] = F[X]E[Y]
X and Y are orthogonal iff their correlation is O

™ ra\

Ry, = E[XY]=0
If X and Y are independent, then they are uncorrelated.

However, the converse Is not true (The Gaussian case Is
the only exception)
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Some Useful Probability Distributions

= Discrete Distribution
= Binary distribution
= Binomial distribution
= Continuous Distribution

= Uniform distribution
= Gaussian distribution (most important

= Rayleigh distribution (very important in
wireless communications)

one)
mobile and

2009/2010 Meixia Tao @ SJTU

25



Binary Distribution

= Let X be a discrete random variable that has two
possible values, say X = 1 or X = 0. Distribution of X
can be described by probability mass function (pmf)

p(z) = P(X =)

. l1—p z=0
 1p r=1

= This is frequently used to model binary data

= Mean:
mx =) z-pl&) =0-(1—-p)+1-p=p

o2 = > (z—mx)? p(z)

= (-p)? - (L—-p)+ (1 —p)? -p=p(l—p)
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Binomial Distribution

" Let Y =37, X;where {X;,i=1,...,n} are independent
binary r.v.s with

px(x)

Then

py (k) =

. l—p ==
o D r=1

( i ) P (1=-0)"" \where (

n

k

|

n!

T kl(n—k)!

That is, the probability that Y = k is the probabillity that
k of the X; are equal to 1 and n-k are equal to 0

Mean: my =np

Variance:

np(l —p)
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Example

Suppose that we transmit a 31-bit long sequence with
error correction capabillity up to 3 bit errors

If the probability of a bit error is p = 0.001, what is the
probability that this sequence is received in errors?

P(sequence error) = 1 — P(correct sequence)

3 . .
=1-Y ( 32.1 ) (0.001)%(0.999)31"% ~ 3.10°8
1=0

If no error correction is used, the error probability is

=1 —(0.999)3! ~ 0.0305
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Uniform Distribution

* The pdf of uniform distribution Is given by

4 .f_'f[.r]
1 1
T <xz<b .
— b—a =T > b—a
Ix (@) { O  otherwise
b
Blx] = 2T
2 Any example?
> _ (a—b)?
O'X —
12
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Gaussian Distribution

= The Gaussian distribution, also called normal distribution,
IS by far the most important distribution in the statistical
analysis of communication systems

= The PDF of a Gaussian r.v. IS

fy (X) ZIZCXP{_ 5 lz (X—m, )2}

2oy, O x

= A Gaussian r.v. is completely determined by its mean and
variance, and hence usually denoted as

A

Px(X) |

0 My
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The Q-Function

= The Q-function is a standard form to express error
probabilities without a closed form

© 1 u’
Q(Xx) = L Ton exp[— 2jdu
= The O-function is the area under the tail of a Gaussian pdf

with mean zero and variance one
N(0.1)

/N

/ \\\ Q(x)
— %Jﬁ

= Extremely important in error probability analysis!!!
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More about Q-Function

Q-function is monotonically decreasing

Some features

1
5 Q) =0 Q(—x)=1-0Q(x)

Craig’s alternative form of Q-function (IEEE MILCOM’91)

R 2 0
)= — - do, >0
=t [ on (i o2

Upper bound
Q(r) <

QL o) =1 Q)=

9

—x=/2
e~/

bo | =

If we have a Gaussian variableX ~ N(x, o), then

Pr(X >x):Q(X_ﬂj

o)

2009/2010 Meixia Tao @ SJTU
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Joint Gaussian Random Variables

= X, Xy, ..., X, are jointly Gaussian Iff

| N 1 B (x —m)TC1(x —m)
f(:nl:xis"-:rfﬂ) —_— (zﬂ)nfz(det(c))lfz exp [ 5
= X IS a column vector x = (zq,...,zn)7
= m is the vector of the means m = (mq,...,my)"

= CIsthe » xn covariance matrix

C = [Ci,j] C@j = F [(Xz — mz)(X] _ mj)}

2009/2010 Meixia Tao @ SJTU
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Two-Variate Gaussian PDF

= Given two r.v.s: X, and X, that are joint Gaussian

C— [ E[(X1 —m1)?] E[(X1 —m1)(X2 — m2)] ]
E[(X1 —m1)(X2 —m2)] E[(Xp —mp)?]
_| o2 poios ]
- [pofbg a%
= Then
. 1 _ 1 ($1 — ml)g
flone2) = a0y _pzem{ 2(1 - p2) [ %

T 2

T109 o5

_2p(z1 —ma)(@2—mp) | (z2— mg)g} }
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= Foruncorrelated X and Y, i.e. p=0

Y — 1 1 [(z1—my)* | (2 —my)?
flay,22) = S p—— exm{ > [ 2 + 2
— 1 o—(@1-m1)?/207 ;e—(mz—mz)z/ 203
V2mwoq V2moo
= f(z1) f(z2)

—y X1 and X2 are also independent

If X, and X, are Gaussian and uncorrelated,
then they are independent.

2009/2010 Meixia Tao @ SJTU
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Rayleigh Distribution

= Rayleigh distributions are frequently used to model fading
for non-line of sight (NLOS) signal transmission

= Very important for mobile and wireless communications
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Sums of Random Variables

= Consider a sequence of r.v.'s {X1,Xo,..., Xn}

= Weak Law of Large Numbers

= Let 1
Y ==> X,
ni=1

= And assume that X;'s are uncorrelated with the same
mean myx and variance o% < oo

= Then

limP(]Y—mﬂEE):[} Ve>0

—yoo

So what?

l.e. the average converges to the expected value

2009/2010 Meixia Tao @ SJTU
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Central Limit Theorem

= Let{X1,X5,...,Xn} be a set of iIndependent random
variables with common mean mx and common variance o%

Nextlet  _ S X,
1=1

= Then as n — oo |, the distribution of Y will tend towards a
Gaussian distribution

Key Conclusion: the sum of random variables is “Gaussian”

= Thermal noise results from the random movement of many
electrons — it is well modeled by a Gaussian distribution.
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Example

Y1 = sin(Xy)

Y> = Sin(X;)+sin(x,)

Y4 = SIN(X;{)+SIN(X5)+ ... + SiN(X,)

Yg = SIN(X;)+SiN(X5)+ ... + SiN(Xg)

Yig = SIN(Xy)+SIN(X5)+ ... + Sin(X4¢)

Xy, X5, ..., X4 @re independent and uniformly distributed over 0 to 2.
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Lecture 4
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Lecture 4

2009/2010 Meixia Tao @ SJTU

44



Random Process

= A random process is the natural extension of random
variables when dealing with signals

= Also referred to as stochastic process or random signal

= Voices signals, TV signals, thermal noise generated by a
radio receiver are aH examples of random signals.
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= A random process can be described as X(t)

= For each experiment n, there exists a time-function x.(t) ,
called a sample function or realization of the random
process

= Atany time instant t, t,, ..., the value of the random
process is a random variable X(t,), X(t,), ...,

X, () | .
AN — . Outcome of 1st
L\I\J ! ! experiment
N A A \/“L\, N A:“\/ Outcome of 2nd
Sample VAR A Ca | : experiment
space S | !
i i 46
X(t,) !
(t) x(tZ)i M Outcome of nth
|//\ }\\/‘-' /\v'*f\,/\U’\\_,mu‘\V'E‘/\V"V“\/\":‘J‘U"u eXperiment
itl i L,
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Statistics of Random Processes

= By sampling the random process at any time, we
get a random variable

* From this view point, we can think of a random
process as an infinite collection of random
variables specified at time t: {X(t,), X(t,), ..., X(t,)}

* Thus, a random process can be completely
defined statistically as a collection of random
variables indexed by time with properties defined
by a joint PDF
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A random process X(t) is described by its M-th
order statistics if for all » < M and all {t1,t,...,t:}
the joint pdf of {X(t,), X(t,), ..., X(t,)} IS given

This joint pdf Is written as
t,t,,...,t )

In order to completely specify a random process,
one must given f(x,x,,...,x;t.t,,....,t. ) for all
possible values of {x;} {t}, and for all n. This Is
obviously quite difficult in general

f(X,X,,...,X

n?
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First Order Statistics on Random
Processes

The first order statistics is simply the PDF of a
random variable at one particular time

f(x;t) = first order density of X(t)
F(x;t) = P(X(1) <x), first order distribution of X(t)
Mean  E[X(t,)]=E[X(t=t)]=[" xf, (x:t,)=X(t,)

Variance EIMX(tO)— Y(to)fJI: o (t)

2009/2010 Meixia Tao @ SJTU
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Second-Order Statistics on Random

Processes

= Second-order statistics means the joint PDF of X(t,) and
X(t,) for all choices t; and t..

= Auto-correlation function: Let t, =t, and t, = t+r,
Ry (t:7) = E[X (DX (t+)]= [ [ x%,(x.%,:t,t+7)dxdx,

= The physical meaning of Ry(t; t) Is a measure of the
relationship of the function X(t) and X(t+ t) (correlation
within a process)

= |n general, the autocorrelation function is a function of both
tand t.
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Example

Given a stochastic process X (t) = Acos (2nft+ 6) , where

6 is a random variable uniformly distributed from —7 to =

EIX(#)X(t+ 7))

At each t, X(t) can be viewed as a function of ¢

The meanis E[X(t)] = /W Acos (2rft + Q)QLde =0
—Tr T

The auto-correlation is

E[Acos(2rnft+ 0)Acos(2nf(t+ 1)+ 0)]
2
= gE [cos (4n ft + 2w fT + 20) + cos (27 f1)]

A2 o1 A2 o1
= " Z cos(anft 4 2nfr + 20)d6 + —/ = cos (2n f7)df
2 —T 2 2 —T 27
2

= 0+ A?cos (27 f1)
2

A
= Rx(t;7) = 5 COS (27 fT )3 00 @ soTU 51




Stationarv Processes

-lvl ] L HE w’ w’ w ’ ’ w

A stochastic process is said to be stationary if for any n
and r the following holds:

fo (X, Xy, X5ttt ) = FL (X, X, - X st + 7.t + 7,1 +7) (1)
Therefore,
= Te first-order statistics is independent of t
=>mean E{X(0)} =] xf, (xdx=m, (2)

= The second-order statistics only depends on the gap
between t1 and t2

__, Autocorrelation R (t ,t,)= J.OOLO XX, (X, %,,t, —t )dx dx,

function
=R, (t,-t) =R, (r), where 7=t -t (3)
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Wide-Sense Stationary

= Our engineers often care about the first- and second-
order statistics only

= A random process is said to be WSS when conditions
(2) and (3) hold

= A random process is said to be strictly stationary when
condition (1) holds

= Example:

X((t) =Acos(2nft+6),where 0 ~ U(—m, )

A2
Rx(t1,t2) = —€os (2mf1)

Only depends on the time
difference =1ty —t1

—=> Thus, X(t) is WSS
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Averages and Ergodic

Ensemble averaging

A

X (t)=E[X(t)]= [ " xp(x;t)dx
Ry (t,t) =E[X (1) X (t,)] = [T %% p0 o5t ), dx,

Time averaging A |
<X(0)>=lim— j_T x(t)dt

| R
<XOX(t-7)>=lim j_T X(H)x(t — 7)dt

In general, ensemble averages and time averages are not equal

A r.p. X(t) is said to be Ergodic if all time averages and
Ensemble averages are equal
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Random Processes in the Frequency
Domain: Power Spectral Density

Let X(t) denote a random process and letx(t, n) denote a
sample function of this process

Truncate the signal by defining

| x(t,n) |t <T/2
vr(t,n) = {O otherwise

In order to get an energy signal.
"""""""" formon zr(t,n), we get X7(f,n)
According to Parseval theorem

ji X2 (t, n)dt = jif

| X7 (f,n)|? : energy spectral density

2009/2010 Meixia Tao @ SJTU



= Then the power spectral density is the average energy
spectral density per time unit, i.e.

1 X7(f,n)]?
T

= LettingT — oo, we define the power spectral density for the
sample function: ;
X (f,m)|

S, (f,n)=lim
= |f we take the ensemble average, the power spectral
density (PSD) of the random process is
2 2
Watts/Hz

Sx(f) = FE | |Iim

T—o0

=) The general definition of power spectral density
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PSD of Stationary Process

[ Wiener-Khinchin theorem ]

v
/For a stationary random process X(t), the PSD is equal to\
the Fourier Transform of the autocorrelation function, I.e.,

S (f j 27 )df
S (1o R () { . (f)exp(j2A7)
Sy(f)=] R, (r)exp(— j2Af7)dr

\_ /

= |n general, Sx(f) is a measure of the relative power in the
random signal at each frequency component

O) = foo S, (f)df =total power
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Gaussian Process

= The importance of Gaussian processes in communication
systems is due to that thermal noise in electronic devices
can be closely modeled by a Gaussian process

= Definition:

= A random process X(t) is a Gaussian process if for all n
and all (t1, t2, ..., tn), the random variables {X(t1),
X(t2), ..., X(tn)} have a joint Gaussian density function

f(mlz i P 3:1’1-)

_ 1 (x —m)TC1(x —m)
~ @m2(det(C)r2 " [_ 2
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Properties of Gaussian Processes

= |[f a Gaussian random process Is wide-sense
stationary, then it is also stationary

= Any sample point from a Gaussian random process Is
a Gaussian random variable

= |f the input to a linear system is a Gaussian random
orocess, then the output is also a Gaussian random
OrOCesSs.
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Random Process Transmission Through
Linear Systems

= Consider a linear system

X(t) Impulse Y(t)
— 1 response —

h(t)
Y(t) = X(®*h®) = h(z)X(t-r)dz

= The mean of the output random process Y (t)
Y =E[®]=[ hmE[X(t-)dz

= ro h(r)X (t-7)dr
If X(t) is WSS @ -
= ij_w h(r)dz = X - H(0)

where H(O) is the zero-frequency response of the system

2009/2010 Meixia Tao @ SJTU



= The autocorrelation of Y(t)
R, (t,u) = E[Y ()Y (u)]
= EUZh(rl)X(t—rl)drl'r;h(rz)X(u—rz)drz}
:jih(fl)df1j‘ h(Tz)E[X(t_Tl)X(U_Tz)hfz

If X(t) is WSS
R (@) =] [ h(z)h(z,)Ry(z =7 +7,)d7dr,

d

If input iIs a WSS random process, the output
IS also a WSS random process
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Relation Amon

Q
(o
By
(D
S

©
o
O
—

‘!

= Autocorrelation of Y(t)

Ry(7) = .._oo

joo h(z,)h(z,)Ry (r —7,+7,)d7,d7,

[ h(rz)drzj h(z,))R, (t+7,—7,)d7,

[ h(rz)[h(r+72)*R (T+2'2)]d2'2
h( 7)*h(z)* Ry (7)

= PSDof Y(1): s, (f)=|H(f)’S, ()
X(®) ) Y(t)
Sy (1) S, (f)

S, (f)=|H(f)]'Sy(f)| < KeyResults

O
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Noise

Noise is a critical component in the analysis of the performance
of communication receivers

Often assumed to be Gaussian and stationary

The mean is taken to be zero while the autocorrelation is usually
specified by the power spectral density

The noise is a white noise, when all frequency components
appear with equal power (white is used in white light for a similar

reason)
VR \
S.(f)=N,/2 R, (1) =—>6(7)
A 2 White noise is completely
Si(h) R,(?)
uncorrelated!

N,/2 N,/2

0 >
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D Al itad NlAa
panaiimitead INoiISse
White noise Bandlimited white
| Filter Bandwidth noise n(t)
B Hz
Sals) Racef
Np /2
In most applications
- 0 B[ —7/_\1\\/ T 0
N, = KT =4.14x107' Ay
(a) (&)

=—174 dBm/Hz

At what sampling rate to sample
the noise can we get uncorrelated

realizations?
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Narrow-Band Random Process

= The bandwidth of the signal is limited to a narrow
band around a central frequency fc >> 0

S (@ )

S J

_fC fC

= Canonical form of a narrow band process

X (t) = @cos(zﬂ f,t)- sin(27z fit)

In-phase component Quadrature component
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Narrow band Noise

Let n(t) be a zero-mean, stationary noise
n(t) =n,(t)cos w,t —n,(t)sin w,t

Find the statistics of n (t) and n(t)

Result 1:

E{n(t)} =E{n ()} =E{n,(t)} =0

PTOOL £ rn(®)] = E[n, 1] cos eyt — E[n. )] sin et

= Since n(t) is stationary, zero-mean, for any t, we have
E [n(t)] =0

" Thus:  Efn ()} =E{n,(t)}=0
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Result 2:

Snc(f)=5ns(f)={

Proof

n(t)

Z(t

2cos ot
—2si eyt

Z,(t

S,(f—f)+S,(f+f), |f|]<B/2

0

H,(F)
1

B2 0 B2 f~

H(F)
1

>
-B2 0 B2 f

otherwise

n.(t)
—>

2009/2010 Meixia Tao @ SJTU

67



= Result 3: for the same t, n(t) and n(t) are
uncorrelated or independent

Ry (0)=0

= Result 4:
E{n*()}=E{n O} =E{n’t)}=0"

= Result5: If n(t) iIs a Gaussian process, so are n(t)
and ny(t)
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Envelop and Phase

= Angular representation of n(t)
n(t) = R(t)cos|ayt + (t)]

R(t) = \/ncz(t) +n2(t) envelop
where {

#(t) =tan™'

n, (V)
n.(t)

[0<¢(t) <27] phase

/
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= Let n(t) be a zero-mean, stationary Gaussian process,
find the statistics of the envelop and phase

= Result:

= Envelop follows Rayleigh distribution while phase
follows uniform distribution

[ f(R) =j02” f(R,$)d¢ =§exp{— ;2} R>0

oo°< . i
.w _f@=] fRHIR=— 0<g<2m
0 T

= For the same t, the envelop variable R and phase
variable ¢ are independent (but not the two processes)
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Homework 1

= Textbook Chapter 2: 2.7(3)(4), 2.13(6)(13)(16)

= Textbook Chapter 5: 5.5, 5.15, 5.22, 5.28, 5.44,
5.49

= Due: in class on Sep. 28 (hext Wednesday)
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