Principles of Communications

Chapter 3: Analog Modulation (continued)

Textbook: Ch 3, Ch 4.1-4.4

3.3 Angle Modulation

- <u>Angle modulation</u> is either phase or frequency of the carrier is varied according to the message signal
- The general form of an angle modulated wave is $s(t) = A_c \cos[2\pi f_c t + \theta(t)]$

where $f_c = \text{carrier freq}$, $\theta(t)$ is the time-varying phase and varied by the message m(t)

The instantaneous frequency of s(t) is

$$f_i(t) = f_c + \frac{1}{2\pi} \frac{d\theta(t)}{dt}$$

Representation of FM and PM signals

□ For phase modulation (PM), we have

 $\theta(t) = k_p m(t)$ where k_p = phase deviation constant

□ For <u>frequency modulation</u> (FM), we have $f_i(t) - f_c = k_f m(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t)$ where k_f = frequency deviation constant

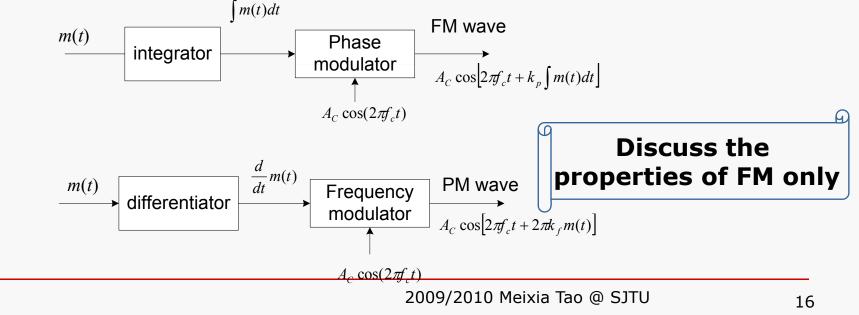
□ The phase of FM is

$$\theta(t) = 2\pi k_f \int_0^t m(\tau) d\tau$$

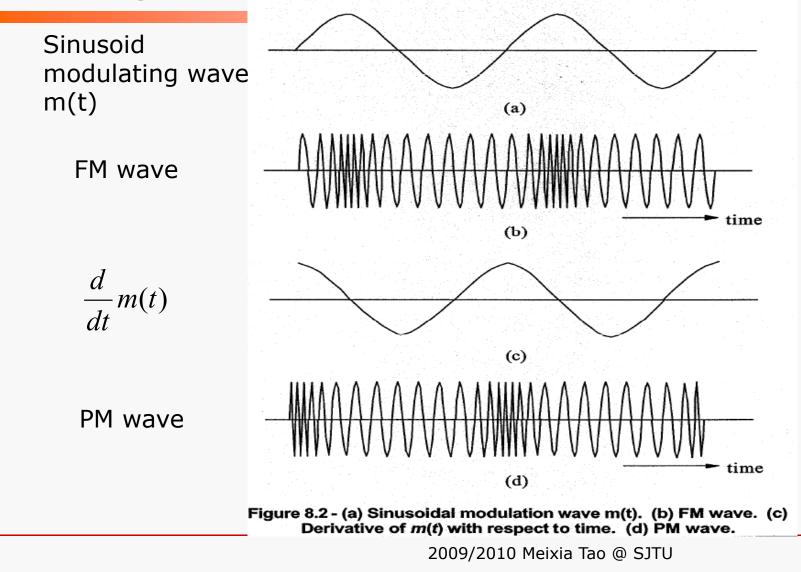
Distinguishing Features of PM and FM

No perfect regularity in spacing of zero crossing

- Zero crossings refer to the time instants at which a waveform changes between negative and positive values
- Constant envelop, i.e. amplitude of s(t) is constant
- Relationship between PM and FM

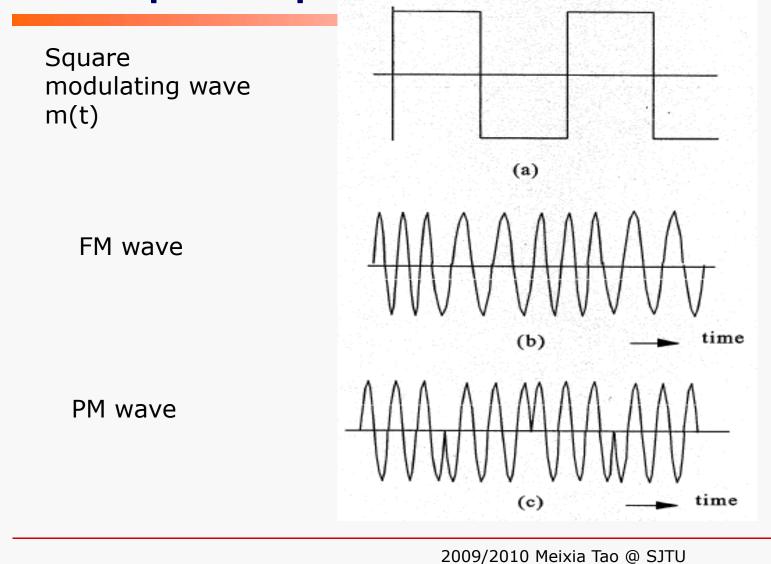


Example: Sinusoidal Modulation



17

Example: Square Modulation



FM by a Sinusoidal Signal

Consider a sinusoidal modulating wave

 $m(t) = A_m \cos(2\pi f_m t)$

Instantaneous frequency of resulting FM wave is

$$f_i(t) = f_c + k_f A_m \cos(2\pi f_m t) = f_c + \Delta f \cos(2\pi f_m t)$$

where $\Delta f = k_f A_m$ is called the frequency deviation, proportional to the amplitude of m(t), and independent of f_m .

Hence, the carrier phase is

$$\theta(t) = 2\pi \int_0^t \left(f_i(\tau) - f_c \right) d\tau = \frac{\Delta f}{f_m} \sin(2\pi f_m t)$$

 $=\beta\sin(2\pi f_m t)$

Where $\beta = \Delta f / f_m$ is called the modulation index

2009/2010 Meixia Tao @ SJTU

Example

Problem: a sinusoidal modulating wave of amplitude 5V and frequency 1kHz is applied to a frequency modulator. The frequency sensitivity is 40Hz/V. The carrier frequency is 100kHz. Calculate (a) the frequency deviation, and (b) the modulation index

Solution:

Frequency deviation $\Delta f = k_f A_m = 40 \times 5 = 200 Hz$

• Modulation index
$$\beta = \frac{\Delta f}{f_m} = \frac{200}{1000} = 0.2$$

Spectrum Analysis of Sinusoidal FM Wave

The FM wave for sinusoidal modulation is

$$s(t) = A_c \cos[2\pi f_c t + \beta \sin(2\pi f_m t)]$$

= $A_c \cos[\beta \sin(2\pi f_m t)]\cos(2\pi f_c t) - A_c \sin[\beta \sin(2\pi f_m t)]\sin(2\pi f_c t)$
In-phase component
 $s_I(t) = A_c \cos[\beta \sin(2\pi f_m t)]$
Quadrature-phase component
 $s_I(t) = A_c \cos[\beta \sin(2\pi f_m t)]$

 $s_Q(t) = A_c \sin[\beta \sin(2\pi f_m t)]$

□ Hence, the complex envelop of FM wave is

 $\widetilde{s}(t) = s_I(t) + js_Q(t) = A_c e^{j\beta \sin(2\pi f_m t)}$

 $\widetilde{s}(t) \text{ retains complete information about s(t)}$ $s(t) = \operatorname{Re}\left\{A_{c}e^{j[2\pi f_{c}t + \beta\sin(2\pi f_{m}t)]}\right\} = \operatorname{Re}\left[\widetilde{s}(t)e^{j2\pi f_{c}t}\right]$

•
$$\widetilde{s}(t)$$
 is periodic, can be expanded in Fourier series as

$$\widetilde{s}(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_m t}$$
where

$$c_n = f_m \int_{-1/(2f_m)}^{1/(2f_m)} \widetilde{s}(t) e^{-j2\pi n f_m t} dt$$

$$= f_m A_c \int_{-1/(2f_m)}^{1/(2f_m)} e^{j[\beta \sin(2\pi f_m t) - 2\pi n f_m t]} dt$$
• Let $x = 2\pi f_m t$

$$c_n = \frac{A_c}{2\pi} \int_{-\pi}^{\pi} \exp\left[j(\beta \sin x - nx)\right] dx$$

• n-th order Bessel function of the first kind $J_n(\beta)$ is defined as

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left[j\left(\beta\sin x - nx\right)\right] dx$$

□ Hence,

$$c_n = A_c J_n(\beta)$$

D Substituting c_n into $\tilde{s}(t)$

$$\widetilde{s}(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \exp(j2\pi n f_m t)$$

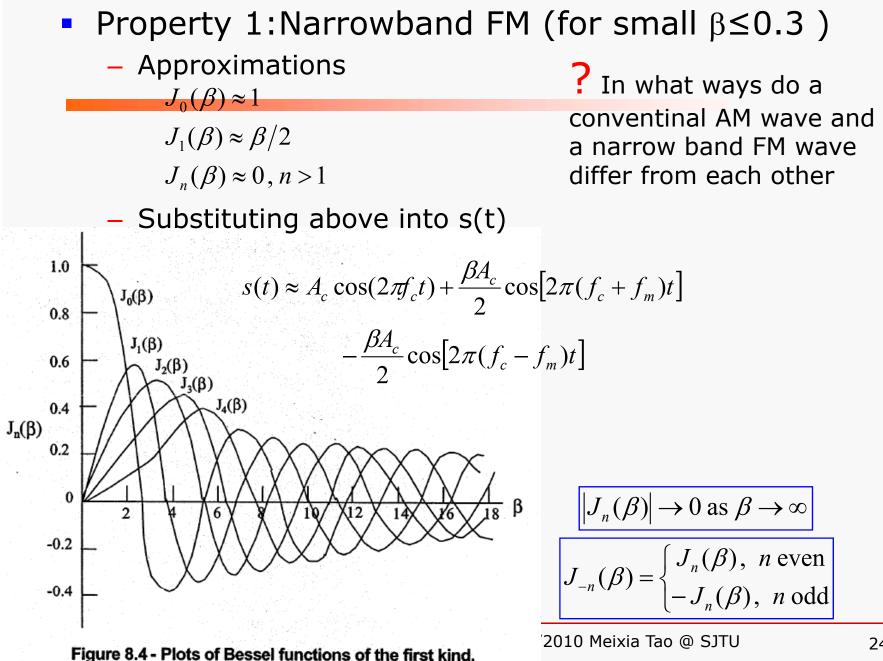
$$c(t) = A_c J_n(\beta)$$

□ Hence, FM wave in time domain can be represented by

$$s(t) = A_c \operatorname{Re}\left\{\sum_{n=-\infty}^{\infty} J_n(\beta) \exp\left[j2\pi(f_c + nf_m)t\right]\right\}$$
$$= A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos\left[2\pi(f_c + nf_m)t\right]$$

□ In frequency-domain, we have

$$S(f) = \frac{A_c}{2} \sum_{n = -\infty}^{\infty} J_n(\beta) \left[\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m) \right]$$



Property 2: Wideband FM (for large β **>1)**

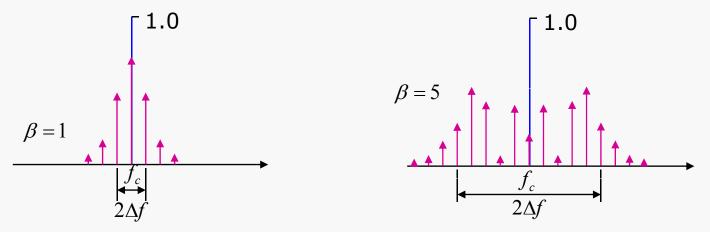
- In theory, s(t) contains a carrier and an infinite number of sidefrequency components, with no approximations made
- Property 3: Constant average power
 - The envelop of FM wave is constant, so the average power is also constant, $P = A_c^2 / 2$

The average power is also given by $s(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos[2\pi (f_c + nf_m)]^2$

$$P = \frac{A_c^2}{2} \sum_n J_n^2(\beta) = \frac{A_c^2}{2}$$
$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$$

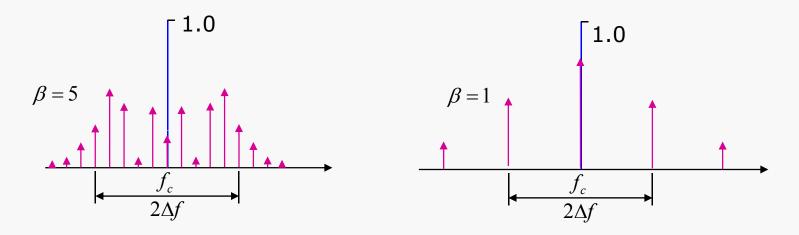
Example

- Goal: to investigate how the amplitude A_m, and frequency f_m, of a sinusoidal modulating wave affect the spectrum of FM wave
- □ Fixed f_m and varying A_m ⇒ frequency deviation $\Delta f = k_f A_m$ and modulation index $\beta = \Delta f/f_m$ are varied



Increasing A_m increases the number of harmonics in the bandwidth

□ Fixed A_m and varying $f_m \Rightarrow \Delta f$ is fixed, but β is varied



Increasing f_m decreases the number of harmonics but at the same time increases the spacing between the harmonics.

Effective Bandwidth of FW Waves

- □ Theoretically, FM bandwidth = infinite
- □ In practice, for a single tone FM wave, when β is large, B is only slightly greater than the total frequency excursion 2 Δ f. when β is small, the spectrum is effectively limited to $[f_c f_m, f_c + f_m]$
- □ Carson's Rule approximation for single-tone modulating wave of frequency f_m

$$B \approx 2\Delta f + 2f_m = 2(1+\beta)f_m$$

□ 99% bandwidth approximation

The separation between the two frequencies beyond which none of the side-frequencies is greater than 1% of the unmodulated carrier amplitude

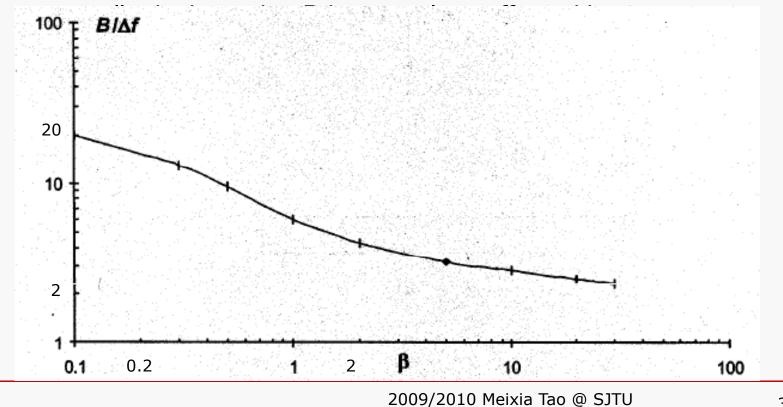
• i.e $B \approx 2n_{\text{max}} f_m$ where n_{max} is the max *n* that satisfies

 $\left|J_n(\beta)\right| > 0.01$

β	0.1	0.3	0.5	1.0	2.0	5.0	10	20	30
2n _{max}	2	4	4	6	8	16	28	50	70

□ A universal curve for evaluating the 99% bandwidth

As β increases, the bandwidth occupied by the significant sidefrequencies drops toward that over which the carrier frequency



FM by an Arbitrary Message

- Consider an *arbitrary* m(t) with highest freq component W
- Define deviation ratio D = $\Delta f / W$, where $\Delta f = k_f \max |m(t)|$ D $\Leftrightarrow \beta$ and W $\Leftrightarrow f_m$
- Carson's rule applies as

$$B \approx 2\Delta f + 2W = 2W(1+D)$$

- Carson's rule somewhat underestimate the FM bandwidth requirement, while universal curve yields a somewhat conservative result
- Assess FM bandwidth between the bounds given by Carson's rule and the universal curve

Example

- In north America, the maximum value of frequency deviation ∆f is fixed at 75kHz for commercial FM broadcasting by ratio.
- If we take the modulation frequency W = 15kHz, which is typically the maximum audio frequency of interest in FM transmission, the corresponding value of the deviation ratio is D = 75/15 = 5
- Using Carson's rule, the approximate value of the transmission bandwidth of the FM wave is

B = 2 (75+15) = 180kHz

□ Using *universal curve*,

B = 3.2 ∆f = 3.2 x 75 = 240kHz

Exercise

□ Assuming that $m(t) = 10 \operatorname{sinc}(10^4 t)$, determine the transmission bandwidth of an FM modulated signal with $k_f = 4000$

Generation of FM waves

- Direct approach
 - Design an oscillator whose frequency changes with the input voltage => voltage-controlled oscillator (VCO)
- Indirect approach
 - First generate a narrowband FM signal first and then change it to a wideband single
 - Due to the similarity of conventional AM signals, the generation of a narrowband FM signal is straightforward.

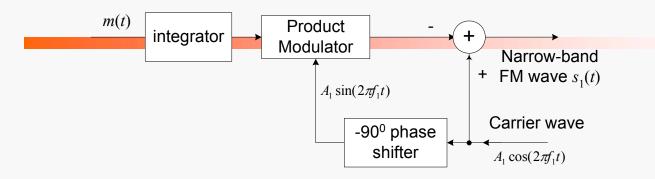
Generation of Narrow-band FM

- Consider a narrow band FM wave $s_1(t) = A_1 \cos[2\pi f_1 t + \phi_1(t)]$
 - where $\phi_1(t) = 2\pi k_1 \int_0^t m(\tau) d\tau$ f_1 = carrier frequency k_1 = frequency sensitivity
- Given $\phi_1(t) <<1$ with $\beta \le 0.3$, we may use $\begin{cases} \cos[\phi_1(t)] \approx 1 \\ \sin[\phi_1(t)] \approx \phi_1(t) \end{cases}$
- Correspondingly, we may approximate $s_1(t)$ as $s_1(t) = A_1 \cos(2\pi f_1 t) - A_1 \sin(2\pi f_1 t) \phi_1(t)$

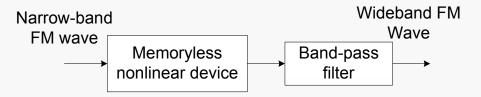
$$=A_1\cos(2\pi f_1 t) - 2\pi k_1 A_1\sin(2\pi f_1 t) \int_0^t m(\tau) d\tau \quad \Box$$

Narrow-band FW wave

Narrow-band frequency modulator



 Next, pass s₁(t) through a frequency multiplier, which consists of a non-linear device and a bandpass filter.



The input-output relationship of the non-linear device is modeled as

$$s_2(t) = a_1 s_1(t) + a_2 s_1^2(t) + \ldots + a_n s_1^n(t)$$

- The BPF is used to Pass the FM wave centred at nf_1 and with deviation $n\Delta f_1$ and suppress all other FM spectra

Example: frequency multiplier with n = 2

Problem: Consider a square-law device based frequency multiplier

$$s_{2}(t) = a_{1}s_{1}(t) + a_{2}s_{1}^{2}(t)$$
$$s_{1}(t) = A_{1}\cos\left(2\pi f_{1}t + 2\pi k_{1}\int_{0}^{t}m(\tau)d\tau\right)$$

- Specify the midband freq. and bandwidth of BPF used in the freq. multiplier for the resulting freq. deviation to be twice that at the input of the nonlinear device
- Solution:

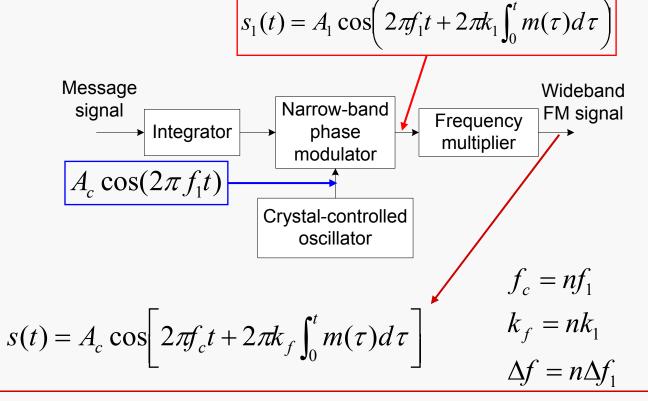
with

$$\frac{\text{CONTRUCT}}{s_{2}(t) = a_{1}A_{1}\cos\left(2\pi f_{1}t + 2\pi k_{1}\int_{0}^{t}m(\tau)d\tau\right) + a_{2}A_{1}^{2}\cos^{2}\left(2\pi f_{1}t + 2\pi k_{1}\int_{0}^{t}m(\tau)d\tau\right)$$

$$= a_{1}A_{1}\cos\left(2\pi f_{1}t + 2\pi k_{1}\int_{0}^{t}m(\tau)d\tau\right) + \frac{a_{2}A_{1}^{2}}{2} + \frac{a_{2}A_{1}^{2}}{2}\cos\left(4\pi f_{1}t + 4\pi k_{1}\int_{0}^{t}m(\tau)d\tau\right)$$

$$f_{c} = 2f_{1}$$
BW > 2\Delta f = 4\Delta f_{1}
2009/2010 Meixia Tao @ SJTU 37

Thus, connecting the narrow-band frequency modulator and the frequency multiplier, we may build the wideband frequency modulator



Mixer

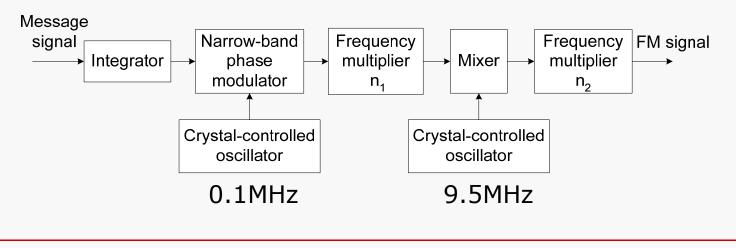
- □ $f_c = nf_1$ may not be the desired carrier frequency. The modulator performs an up/down conversion to shift the modulated signal to the desired center freq.
- This consists of a mixer and a BPF

$$(t) v_1(t) Band-pass v_2(t)$$

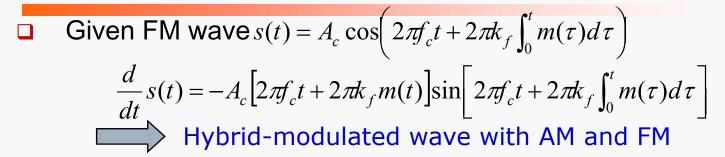
filter
$$cos(2\pi f_l t)$$

Exercise: A typical FM transmitter

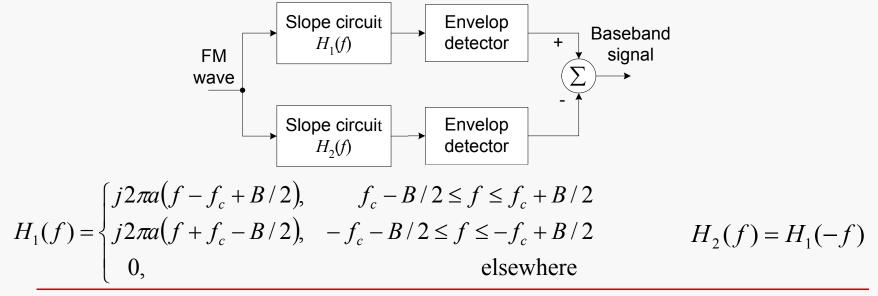
- Problem: Given the simplified block diagram of a typical FM transmitter used to transmit audio signals containing frequencies in the range 100Hz to 15kHz.
- Desired FM wave: $f_c = 100MHz$, $\Delta f = 75kHz$.
- Set $\beta_1 = 0.2$ in the narrowband phase modulation to limit harmonic distortion.
- **D** Specify the two-stage frequency multiplier factors n_1 and n_2



Demodulation of FM Balanced Frequency Discriminator

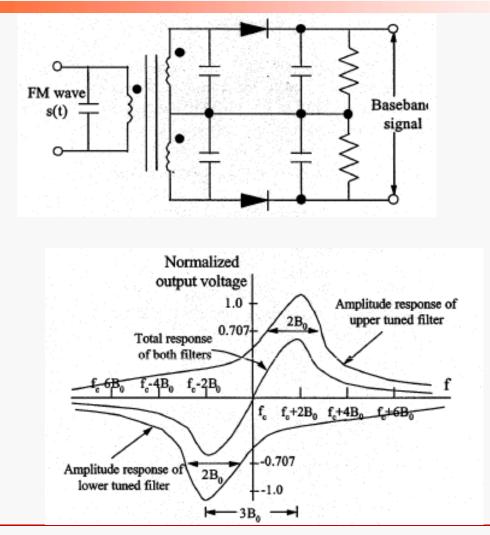


- Differentiator + envelop detector = FM demodulator
- **Frequency discriminator**: a "freq to amplitude" transform device



2009/2010 Meixia Tao @ SJTU

Circuit diagram and frequency response

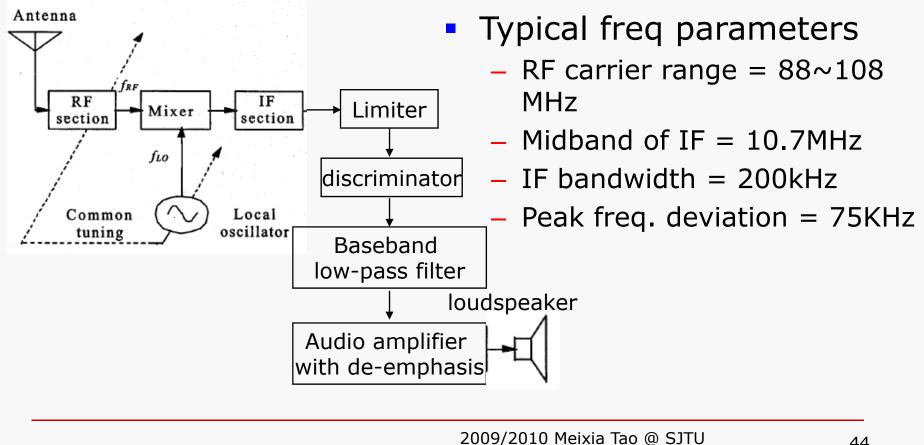


Think ...

- Compared with amplitude modulation, angle modulation requires a higher implementation complexity and a higher bandwidth occupancy.
- □ What is the usefulness of angle modulation systems?

Application: FM Radio broadcasting

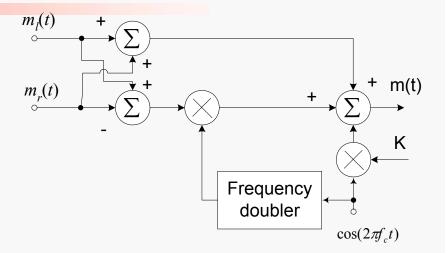
As with standard AM radio, most FM radio receivers are of super-heterodyne type



44

FM Radio Stereo Multiplexing

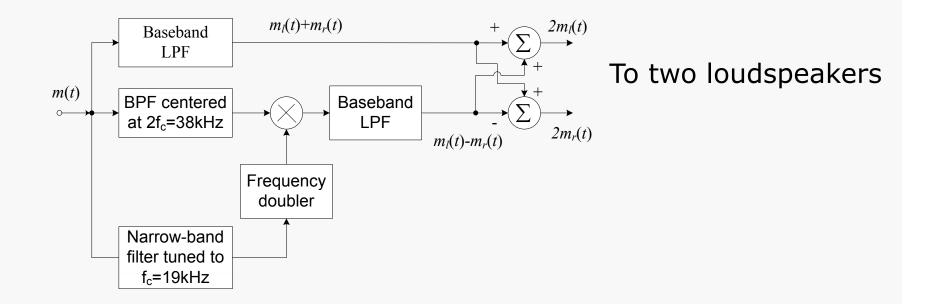
- Stereo multiplexing is a form of FDM designed to transmit two separate signals via the same carrier.
- Widely used in FM broadcasting to send two different elements of a program (e.g. vocalist and accompanist in an orchestra) so as to give a spatial dimension to its perception by a listener at the receiving end
- The sum signal is left unprocessed in its baseband form
- The difference signal and a 38-kHz subcarrier produce a DSBSC wave
- The 19-kHz pilot is included as a reference for coherent detection



$$m(t) = [m_l(t) + m_r(t)] + [m_l(t) - m_r(t)]\cos(4\pi f_c t) + K\cos(2\pi f_c t)$$

 $f_c = 19$ kHz

□ FM-Stereo Receiver



Comparison of Analog-Modulation

Bandwidth efficiency

- SSB is the most bandwidth efficient, but cannot effectively transmit DC
- VSB is a good compromise
- PM/FM are the least favorable systems
- Power efficiency
 - FM provides high noise immunity
 - Conventional AM is the least power efficient
- □ Ease of implementation (transmitter and receiver)
 - The simplest receiver structure is conventional AM
 - FM receivers are also easy to implement
 - DSB-SC and SSB-SC requires coherent detector and hence is much more complicated.

Applications

- □ SSB-SC:
 - Voice transmission over microwave and satellite links
- VSB-SC
 - Widely used in TV broadcasting
- **G** FM
 - High-fidelity radio broadcasting
- Conventional AM
 - AM radio broadcasting
- DSB-SC
 - Hardly used in analog signal transmission!