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SamplingSampling

Sampling Theorem:Sampling Theorem: 
Let the signal          have a bandwidth W, i.e.,  
l t L t b l d t ti
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Then it is possible to reconstruct the original   
signal        from the sampled values.( )x t
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Sampling ProcessSampling Process
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The sampling process can be regarded a modulation 
process ith carrier gi en b periodic imp lses It’s also

t
0

1 32 654

(b)

process with carrier given by periodic impulses. It’s also 
called pulse modulation 
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The result of sampling can be written asThe result of sampling can be written as
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reconstruction is not possible, 
known as aliasing error

The minimum sampling rate                                                
f1/Ts-1/Ts

2sf W=
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ReconstructionReconstruction

To get the original signal back, it is sufficient to filter theTo get the original signal back, it is sufficient to filter the 
sampled signal through a LPF with frequency response 
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QuantizationQuantization

Quantization is a rounding process each sampledQuantization is a rounding process, each sampled 
signal point is rounded to the “nearest” value from 
a finite set of possible quantization levelsa finite set of possible quantization levels. 
Scalar quantization

Each sample is quantized individually 

Vector quantizationVector quantization
Blocks of samples are quantized at a time
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Scalar QuantizationScalar Quantization

The set of real numbers R is partitioned into N disjointThe set of real numbers R is partitioned into N disjoint 
subsets, denoted as Rk, each called quantization region
For each region Rk a representation point calledFor each region Rk, a representation point, called 
quantization level xk is chosen 
If the sampled signal belongs to region Rk then it isIf the sampled signal belongs to region Rk, then it is 
represented by xk , i.e.

( ) f ll 1Q k NR( ) , for all , 1,...,k kQ x x x k N= ∈ =R

Quantization error
( , ( )) ( )e x Q x x Q x= −
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Performance Measure of QuantizationPerformance Measure of Quantization

Signal-to-quantization noise ratio (SQNR) is defined bySignal to quantization noise ratio (SQNR) is defined by
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ExampleExample

The source X(t) is stationary Gaussian source with meanThe source X(t) is stationary Gaussian source with mean 
zero and power spectral density 

2 100f Hz⎧ <

It i l d t th N i t t d h l i

2 100
( )

0 otherwisex

f Hz
S f

⎧ <
= ⎨
⎩

It is sampled at the Nyquist rate and each sample is 
quantized using the 8-level quantizer with

0 1 2 3 4 5 6 7, 60, 40, 20, 0, 20, 40, 60a a a a a a a a= −∞ = − = − = − = = = =

1 2 3 4 5 6 7 870, 50, 30, 10, 10, 30, 50, 70x x x x x x x x= − = − = − = − = = = =

What is the resulting distortion and rate?
What is the SQNR?
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What is the SQNR?
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Uniform QuantizerUniform Quantizer

Let the range of the input samples is [-a, a] and the numberLet the range of the input samples is [ a, a] and the number 
of quantization levels is N = 2^v. Then the length of each 
quantization region is given by

Quantized values are the midpoints of quantization regions
1

2
2v

a a
N −Δ = =

Quantized values are the midpoints of quantization regions. 
Assuming that the quantization error is uniformly 
distributed on Then( )Δ Δdistributed on               . Then ( , )

2 2
−
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2 2

2
/2

1[ ]
12 2 3 4v

a aE e x dx
N

Δ

Δ

Δ
= = = =

Δ ⋅∫
/2 12 2 3 4N−Δ Δ

102 2 2

3 4 10log 6 4.8
[ ]

v dB
X X XP P PSQNR v

E e a a
⋅

= = = + + One extra bit increases 
the SQNR by 6 dB!
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Nonuniform QuantizerNonuniform Quantizer

If we relax the condition that the quantization regions be ofIf we relax the condition that the quantization regions be of 
equal length, then we can minimize the distortion with less 
constraints; therefore, the resulting quantizer will perform 
better than a uniform quantizer
The usual method of nonuniform quantization is to first 
pass the samples through a nonlinear filter and then 
perform a uniform quantization => Companding
For speech coding, higher probability for smaller amplitude 
and lower probability for larger amplitude

μ law compander
A-law compander
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CompanderCompander

μ law companderμ law compander
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CompanderCompander

A law companderA law compander
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Optimal QuantizerOptimal Quantizer

Lloyd-Max ConditionsLloyd Max Conditions
The boundaries of the quantization regions are the 
midpoints of the corresponding quantized valuesmidpoints of the corresponding quantized values
The quantized values are the centroids of the 

ti ti iquantization regions. 
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Vector QuantizationVector Quantization

The idea of vector quantization is to take blocks of sourceThe idea of vector quantization is to take blocks of source 
outputs of length n, and design the quantizer in the n-dim 
Euclidean space, rather than doing the quantization based 
on single samples in a one-dim space
Optimal vector quantizer to minimize distortion

Region Ri is the set of all points in the n-dim space that are 
closer to xi than any other xj, for all j\= I; i.e. 

xi is the centroid of the region Ri i e

{ }: ,n
i i jR R j i= ∈ − < − ∀ ≠x x x x x

xi is the centroid of the region Ri, i.e. 
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4.3 Encoding4.3 Encoding

The encoding process is to assign v bits to N=2^vThe encoding process is to assign v bits to N 2 v 
quantization levels. 
Since there are v bits for each sample and fsSince there are v bits for each sample and fs 
samples/second, we have a bit rate of

bits/secondR vf=

Natural binary coding
A i th l f 0 t N 1 t diff t ti ti l l

bits/secondsR vf

Assign the values of 0 to N-1 to different quantization levels 
in order of increasing level value. 

Gray codingGray coding
Adjacent levels differ only in one bit
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ExamplesExamples

Natural binary code (NBC), folded binary code (FBC), 2-Natural binary code (NBC), folded binary code (FBC), 2
complement code (2-C), 1-complement code (1-C), and 
Gray code

Level no NBC FBC 2-C Gray code Amplitude level
7 111 011 011 100 3 57 111 011 011 100 3.5
6 110 010 010 101 2.5
5 101 001 001 111 1.55 101 001 001 111 1.5
4 100 000 000 110 0.5
3 011 100 100 010 -0.5
2 010 101 111 011 -1.5
1 001 110 110 001 -2.5
0 000 111 101 000 3 5
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Pulse Code Modulation (PCM) Systems
Block diagram of a PCM system 

Pulse Code Modulation (PCM) Systems

Sampler Quantizer Encoder
( )x t { }nx ˆ{ }nx { 0110 }K K

Sampler Quantizer Encoder

Bandwidth requirement:
If a signal has a bandwidth of W and v bits are used for 
each sampled signal, then p g

Hz
2req
RBW vW= =
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Differential PCM (DPCM)Differential PCM (DPCM)

For a bandlimited random process, the sampled values areFor a bandlimited random process, the sampled values are 
usually correlated random variables
This correlation can be employed to improve theThis correlation can be employed to improve the 
performance
Differential PCM: quantize the difference between twoDifferential PCM: quantize the difference between two 
adjacent samples. 
As the difference has small variation to achieve a certainAs the difference has small variation, to achieve a certain 
level of performance, fewer bits are required 
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DPCMDPCM

Quantizer encoderQuantizer encoder

delay

decoder

delay
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Delta Modulation (DM)Delta Modulation (DM)

DM is a simplified version of DPCM, where the quantizer isDM is a simplified version of DPCM, where the quantizer is 
a two-level quantizer with magnitude  
In DM only 1-bit per symbol is employed So adjacent

±Δ

In DM, only 1 bit per symbol is employed. So adjacent 
samples must have high correlation.

)( itm)(tm

×
×
×)( 1−

′
itm )( itm′

)( i
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ΔThe step size     is critical in 
designing a DM system.
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