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Signal and Noise in 
Communication Systems
In communication systems, the received waveform is usually y , y
categorized into the desired part containing the information and the 
extraneous or undesired part. The desired part is called the signal, and 
the undesired part is called noisethe undesired part is called noise. 

Noise is one of the most critical and fundamental concepts affecting 
communication systems

The entire subject of communication systems is all about methods to 
overcome the distorting or bad effects of noise

To do so, understanding random variables and random processes 
becomes quite essential

Typical noise source
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Topics to be CoveredTopics to be Covered

2.1.Signals

2.2.Review of probability and random variables

2.3.Random Processes: basic concepts

2.4.Guassian and White Processes
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What is Signal?What is Signal?

Any physical quantity that varies with time, space, or anyAny physical quantity that varies with time, space, or any 
other independent variables is called a signal
In communication systems signals are used to transmitIn communication systems, signals are used to transmit 
information over a communication channel. Such signals 
are called information-bearing signals
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Classification of SignalsClassification of Signals

Signals can be characterized in several waysSignals can be characterized in several ways
Continuous-time signal vs. discrete-time signal
Continuous valued signal vs discrete-valued signalContinuous valued signal vs. discrete-valued signal

o Continuous-time and continuous valued: analog signal (speech)
o Discrete-time and discrete valued: digital signal (CD)g g ( )
o Discrete-time and continuous valued: sampled signal 
o Continuous-time and discrete valued: quantized signal
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Deterministic signal vs. random signalg g
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Energy and PowerEnergy and Power
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A signal is an energy signal if and only if Ex is finite

A signal is a power signal if and only if Px is finiteA signal is a power signal if and only if Px is finite

Physically realizable waveforms are of energy-type

Mathematical models are often of power-type
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ProbabilityProbability 

Let A be an event in a sample space SLet A be an event in a sample space S

The probability P(A) is a real number that 
th lik lih d f th t Ameasures the likelihood of the event A

A i f P b bilitAxioms of Probability
1) 
2) 
3) Let A and B are two mutually exclusive events, i.e.3) Let A and B are two mutually exclusive events,  i.e.   

Then 
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Elementary Properties of ProbabilityElementary Properties of Probability

When A and B are NOT mutually exclusive  

If             then 
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Conditional ProbabilityConditional Probability
Consider two events A and B in a random experimentp
The probability that event A will occur GIVEN that B has 
occurred, P(A|B), is called the conditional probability
The probability that both A and B occur,                                      
is called the joint probability
J i t d diti l b biliti l t d bJoint and conditional probabilities are related by

)|()()|()()( ABPAPBAPBPABP ==
)(ABP )(ABPAlternatively, 

Two events A and B are said statistically independent iff
)(
)()|(

BP
ABPBAP =

)(
)()|(

AP
ABPABP =

Two events A and B are said statistically independent iff

then and
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Law of Total ProbabilityLaw of Total Probability

Let be mutually exclusive eventsLet                           be mutually exclusive events 
with       

Then for any event B we have y
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Bayes’ TheoremBayes  Theorem

An extremely useful relationship for conditionalAn extremely useful relationship for conditional 
probabilities is Bayes’ theorem

Let are mutually exclusive events suchLet                              are mutually exclusive events such 
that                     and B is an arbitrary event with nonzero 
probability. Then

This formula will be used to derive the structure of the 
optimal receiver
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ExampleExample

Consider a binary communication systemConsider a binary communication system

P01 = P(receive 1 | sent 0) = 0.01(0) 0.3P =
P00 = P(receive 0 | sent 0) = 1- P01 = 0.09

P10 = P(receive 0 | sent 1) = 0.1
(1) 0 7P =

P11 = P(receive 1 | sent 1) = 1- P10 = 0.9
(1) 0.7P =

What is the probability that the output of this channel is 1?

Assuming that we have observed a 1 at the output what isAssuming that we have observed a 1 at the output, what is 
the probability that the input to the channel was a 1?
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Random Variables (r.v.)Random Variables (r.v.)

A r.v. is a real-valued function assigned to the events of theA r.v. is a real valued function assigned to the events of the 
sample space S. denoted by capital letters X, Y, etc

A r v may beA r.v. may be 
Discrete-valued: range is finite (e.g. {0,1}), or countable 
infinite (e g {1 2 3 })infinite (e.g. {1,2,3 …})
Continuous-valued: range is uncountable infinite (e.g.   )
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The Cumulative distribution function (CDF), or simply the 
probability distribution of a r.v. X, is

( )xXPxFX ≤=
Δ

)(

Key properties of CDF
1. 0 ≤ FX(x) ≤ 1 with
2. FX(x) is a non-decreasing function of x
3. F (x1 < X ≤ x2) = FX(x2)  − FX(x1) 
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Probability Density Function (PDF)Probability Density Function (PDF)
The PDF, of a r.v. X, is defined as

dΔ

Key properties of PDF

( )xF
dx
dxf XX

Δ

=)( ( )∫ ∞−
=

x

XX dyyfxF )(or

Key properties of PDF
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Joint DistributionJoint Distribution

In many situation, one must consider TWO or more r.v.’sIn many situation, one must consider TWO or more r.v. s  
⇒ joint distribution function

Consider 2 r v ’s X and Y joint distribution function isConsider 2 r.v. s X and Y, joint distribution function is 
defined as ),(),( yYxXPyxFXY ≤≤=

and joint PDF is yx
yxFyxf XY

XY ∂∂
∂

=
),(),(

2

Key properties of joint distribution

1),( =∫ ∫
∞ ∞

dxdyyxpXY 1),(∫ ∫∞− ∞−
dxdyyxpXY

∫ ∫=≤<≤< 2
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2
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Marginal distributionMarginal distribution

∫ ∫
∞

∞− ∞−
=∞<<∞−≤=

x

XYX ddpYxXPxP βαβα ),(),()( ∫ ∫∞ ∞

∫ ∫∞−
∞

∞−
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XYY ddpyP βαβα ),()(

Marginal density 

∫
∞

∞−
= ββ dxpxp XYX ),()(

X and Y are said to be independent iff

)()()( yPxPyxP YXXY =

)()(),( ypxpyxp YXXY =

)()(),( yPxPyxP YXXY
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Statistical AveragesStatistical Averages

Let X be a r v Then X can either continuous orLet X be a r.v. Then X can either continuous or 
discrete. For the moment, consider a discrete r.v. 
which takes on the possible values x1, x2, …, xM with p 1, 2, , M
respective probabilities P1, P2, …, PM. Then the mean
or expected value of X is 

[ ] ∑
=

==
M

i
iiX PxXEm

1

where “E[]” denotes the expectation operation 
( t ti ti ll i )(statistically averaging)
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If X is continuous thenIf X is continuous, then 
[ ] ∫

∞

∞−
== dxxxfXEm XX )(

This is the first moment of the random variable X
Let g(X) be a function of X, theng( ) ,

F th i l f (X) bt i th th

[ ] ∫
∞

∞−
= dxxpxgXgE X )()()(

For the special case of g(X) =xn, we obtain the nth

moment of  X, that is 

Let n = 2 we have the mean-square value of X as

[ ] ∫
∞

∞−
= dxxpxXE X

nn )(

Let n  2, we have the mean square value of X as

[ ] ∫
∞

∞−
= dxxpxXE X )(22
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n th Central moment isn-th Central moment is

[ ] ( )∫
∞

∞−
−=− dxxfmxmXE X

n
x

n
X )()(

The expected value of second central moment 
(n=2) is called variance

∫ ∞

( )

[ ]
[ ]22

22

2

)( XX

XXE

mXE −=σ

[ ]
[ ] 22

22 2

X

XX

mXE

mXmXE

−=

+−=

σX, square-root of the variance, is called the 
standard deviation It is the average distance fromstandard deviation. It is the average distance from 
the mean, a measure of the concentration of X 
around the mean
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CorrelationCorrelation

In considering multiple varaibles, the joint moments likeIn considering multiple varaibles, the joint moments like 
correlation and covariance between pairs of r.v.s are most 
useful

Correlation of the two r.v. X and Y is defined as

[ ] ∫ ∫
∞

∞−

∞

∞−
== dxdyyxxyfXYER XYXY ),(

Correlation of X and Y is the mean of the product X and Y

Correlation of the two centered r.v. X-E[X] and Y-E[Y], is 
called the covariance of X and Y 

( )( )[ ]][][ yEYxEXECovXY −−=
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The covariance of X and Y normalized w r t σ σ isThe covariance of X and Y normalized w.r.t. σX σY is 
referred to the correlation coefficient of X and Y:

XYC )(

X and Y are uncorrelated iff their correlation coefficient is 0
YX

XY
XYCov
σσ

ρ )(
=

X and Y are uncorrelated iff their correlation coefficient is 0
0=XYρ

X and Y are orthogonal iff their correlation is 0

0][ XYER

If X and Y are independent, then they are uncorrelated. 

0][ == XYERXY

p , y
However, the converse is not true (The Gaussian case is 
the only exception)
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Some Useful Probability DistributionsSome Useful Probability Distributions

Discrete DistributionDiscrete Distribution 
Binary distribution
Binomial distribution

Continuous Distribution
Uniform distribution
Gaussian distribution (most important one)Gaussian distribution (most important one)
Rayleigh distribution (very important in mobile and 

i l i ti )wireless communications)
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Binary DistributionBinary Distribution

Let X be a discrete random variable that has twoLet X be a discrete random variable that has two 
possible values, say X = 1 or X = 0. Distribution of X 
can be described by probability mass function (pmf)y p y (p )

This is frequently used to model binary datay y

Mean:

Variance
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Binomial DistributionBinomial Distribution

Let where are independentLet                  , where                         are independent 
binary r.v.s with 

ThThen 
where

That is, the probability that Y = k is the probability that 
k of the Xi are equal to 1 and n-k are equal to 0i q q

Mean: 

V i
27
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ExampleExample

Suppose that we transmit a 31-bit long sequence withSuppose that we transmit a 31 bit long sequence with 
error correction capability up to 3 bit errors

If the probability of a bit error is p = 0 001 what is theIf the probability of a bit error is p = 0.001, what is the 
probability that this sequence is received in errors? 

If no error correction is used, the error probability is
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Uniform DistributionUniform Distribution

Th df f if di t ib ti i i bThe pdf of uniform distribution is given by

Any example?
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Gaussian DistributionGaussian Distribution
The Gaussian distribution, also called normal distribution, 
is by far the most important distribution in the statistical y p
analysis of communication systems

The PDF of a Gaussian r.v. isThe PDF of a Gaussian r.v. is

⎥
⎦

⎤
⎢
⎣

⎡
−−= 2

22
)(

2
1exp

2
1)( X

XX
X mxxf

σπσ

A Gaussian r.v. is completely determined by its mean and 
i d h ll d t d

⎦⎣2 XXπσ

variance, and hence usually denoted as 

( )2

pX(x)

( )2,~ XXmNX σ
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The Q-FunctionThe Q Function
The Q-function is a standard form to express error 
probabilities itho t a closed formprobabilities without a closed form

∫
∞

⎟⎟
⎞

⎜⎜
⎛

= duuxQ exp1)(
2

The Q-function is the area under the tail of a Gaussian pdf

∫ ⎟⎟
⎠

⎜⎜
⎝
−=

x
duxQ

2
exp

2
)(

π

p
with mean zero and variance one

Extremely important in error probability analysis!!!
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More about Q-FunctionMore about Q Function

Q-function is monotonically decreasingQ u c o s o o o ca y dec eas g

Some features

Craig’s alternative form of Q-function (IEEE MILCOM’91)

U b dUpper bound

If we have a Gaussian variable then2~ ( )X N μ σIf we have a Gaussian variable                    , then~ ( , )X N μ σ

Pr( ) xX x Q μ
σ
−⎛ ⎞> = ⎜ ⎟

⎝ ⎠
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Joint Gaussian Random VariablesJoint Gaussian Random Variables

X1 X2 X are jointly Gaussian iffX1, X2, …, Xn are jointly Gaussian iff

x is a column vectorx is a column vector 
m is the vector of the means
C is the          covariance matrix 
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Two-Variate Gaussian PDFTwo Variate Gaussian PDF

Given two r v s: X1 and X2 that are joint GaussianGiven two r.v.s: X1 and X2 that are joint Gaussian

Then
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For uncorrelated X and Y i eFor uncorrelated X and Y, i.e. 

X1 and X2 are also independentX1 and X2 are also independent

If X1 and X2 are Gaussian and uncorrelated, 
then they are independent.
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Rayleigh DistributionRayleigh Distribution
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Rayleigh distributions are frequently used to model fading
for non-line of sight (NLOS) signal transmission

0 1 2 3 4 5 6

for non line of sight (NLOS) signal transmission

Very important for mobile and wireless communications
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Sums of Random VariablesSums of Random Variables

Consider a sequence of r.v.’sConsider a sequence of r.v. s 
Weak Law of Large Numbers

LetLet 

A d th t X ’ l t d ith thAnd assume that Xi’s are uncorrelated with the same 
mean       and variance 
ThenThen

So what?

i.e. the average converges to the expected value

So what?
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Central Limit TheoremCentral Limit Theorem

Let be a set of independent randomLet                          be a set of independent random 
variables with common mean        and common variance 

Next letNext let

Th th di t ib ti f Y ill t d t dThen as              , the distribution of Y will tend towards a 
Gaussian distribution

Key Conclusion: the sum of random variables is “Gaussian”

Thermal noise results from the random movement of many 
electrons – it is well modeled by a Gaussian distribution. 
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ExampleExample
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Random ProcessRandom Process

A random process is the natural extension of randomA random process is the natural extension of random 
variables when dealing with signals 

Also referred to as stochastic process or random signal

Voices signals, TV signals, thermal noise generated by a 
radio receiver are all examples of random signalsradio receiver are all examples of random signals. 
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A random process can be described as 
For each experiment n, there exists a time-function xn(t) , 
called a sample function or realization of the random 
process
At any time instant t1, t2, …, the value of the random 
process is a random variable X(t ) X(t )process is a random variable X(t1), X(t2), …, 

Outcome of 1st 
i t

x1(t)

experiment

Outcome of 2nd 
experimentSample

x2(t)

46

experimentSample 
space S

46

Outcome of nth

experiment

xn(t) X(t1) X(t2)
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Statistics of Random ProcessesStatistics of Random Processes

By sampling the random process at any time weBy sampling the random process at any time, we 
get a random variable

F thi i i t thi k f dFrom this view point, we can think of a random 
process as an infinite collection of random 

i bl ifi d t ti t {X(t ) X(t ) X(t )}variables specified at time t:  {X(t1), X(t2), …, X(tn)}

Thus, a random process can be completely , p p y
defined statistically as a collection of random 
variables indexed by time with properties defined y p p
by a joint PDF
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A random process X(t) is described by its M-thA random process X(t) is described by its M-th 
order statistics if for all          and all                       
the joint pdf of {X(t1) X(t2) X(t )} is giventhe joint pdf of {X(t1), X(t2), …, X(tn)} is given

This joint pdf is written as

In order to completely specify a random process

( )nn tttxxxf ,,,;,,, 2121 KK

In order to completely specify a random process, 
one must given                                  for all 
possible values of {x } {t } and for all n This is

( )nn tttxxxf ,,,;,,, 2121 KK

possible values of {xi} {ti}, and for all n. This is 
obviously quite difficult in general
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First Order Statistics on Random 
P
The first order statistics is simply the PDF of a

Processes
The first order statistics is simply the PDF of a 
random variable at one particular time
f(x;t) = first order density of X(t)f(x;t) = first order density of X(t) 
F(x;t) = P(X(t) ≤x), first order distribution of X(t)

Mean [ ] [ ] )();()()( 0000 tXtxxfttXEtXE X ==== ∫
∞

∞−

[ ]2Variance [ ] )()()( 0
22

00 ttXtXE Xσ=−
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Second-Order Statistics on Random 
PProcesses

Second-order statistics means the joint PDF of X(t1) and j ( 1)
X(t2) for all choices t1 and t2. 
Auto-correlation function: Let t1 = t, and t2 = t+τ, 1 2

[ ] 212121 ),;,()()();( dxdxttxxfxxtXtXEtRX ∫ ∫
∞

∞−

∞

∞−
+=+= τττ

The physical meaning of RX(t; τ) is a measure of the 
relationship of the function X(t) and X(t+ τ) (correlation p ( ) ( ) (
within a process)
In general, the autocorrelation function is a function of both 
t and τ. 
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ExampleExample

Given a stochastic process , whereGiven a stochastic process                                     , where

is a random variable uniformly distributed from       to  

At h t X(t) b i d f ti fAt each t, X(t) can be viewed as a function of

The mean is 

The auto-correlation is 
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Stationary ProcessesStationary Processes

A stochastic process is said to be stationary if for any nA stochastic process is said to be stationary if for any n 
and    the following holds:

( ; ) ( ; )f x x x t t t f x x x t t tτ τ τ= + + +L L L L (1)

Therefore, 

1 2 1 2 1 2 1 2( , , ; , , ) ( , , ; , , )X n n X n nf x x x t t t f x x x t t tτ τ τ= + + +L L L L (1)

Te first-order statistics is independent of t

{ }( ) ( )X XE X t xf x dx m
∞

= =∫mean (2)
The second-order statistics only depends on the gap 
between t1 and t2

{ }
−∞∫ ( )

Autocorrelation 
function

1 2 1 2 1 2 2 1 1 2( , ) ( , , )

( ) ( ) where
X XR t t x x f x x t t dx dx

R t t R t tτ τ

∞ ∞

−∞ −∞
= −

= − = = −
∫ ∫

(3)
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Wide-Sense StationaryWide Sense Stationary
Our engineers often care about the first- and second-
order statistics onlyorder statistics only

A random process is said to be WSS when conditions 
(2) and (3) hold

A random process is said to be strictly stationary when p y y
condition (1) holds

Example:Example: 
, where 

Only depends on the time 
difference
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Averages and ErgodicAverages and Ergodic
Ensemble averagingg g

[ ] ∫
∞

∞−

Δ

== dxtxxptXEtX );()()(

[ ] ∫ ∫
∞ ∞Δ

== );()()()( dxdxttxxpxxtXtXEttR

Time averaging

[ ] ∫ ∫∞− ∞−
== 212121212121 ),;,()()(),( dxdxttxxpxxtXtXEttRX

Δ 1g g
dttx

T
tX

T

TT ∫−∞→

Δ

=>< )(
2
1lim)(

dttttXtX
T

∫
Δ

>< )()(1li)()(

In general, ensemble averages and time averages are not equal

dttxtx
T

tXtX
TT ∫−∞→

−=>−< )()(
2

lim)()( ττ

In general, ensemble averages and time averages are not equal
A r.p. X(t) is said to be Ergodic if all time averages and 
Ensemble averages are equal
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Random Processes in the Frequency 
D i P S t l D itDomain: Power Spectral Density

Let X(t) denote a random process and let           denote a e ( ) de o e a a do p ocess a d e de o e a
sample function of this process

Truncate the signal by definingg y g

in order to get an energy signal. 

Performing a Fourier transform on we getPerforming a Fourier transform on               , we get

According to Parseval theorem
22 ( ) ( )t dt X f df

∞ ∞

∫ ∫2 ( , ) ( , )T Tx t n dt X f n df
−∞ −∞

=∫ ∫
: energy spectral density
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Then the power spectral density is the average energy 
spectral density per time unit, i.e. 

Letting          , we define the power spectral density for the 
sample function:sample function:

2( , )
( , ) lim T

X T

X f n
S f n

T→∞
=

If we take the ensemble average, the power spectral 
density (PSD) of the random process is 

(4)

The general definition of power spectral density

Watts/Hz
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PSD of Stationary ProcessPSD of Stationary Process

Wiener-Khinchin theorem

For a stationary random process X(t), the PSD is equal to

Wiener Khinchin theorem

For a stationary random process X(t), the PSD is equal to 
the Fourier Transform of the autocorrelation function, i.e.,

( ) ( )∫
∞

dffjfSR 2)(( ) ( )∫ ∞−
= dffjfSR XX τπτ 2exp)(

( )∫
∞

∞−
−= ττπτ dfjRfS XX 2exp)()(

)()( τXX RfS ↔

In general,           is a measure of the relative power in the 
d i l h frandom signal at each frequency component

( ) power total)(0 == ∫
∞

dffSR XX
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Gaussian ProcessGaussian Process

The importance of Gaussian processes in communicationThe importance of Gaussian processes in communication 
systems is due to that thermal noise in electronic devices 
can be closely modeled by a Gaussian process

Definition: 
A random process X(t) is a Gaussian process if for all nA random process X(t) is a Gaussian process if for all n 
and all (t1, t2, …, tn), the random variables {X(t1), 
X(t2), …, X(tn)} have a joint Gaussian density function( ), , ( )} j y
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Properties of Gaussian ProcessesProperties of Gaussian Processes

If a Gaussian random process is wide-senseIf a Gaussian random process is wide sense 
stationary, then it is also stationary

Any sample point from a Gaussian random process isAny sample point from a Gaussian random process is 
a Gaussian random variable

If h i li i G i dIf the input to a linear system is a Gaussian random 
process, then the output is also a Gaussian random 
processprocess. 
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Random Process Transmission Through 
Li S tLinear Systems

Consider a linear systemConsider a linear system

Impulse 
response

Y(t)X(t)
p
h(t)

∫
∞

∞−
−== τττ dtXhthtXtY )()()(*)()(

The mean of the output random process Y(t)

∫ ∞−

[ ] [ ])()()()( dh∫
∞[ ] [ ]

)()(

)()()()(

dtXh

dtXEhtYEtY

−=

−==

∫
∫

∞

∞−

τττ

τττ

)0()(

)()(

HXdhX ⋅== ∫
∫

∞

∞−

∞−

ττ
If X(t) is WSS
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where H(0) is the zero-frequency response of the system



The autocorrelation of Y(t)
[ ]

)()()()(

)()(),(

ττττττ duXhdtXhE

uYtYEutRY

∫∫ ⎥⎦
⎤

⎢⎣
⎡ −−=

=
∞∞

[ ] 221211

222111

)()()()(

)()()()(

ττττττ

ττττττ

duXtXEhdh

duXhdtXhE

∫∫

∫∫
−−=

⎥⎦⎢⎣
=

∞

∞−

∞−∞−

212121 )()()()( ττττττττ ddRhhR XY ∫ ∫
∞ ∞

+−=

∫∫ ∞

If X(t) is WSS

212121 )()()()( XY ∫ ∫∞− ∞−

If input is a WSS random process, the output 
is also a WSS random process
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is also a WSS random process 



Relation Among the Input-Output PSDRelation Among the Input Output PSD

Autocorrelation of Y(t)Autocorrelation of Y(t)
)()()()( 212121 ττττττττ XY ddRhhR +−= ∫ ∫

∞

∞−

∞

∞−

[ ])(*)()(

)()()(

2222

112122

ττττττ

τττττττ

X

X

dRhh

dRhdh

++=

−+=

∫
∫ ∫
∞

∞

∞−

∞

∞−

PSD of Y(t):

[ ]
)(*)(*)(

)()()( 2222

τττ

ττττττ

X

X

Rhh

dhh

−=
∫ ∞−

)()()( 2 fSfHfSPSD of Y(t): )()()( fSfHfS XY =

h(t)
Y(t)X(t)

h(t)

)()()( 2 fSfHfS =

)( fSX )( fSY

Key Results
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)()()( fSfHfS XY = ey esu ts



NoiseNoise
Noise is a critical component in the analysis of the performance 
of communication receivers
Often assumed to be Gaussian and stationary
The mean is taken to be zero while the autocorrelation is usuallyThe mean is taken to be zero while the autocorrelation is usually 
specified by the power spectral density
The noise is a white noise, when all frequency components 
appear with equal power (white is used in white light for a similar 
reason)

N

( )nS f ( )nR τ

0( ) 2nS f N= 0( ) ( )
2n

NR τ δ τ=
White noise is completely 

uncorrelated!
0 2N 0 2N

uncorrelated!
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Bandlimited NoiseBandlimited Noise
White noise Bandlimited white 

Filter Bandwidth 
Ｂ Hz

noise  n(t)

21
0 4.14 10N KT −= = ×

In most applications

174 dBm/Hz= −

At what sampling rate to sampleAt what sampling rate to sample 
the noise can we get uncorrelated 
realizations?
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Narrow-Band Random ProcessNarrow Band Random Process

The bandwidth of the signal is limited to a narrowThe bandwidth of the signal is limited to a narrow 
band around a central frequency fc >> 0

)(ωS

cfcf−

Canonical form of a narrow band process
( ) ( )0 0( ) ( ) cos 2 ( )sin 2I QX t X t f t X t f tπ π= −( ) ( )0 0( ) ( ) cos 2 ( )sin 2I QX t X t f t X t f tπ π

In-phase component Quadrature component
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Narrow band NoiseNarrow band Noise

Let n(t) be a zero-mean, stationary noiseLet n(t) be a zero mean, stationary noise

Fi d th t ti ti f ( ) d ( )

0 0( ) ( ) cos ( )sinc sn t n t t n t tω ω= −

Find the statistics of nc(t) and ns(t)

Result 1：

Proof:

{ } { } { }( ) ( ) ( ) 0c sE n t E n t E n t= = =

Proof:

Since n(t) is stationary zero-mean for any t we have

[ ] [ ] [ ]0 0( ) ( ) cos ( ) sinc sE n t E n t t E n t tω ω= −

Since n(t) is stationary，zero-mean, for any t, we have

Thus：
[ ]( ) 0E n t =

{ } { }( ) ( ) 0E n t E n t
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Thus：

66

{ } { }( ) ( ) 0c sE n t E n t= =



Result 2：Result 2：

0 0( ) ( ), / 2
( ) ( )

0 h i
n n

n n

S f f S f f f B
S f S f

⎧ − + + ≤
= = ⎨

⎩

Proof

( ) ( )
0 otherwisec sn nf f ⎨
⎩

Proof

-B/2 B/20 f

( )LH f
1

1( )Z t× ( )cn t

2cos tω

( )LH f
1( )Z t ( )n t

02cos tω

02sin tω−
( )n t

-B/2 B/20 f

1
2 ( )Z t× ( )sn t
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Result 3：for the same t n (t) and n (t) areResult 3：for the same t, nc(t) and ns(t) are 
uncorrelated or independent

(0) 0R =

Result 4：

(0) 0
c sn nR =

{ } { } { }2 2 2 2{ } { } { }2 2 2 2( ) ( ) ( )c sE n t E n t E n t σ= = =

Result 5：If n(t) is a Gaussian process, so are nc(t)
and ns(t)
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Envelop and PhaseEnvelop and Phase

Angular representation of n(t)Angular representation of n(t)

[ ]0( ) ( )cos ( )n t R t t tω φ= +

2 2( ) ( ) ( )c sR t n t n t= + envelop

[ ]1 ( )( ) tan 0 ( ) 2sn tt tφ φ π− ≤ ≤ h
where

[ ]( )( ) tan 0 ( ) 2
( )

s

c

t t
n t

φ φ π= ≤ ≤ phase

1 ( )R t1
B

≈
( )R t

( )n t

0

1

t
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Let n(t) be a zero-mean, stationary Gaussian process, 
find the statistics of the envelop and phasefind the statistics of the envelop and phase
Result：

Envelop follows Rayleigh distribution while phase 
follows uniform distribution

2R R⎧ ⎫22

2 20
( ) ( , ) exp 0

2
R Rf R f R d R

π
φ φ

σ σ
⎧ ⎫

= = − ≥⎨ ⎬
⎩ ⎭

∫
1∞

∫P f？

For the same t, the envelop variable R and phase 
0

1( ) ( , ) 0 2
2

f f R dRφ φ φ π
π

∞
= = ≤ ≤∫Proof？

o e sa e , e e e op a ab e a d p ase
variable     are independent (but not the two processes)φ
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Homework 1

Textbook Chapter 2: 2.7(3)(4), 2.13(6)(13)(16)
Textbook Chapter 5: 5.5, 5.15, 5.22, 5.28, 5.44, 
5.49
Due: in class on Sep. 28 (next Wednesday)
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