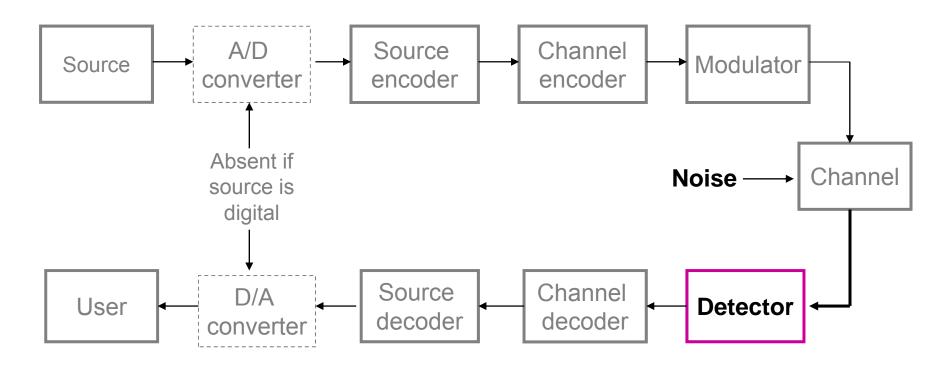
Principles of Communications

Weiyao Lin Shanghai Jiao Tong University

Chapter 7: Optimal Receivers Textbook: Chapter 8.1-8.3

2009/2010 Meixia Tao @ SJTU

Topics to be Covered



- Detection theory
- Optimal receiver structure
- Matched filter

- Decision regions
- Error probability analysis

6.1 Statistical Decision Theory

- Demodulation and decoding of signals in digital communications is directly related to Statistical decision theory
- In the general setting, we are given a finite set of possible hypotheses about an experiment, along with observations related statistically to the various hypotheses.
- The theory provides rules for making the best possible decision (according to some performance criterion) about which hypothesis is likely to be true
- In digital communications, hypotheses are the possible messages and observations are the output of a channel
- A decision on the transmitted data is made based on the observed values of the channel output
- We are interested in the best decision making rule in the sense of minimizing the probability of error

Detection Theory

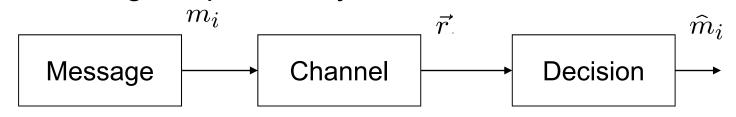
• Given *M* possible hypotheses H_i (signal m_i) with probability

 $P_i = P(m_i)$, i = 1, 2, ..., M

- *P_i* represents the prior knowledge concerning the probability of the signal m_i Prior Probability
- The observation is some collection of *N* real values, denoted by $\vec{r} = (r_1, r_2, \dots, r_N)$ with conditional pdf

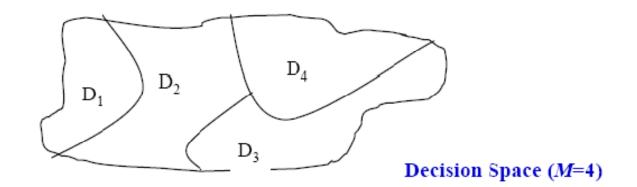
 $f(\vec{r}|m_i)$ -- conditional pdf of observation \vec{r} given the signal m_i

Goal: Find the best decision-making algorithm in the sense of minimizing the probability of decision error.



Observation Space

- In general, \vec{r} can be regarded as a point in some observation space
- Each hypothesis H_i is associated with a decision region D_i :
- The decision will be in favor of H_i if \vec{r} is in D_i
- Error occurs when a decision is made in favor of another when the signals falls outside the decision region D_i



MAP Decision Criterion

 Consider a decision rule based on the computation of the posterior probabilities defined as

 $P(m_i | \vec{r}) = P(\text{ signal } m_i \text{ was transmitted given } \vec{r} \text{ observed})$ for $i = 1, \dots, M$

- Known as a posterior since the decision is made after (or given) the observation
- Different from the a prior where some information about the decision is known in advance of the observation
- By Bayes' Rule

$$P(m_i|\vec{r}) = \frac{P_i f(\vec{r}|m_i)}{f(\vec{r})}$$

MAP Decision Criterion (cont'd)

- Since our criterion is to minimize the probability of detection error given \vec{r} , we deduce that the optimum decision rule is to choose $\hat{m} = m_k$ if and only if $P(m_i | \vec{r})$ is maximum for i = k
- Equivalently,

Choose $\hat{m} = m_k$ if and only if $P_k f(\vec{r}|m_k) \ge P_i f(\vec{r}|m_i)$; for all $i \ne k$

 This decision rule is known as maximum a posterior or MAP decision criterion

ML Decision Criterion

- If $p_1 = p_2 = ... = p_M$, i.e. the signals $\{m_k\}$ are equiprobable, finding the signal that maximizes $P(m_k | \vec{r})$ is equivalent to finding the signal that maximizes $f(\vec{r} | m_k)$
- The conditional pdf *f*(*r*|*m_k*) is usually called the likelihood function. The decision criterion based on the maximum of *f*(*r*|*m_k*) is called the Maximum-Likelihood (ML) criterion.
- ML decision rule:

Choose $\hat{m} = m_k$ if and only if $f(\vec{r}|m_k) \ge f(\vec{r}|m_i)$; for all $i \ne k$

 In any digital communication systems, the decision task ultimately reverts to one of these rules

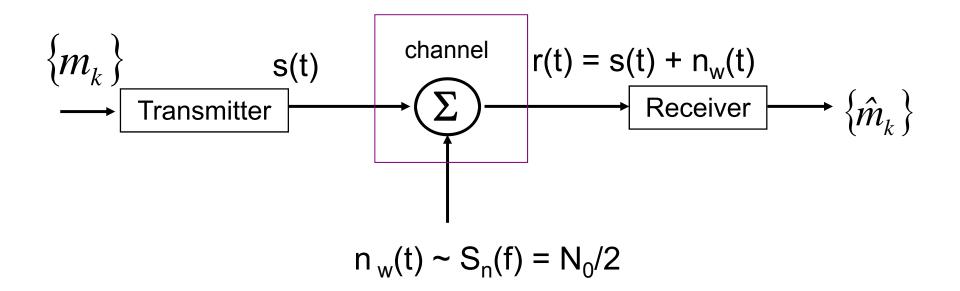
6.2 Optimal Receiver in AWGN Channel

- Transmitter transmits a sequence of symbols or messages from a set of M symbols m₁, m₂, ..., m_M.
- The symbols are represented by finite energy waveforms s₁(t), s₂(t), ..., s_M(t), defined in the interval [0, T]
- Assume the symbols are transmitted with probability

$$p_1 = P(m_1), \ p_2 = P(m_2), \ p_M = P(m_M)$$

AWGN Channel Model

- The channel is assumed to corrupt the signal by additive white Gaussian noise (AWGN)
- Consider the following communication model



Signal Space Representation

- The signal space of $\{s_1(t), s_2(t), ..., s_M(t)\}$ is assumed to be of dimension N (N ≤ M)
- $\phi_k(t)$ for k = 1, ..., N will denote an orthonormal basis function
- Then each transmitted signal waveform can be represented as

$$s_m(t) = \sum_{k=1}^N s_{mk}\phi_k(t)$$
 where $s_{mk} = \int_0^T s_m(t)\phi_k(t)dt$

Note that the noise n_w(t) can be written as

$$n_{w}(t) = n_{0}(t) + \sum_{k=1}^{N} n_{k}\phi_{k}(t) \text{ where } n_{k} = \int_{0}^{T} n_{w}(t)\phi_{k}(t)dt$$
Projection of $n_{w}(t)$ on the N-dim space orthogonal to the space, falls outside the signal space spanned by $\{\phi_{k}(t), k = 1, \dots N\}$

• The received signal can thus be represented as $r(t) = s(t) + n_w(t)$ $= \sum_{k=1}^{N} s_{mk} \phi_k(t) + \sum_{k=1}^{N} n_k \phi_k(t) + n_0(t)$ $= \sum_{k=1}^{N} r_k \phi_k(t) + n_0(t) \quad \text{where } r_k = s_{mk} + n_k$

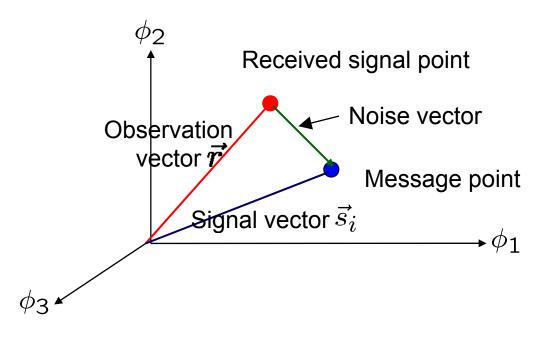
Projection of r(t) on N-dim signal space

2009/2010 Meixia Tao @ SJTU

Graphical Illustration

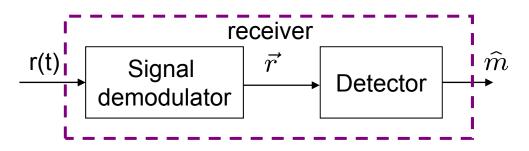
In vector forms, we have

$$\vec{r} = \vec{s}_i + \vec{n}$$



Receiver Structure

- Subdivide the receiver into two parts
 - Signal demodulator: to convert the received waveform r(t) into an N-dim vector $\vec{r} = (r_1, r_2, \dots, r_N)$
 - Detector: to decide which of the M possible signal waveforms was transmitted based on observation of the vector \vec{r}



- Two realizations of the signal demodulator
 - Correlation-Type demodulator
 - Matched-Filter-Type demodulator

7.3 What is Matched Filter?

- The matched filter (MF) is the optimal linear filter for maximizing the output SNR.
- Derivation of the MF

$$x(t) = s_i(t) + n_i(t)$$

$$h(t)$$

$$H(f)$$

$$y(t) = s_o(t) + n_o(t)$$

- Input signal component $s_i(t) \leftrightarrow A(f) = \int_{-\infty}^{\infty} s_i(t) e^{-j\omega t} dt$
- Input noise component $n_i(t)$ with PDS $S_{n_i}(f) = N_0/2$
- The signal component in the filter output is

$$s_{o}(t) = \int_{-\infty}^{\infty} s_{i}(t-\tau)h(\tau)d\tau$$
$$= \int_{-\infty}^{\infty} A(f)H(f)e^{j\omega t}df$$

Output SNR

- At the sampling instance $t = t_0$, $s_o(t_0) = \int_{-\infty}^{\infty} A(f) H(f) e^{j\omega t_0} df$
- Average power of the output noise is

$$N = E\{n_o^2(t)\} = \frac{N_0}{2} \int_{-\infty}^{\infty} \left|H(f)\right|^2 df$$

 Now the problem is to select the filter's freq. response that maximizes the output SNR, defined as

$$d = \frac{s_o^2(t_0)}{E\{n_o^2(t)\}} = \frac{\left[\int_{-\infty}^{\infty} A(f)H(f)e^{j\omega t_0}df\right]^2}{\frac{N_0}{2}\int_{-\infty}^{\infty} |H(f)|^2 df}$$

Find H(f) that can maximize d

Maximum Output SNR

Schwarz's inequality

$$\int_{-\infty}^{\infty} \left| F(x) \right|^2 dx \int_{-\infty}^{\infty} \left| Q(x) \right|^2 dx \ge \left| \int_{-\infty}^{\infty} F^*(x) Q(x) dx \right|^2$$

with equality holds when F(x) = CQ(x) for any arbitrary constant C.

• Let
$$\begin{cases} F^{*}(x) = A(f)e^{j\omega t_{0}} \\ Q(f) = H(f) \end{cases}$$
, then
$$d \leq \frac{\int_{-\infty}^{\infty} |A(f)|^{2} df \int_{-\infty}^{\infty} |H(f)|^{2} df}{\frac{N_{0}}{2} \int_{-\infty}^{\infty} |H(f)|^{2} df} = \frac{\int_{-\infty}^{\infty} |A(f)|^{2} df}{\frac{N_{0}}{2}} = \frac{2E}{N_{0}} \end{cases}$$
 E: signal energy

Solution of Matched Filter

When the max output SNR 2E/N₀ is achieved, we have

$$H_{m}(f) = A^{*}(f)e^{-j\omega t_{0}}$$

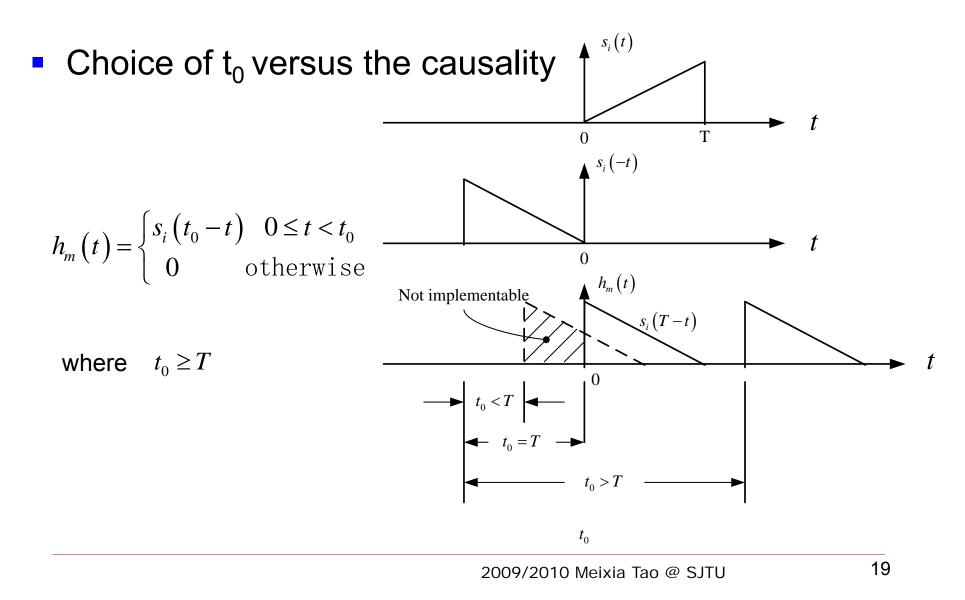
$$h_{m}(t) = \int_{-\infty}^{\infty} H_{m}(f)e^{j\omega t}df$$

$$= \int_{-\infty}^{\infty} A^{*}(f)e^{-j\omega(t_{0}-t)}df$$

$$= s_{i}^{*}(t_{0}-t)$$

- The transfer function of MF is the complex conjugate of the input signal spectrum
- The impulse response of MF is a time-reversal and delayed version of the input signal s(t)

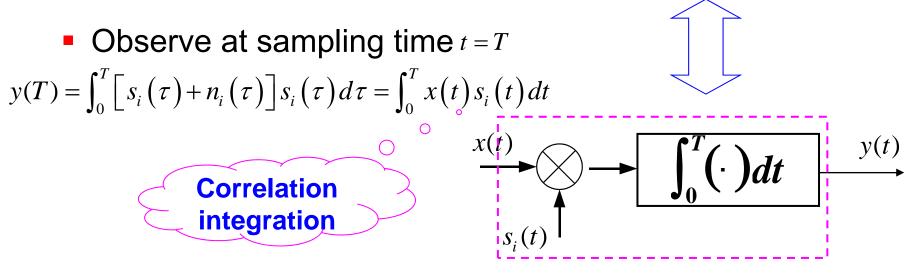
Properties of MF (1)



Properties of MF (2)

- Equivalent form Correlator
 - Let $s_i(t)$ is within [0, T]

$$y(t) = s_o(t) + n_o(t) = [s_i(t) + n_i(t)] * h_m(t)$$
$$= \int_0^T [s_i(\tau) + n_i(\tau)] s_i(T - t + \tau) d\tau$$



x(t)

MF

t = T

Correlation Integration

Correlation function in time domain

$$R_{12}(\tau) = \int_{-\infty}^{\infty} s_1(t) s_2(t+\tau) dt = \int_{-\infty}^{\infty} s_1(t-\tau) s_2(t) dt = R_{21}(-\tau)$$

• Autocorrelation function $R(\tau) = \int_{-\infty}^{\infty} s(t) s(t+\tau) dt$

•
$$R(\tau) = R(-\tau)$$

•
$$R(0) \ge R(\tau)$$

•
$$R(0) = \int_{-\infty}^{\infty} s^2(t) dt = E$$

•
$$R(\tau) \leftrightarrow |A(f)|^2$$
 $R(0) = \int_{-\infty}^{\infty} s^2(t) dt = \int_{-\infty}^{\infty} |A(f)|^2 df$

Properties of MF (3)

MF output signal is the autocorre. function of input signal

$$s_{o}(t) = \int_{-\infty}^{\infty} s_{i}(t-u)h_{m}(u)du = \int_{-\infty}^{\infty} s_{i}(t-u)s_{i}(t_{0}-u)du$$
$$= \int_{-\infty}^{\infty} s_{i}(\mu)s_{i}[\mu+t-t_{0}]d\mu = R_{s_{0}}(t-t_{0})$$

• The peak value of $s_0(t)$ happens at $t = t_0$

$$s_o(t_0) = \int_{-\infty}^{\infty} s_i^2(\mu) d\mu = E$$

• $s_0(t)$ is symmetric at $t = t_0$ $A_o(f) = A(f)H_m(f) = |A(f)|^2 e^{-j\omega t_0}$ $s_o(t) = s_0'(t - t_0)$

Properties of MF (4)

- MF output noise
 - The statistical autocorrelation of n₀(t) depends on the autocorrelation of s_i(t)

$$R_{n_o}(\tau) = E\left\{n_o(t)n_o(t+\tau)\right\} = \frac{N_0}{2}\int_{-\infty}^{\infty}h_m(u)h_m(u+\tau)du$$

$$=\frac{N_0}{2}\int_{-\infty}^{\infty}s_i(t)s_i(t-\tau)dt$$

• Average power $E\left\{n_o^2(t)\right\} = R_{n_o}\left(0\right) = \frac{N_0}{2} \int_{-\infty}^{\infty} s_i^2(\mu) d\mu \quad (\text{time domain})$ $= \frac{N_0}{2} \int_{-\infty}^{\infty} |A(f)|^2 df = \frac{N_0}{2} \int_{-\infty}^{\infty} |H_m(f)|^2 df \quad (\text{freq. domain})$ $= \frac{N_0}{2} E$

2009/2010 Meixia Tao @ SJTU

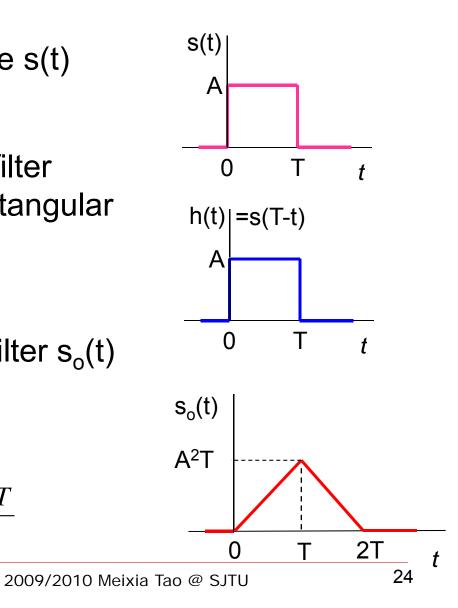
Example: MF for a rectangular pulse

Consider a rectangular pulse s(t)

$$E_s = A^2 T$$

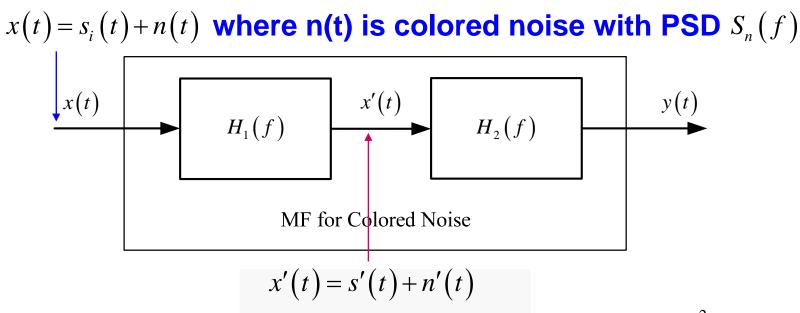
- The impulse response of a filter matched to s(t) is also a rectangular pulse
- The output of the matched filter s_o(t) is h(t) * s(t)
- The output SNR is

$$(SNR)_o = \frac{2}{N_0} \int_0^T s^2(t) dt = \frac{2A^2T}{N_0}$$



What if the noise is Colored?

 Basic idea: preprocess the combined signal and noise such that the non-white noise becomes white noise -Whitening Process



Choose H₁(f) so that n'(t) is white, i.e. $S'_n(f) = |H_1(f)|^2 S_n(f) = C$

H₁(f), H₂(f)

•
$$H_1(f)$$
: $|H_1(f)|^2 = \frac{C}{S_n(f)}$

• H2(f) should match with $\mathbb{Z}s'(t) = H_1(f)A(f)$

$$H_{2}(f) = A^{\prime *}(f)e^{-j2\pi ft_{0}} = H_{1}^{*}(f)A^{*}(f)e^{-j2\pi ft_{0}}$$

The overall transfer function of the cascaded system is

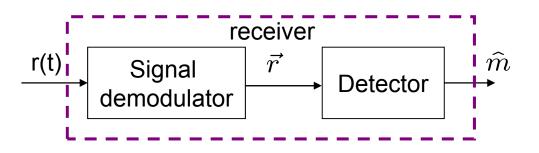
$$H(f) = H_{1}(f) \cdot H_{2}(f) = H_{1}(f) H_{1}^{*}(f) A^{*}(f) e^{-j2\pi ft_{0}}$$

= $|H_{1}(f)|^{2} A^{*}(f) e^{-j2\pi ft_{0}}$
$$H(f) = \frac{A^{*}(f)}{S_{n}(f)} e^{-j2\pi ft_{0}}$$

MF for colored
noise

Update

- We have discussed what is matched filter
- Let us now come back to the optimal receiver structure

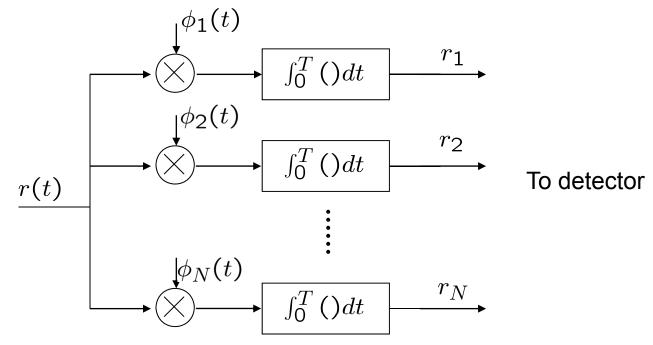


- Two realizations of the signal demodulator
 - Correlation-Type demodulator
 - Matched-Filter-Type demodulator

Correlation Type Demodulator

The received signal r(t) is passed through a parallel bank of N cross correlators which basically compute the projection of r(t) onto the N basis functions

 $\{\phi_k(t), k = 1, \dots N\}$

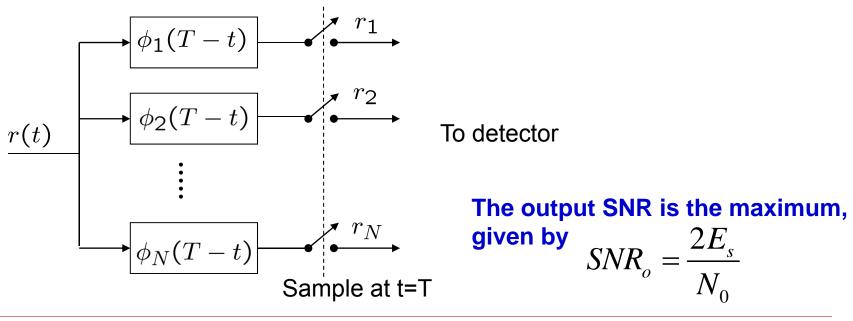


2009/2010 Meixia Tao @ SJTU

Matched-Filter Type Demodulator

 Alternatively, we may apply the received signal r(t) to a bank of N matched filters and sample the output of filters at t = T. The impulse responses of the filters are

$$h_k(t) = \phi_k(T - t), \quad 0 \le t \le T$$



- We have demonstrated that
 - for a signal transmitted over an AWGN channel, either a correlation type demodulator or a matched filter type demodulator produces the vector $\vec{r} = (r_1, r_2, \dots, r_N)$ which contains all the necessary information in r(t)

- Now, we will discuss
 - the design of a signal detector that makes a decision of the transmitted signal in each signal interval based on the observation of r

 , such that the probability of making an error is minimized (or correct probability is maximized)

Decision Rules

Recall that

MAP decision rule:

choose $\hat{m} = m_k$ if and only if

$$P_k f(\vec{r}|m_k) > P_i f(\vec{r}|m_i)$$
; for all $i \neq k$

ML decision rule

choose $\hat{m} = m_k$ if and only if

$$f(\vec{r}|m_k) > f(\vec{r}|m_i)$$
; for all $i \neq k$

In order to apply the MAP or ML rules, we need to evaluate the likelihood function $f(\vec{r}|m_k)$

Distribution of the Noise Vector

Since n_w(t) is a Gaussian random process,

- $n_k = \int_0^T n_w(t)\phi_k(t)dt$ is a Gaussian random variable (from definition)
- Mean: $E[n_k] = \int_0^T E[n_w(t)]\phi_k(t)dt = 0$, k = 1, ..., N

Correlation between n_i and n_k

2009/2010 Meixia Tao @ SJTU

• Using the property of a delta function $\int_{\infty}^{\infty} g(t)\delta(t-a)dt = g(a)$ we have:

$$E[n_j n_k] = \frac{N_0}{2} \int_0^T \phi_j(\tau) \phi_k(\tau) d\tau = \begin{cases} \frac{N_0}{2}, & j = k \\ 0, & j \neq k \end{cases}$$

- Therefore, n_j and n_k (j ≠ k) are uncorrelated Gaussian random variables
 - They are independent with zero-mean and variance N₀/2
- The joint pdf of $\vec{n} = (n_1, \dots, n_N)$

$$p(n_1, \dots, n_N) = \prod_{k=1}^N p(n_k) = \prod_{k=1}^N \frac{1}{\sqrt{\pi N_0}} \exp\left(-n_k^2/N_0\right)$$
$$= (\pi N_0)^{-N/2} \exp\left(-\sum_{k=1}^N n_k^2/N_0\right)$$

Likelihood Function

• If m_k is transmitted, $\vec{r} = \vec{s}_k + \vec{n}$ with $r_j = s_{kj} + n_j$

$$E[r_j|m_k] = s_{kj} + E[n_j] = s_{kj}$$

•
$$Var[r_j|m_k] = Var[n_j] = N_0/2$$

- Transmitted signal values in each dimension represent the mean values for each received signal
- Conditional pdf of the random variables $\vec{r} = (r_1, r_2, \dots, r_N)$

$$f(\vec{r}|m_k) = \prod_{j=1}^{N} \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{(r_j - s_{kj})^2}{N_0}\right)$$
$$= (\pi N_0)^{-N/2} \exp\left(-\frac{\sum_{j=1}^{N} (r_j - s_{kj})^2}{N_0}\right)$$

Log-Likelihood Function

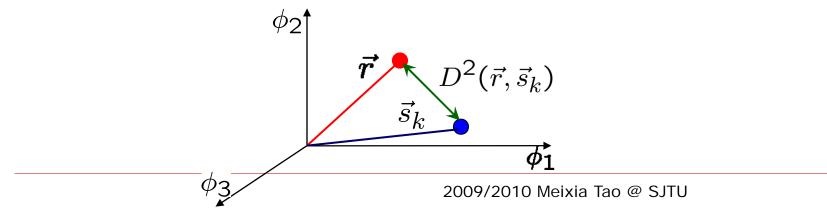
• To simplify the computation, we take the natural logarithm of $f(\vec{r}|m_k)$, which is a monotonic function. Thus

Let

$$\ln f(\vec{r}|m_k) = -\frac{N}{2} \ln (\pi N_0) - \frac{1}{N_0} \sum_{j=1}^N (r_j - s_{kj})^2$$

$$D^2(\vec{r}, \vec{s}_k) = \sum_{j=1}^N (r_j - s_{k,j})^2 = \|\vec{r} - \vec{s}_k\|^2$$

• $D(\vec{r}, \vec{s}_k)$ is the Euclidean distance between \vec{r} and \vec{s}_k in the Ndim signal space. It is also called distance metrics



35

Optimum Detector

• MAP rule:
$$\hat{m} = \arg \max_{\{m_1,...,m_M\}} f(\vec{r}|m_k)P(m_k)$$

 $= \arg \max_{\{m_1,...,m_M\}} \ln [f(\vec{r}|m_k)P(m_k)]$
 $= \arg \max_{\{m_1,...,m_M\}} \left\{ -\frac{1}{N_0} \|\vec{r} - \vec{s}_k\|^2 + \ln P_k \right\}$
 $= \arg \min_{\{m_1,...,m_M\}} \left\{ \|\vec{r} - \vec{s}_k\|^2 - N_0 \ln P_k \right\}$
• ML rule: $\hat{m} = \arg \min_{\{m_1,...,m_M\}} \|\vec{r} - \vec{s}_k\|^2$

ML detector chooses $\hat{m} = m_k$ iff received vector \vec{r} is closer to \vec{s}_k in terms of Euclidean distance than to any other \vec{s}_i for i \neq k

Minimum distance detection

(will discuss more in decision region)

Optimal Receiver Structure

 From previous expression we can develop a receiver structure using the following derivation

$$-\sum_{j=1}^{N} (r_j - s_{kj})^2 + N_0 \ln P_k = -\sum_{j=1}^{N} r_j^2 - \sum_{j=1}^{N} s_{kj}^2 + 2\sum_{j=1}^{N} r_j s_{kj} + N_0 \ln P_k$$

$$= -\|\vec{r}\|^2 - \|\vec{s}_k\|^2 + 2\vec{r}\cdot\vec{s}_k + N_0 \ln P_k$$

in which

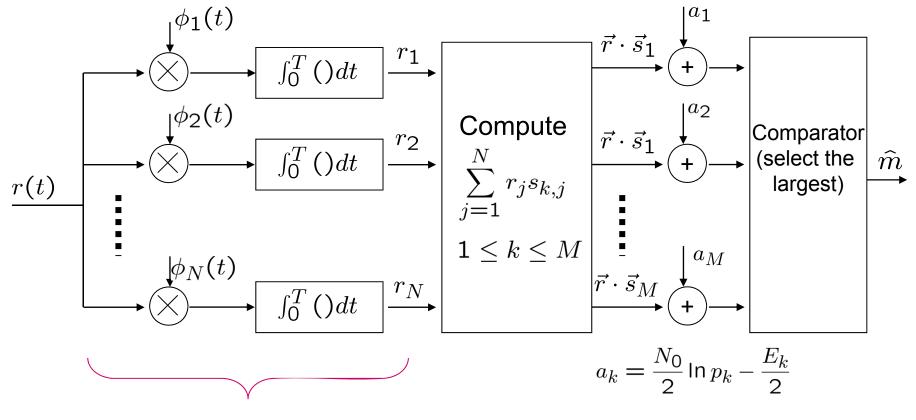
$$\begin{cases} \|\vec{s}_k\|^2 = \int_0^T s_k^2(t) dt = E_k = \text{signal energy} \\ \vec{r} \cdot \vec{s}_k = \int_0^T s_k(t) r(t) dt = \text{correlation between the received signal vector and the transmitted signal vector} \\ \|\vec{r}\|^2 = \text{common to all M decisions and hence can be ignored} \end{cases}$$

The new decision function becomes

$$\widehat{m} = \arg \max_{m_1, \dots, m_M} \left\{ \vec{r} \cdot \vec{s}_k - \frac{E_k}{2} + \frac{N_0}{2} \ln P_k \right\}$$

 Now we are ready draw the implementation diagram of MAP receiver (signal demodulator + detector)

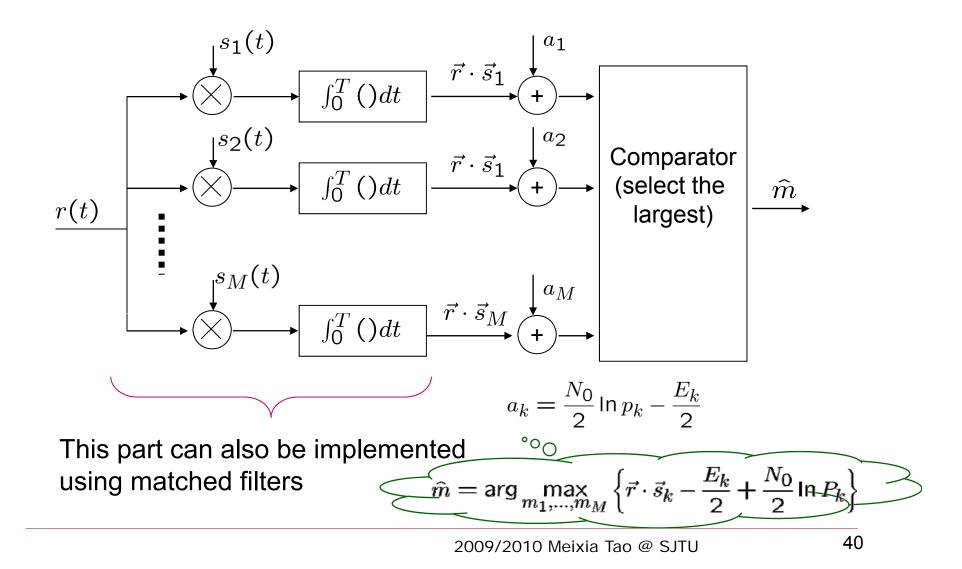
MAP Receiver Structure Method 1 (Signal Demodulator + Detector)



This part can also be implemented using matched filters

2009/2010 Meixia Tao @ SJTU

MAP Receiver Structure Method 2 (Integrated demodulator and detector)

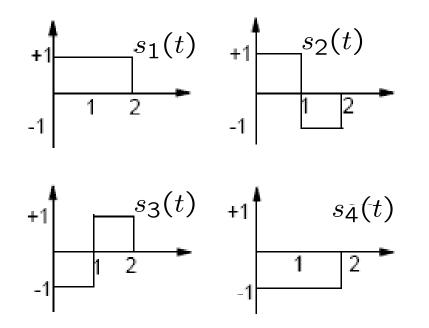


Method 1 vs. Method 2

- Both receivers perform identically
- Choice depends on circumstances
- For instance, if N < M and $\{\phi_j(t)\}\$ are easier to generate than $\{s_k(t)\}\$, then the choice is obvious

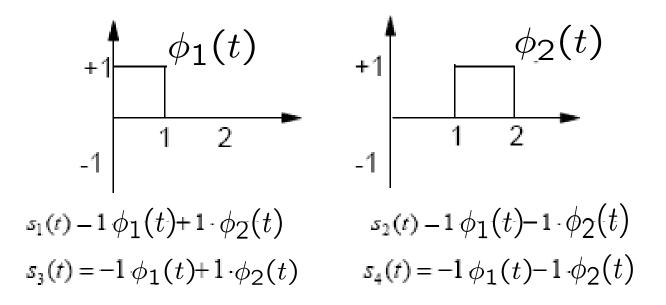
Example: optimal receiver design

Consider the signal set



Example (cont'd)

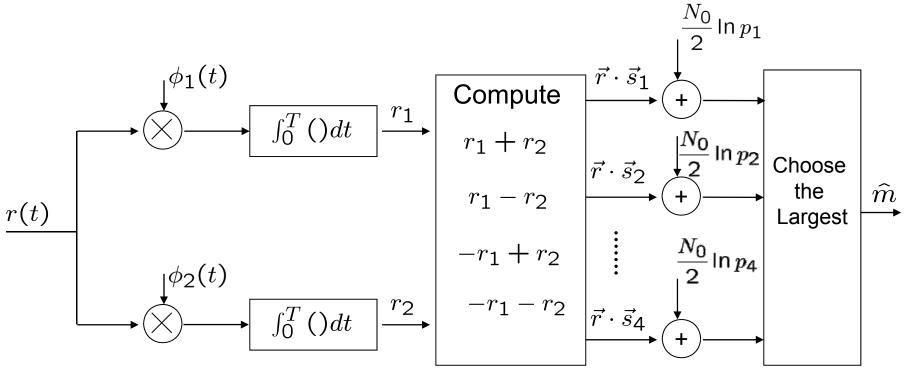
Suppose we use the following basis functions



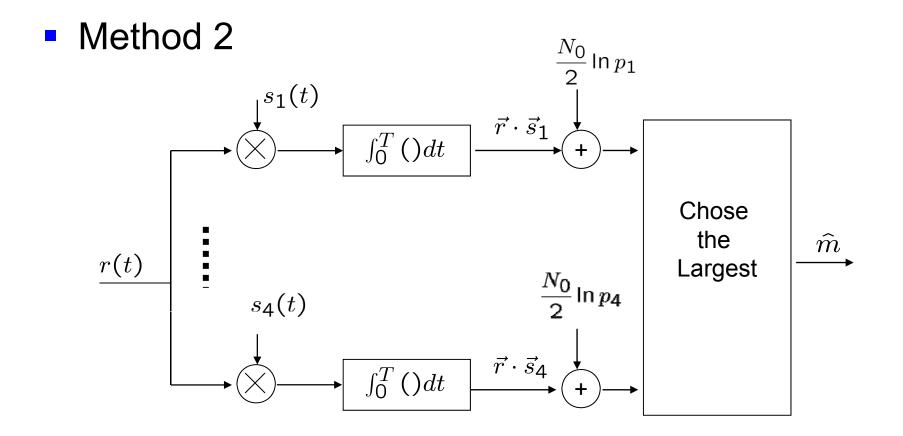
• Since the energy is the same for all four signals, we can drop the energy term from $a_k = \frac{N_0}{2} \ln p_k$

Example (cont'd)

Method 1



Example (cont'd)



Exercise

In an additive white Gaussian noise channel with a noise power-spectral density of $N_0/2$, two equiprobable messages are transmitted by

$$s_{1}(t) = \begin{cases} \frac{At}{T} & 0 \leq t \leq \mathsf{T} \\ 0 & \text{otherwise} \end{cases}$$
$$s_{2}(t) = \begin{cases} A - \frac{At}{T} & 0 \leq t \leq \mathsf{T} \\ 0 & \text{otherwise} \end{cases}$$

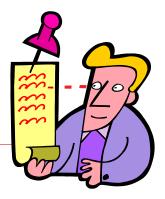
Determine the structure of the optimal receiver.

2009/2010 Meixia Tao @ SJTU

Notes on Optimal Receiver Design

The receiver is general for any signal forms

 Simplifications are possible under certain scenarios



2009/2010 Meixia Tao @ SJTU

- We have considered
 - MAP and ML decision rules
 - Correlation-type demodulator
 - Matched-filter-type demodulator
 - Implementation of optimal receiver
- We will now consider
 - Graphical interpretation of design regions
 - Analysis of probability of error
 - Union bound

7.4 Graphical Interpretation – De ision Regions

 Signal space can be divided into M disjoint decision regions R₁ R₂, ..., R_M.

If $\vec{r} \in R_k$ \implies decide m_k was transmitted

Select decision regions so that P_{e} is minimized

- Recall that the optimal receiver sets $\hat{m} = m_k$ iff $\|\vec{r} - \vec{s}_k\|^2 - N_0 \ln P_k$ is minimized
- For simplicity, if one assumes $p_k = 1/M$, for all k, then the optimal receiver sets $\hat{m} = m_k$ iff

 $\|\vec{r} - \vec{s}_k\|^2$ is minimized

Decision Regions

- Geometrically, this means
 - Take projection of r(t) in the signal space (i.e. r

 Then, decision is made in favor of signal that is the closest to r
 in the sense of minimum Euclidean distance
 - And those observation vectors \vec{r} with $\|\vec{r} \vec{s}_k\|^2 < \|\vec{r} \vec{s}_i\|^2$ for all $i \neq k$ should be assigned to decision region R_k

Example: Binary Case

 Consider binary data transmission over AWGN channel with PSD S_n(f) = N₀/2 using

$$s_1(t) = -s_2(t) = \sqrt{E}\phi(t)$$

- Assume $P(m_1) \neq P(m_2)$
- Determine the optimal receiver (and optimal decision regions)

Solution

Optimal decision making

Choose
$$m_1$$

 $\|\vec{r} - \vec{s_1}\|^2 - N_0 \ln P(m_1) \stackrel{<}{>} \|\vec{r} - \vec{s_2}\|^2 - N_0 \ln P(m_2)$
Choose m_2

• Let
$$d_1 = \|\vec{r} - \vec{s}_1\|$$
 and $d_2 = \|\vec{r} - \vec{s}_2\|$

Equivalently,

Choose m₁

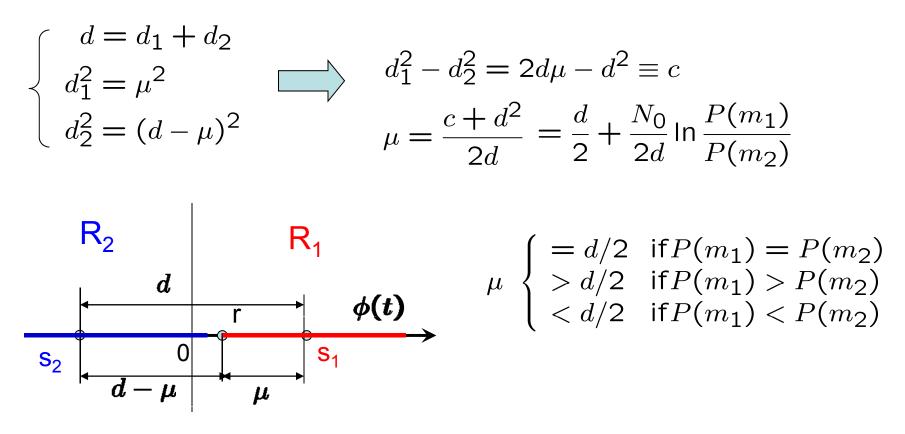
$$d_1^2 - d_2^2 \stackrel{<}{>} N_0 \ln \frac{P(m_1)}{P(m_2)}$$

Choose m₂ Constant c

R₁:
$$d_1^2 - d_2^2 < c$$
 and **R**₂: $d_1^2 - d_2^2 > c$

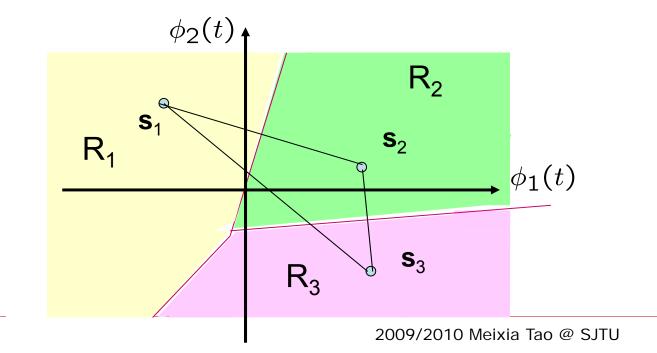
Solution (cont'd)

 Now consider the example with r
 in the decision boundary



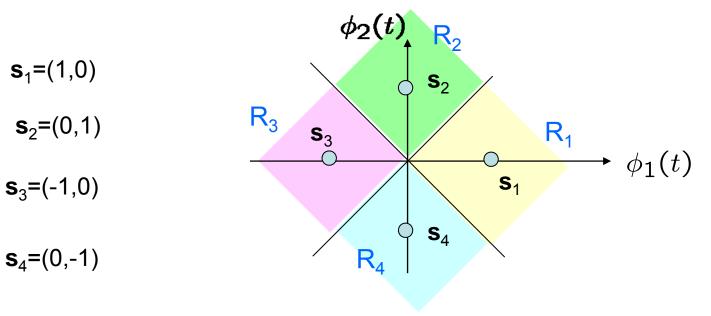
Determining the Optimum Decision Regions

- In general, boundaries of decision regions are perpendicular bisectors of the lines joining the original transmitted signals
- Example: three equiprobable 2-dim signals



Example: Decision Region for QPSK

- Assume all signals are equally likely
- All 4 signals could be written as the linear combination of two basis functions
- Constellations of 4 signals



Exercise

Three equally probable messages m1, m2, and m3 are to be transmitted over an AWGN channel with noise power-spectral density $N_0/2$. The messages are

- $s_{1}(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & otherwise \end{cases}$ $s_{2}(t) = -s_{3}(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} \le t \le T \\ 0 & otherwise \end{cases}$
- 1. What is the dimensionality of the signal space ?
- 2. Find an appropriate basis for the signal space (Hint: You can find the basis without using the Gram-Schmidt procedure).
- 3. Draw the signal constellation for this problem.
- 4. Sketch the optimal decision regions R1, R2, and R3.

Notes on Decision Regions

- Boundaries are perpendicular to a line drawn between two signal points
- If signals are equiprobable, decision boundaries lie exactly halfway in between signal points
- If signal probabilities are unequal, the region of the less probable signal will shrink

7.5 Probability of Error using Decision Regions

- Suppose m_k is transmitted and \vec{r} is received
- Correct decision is made when $\vec{r} \in R_k$ with probability

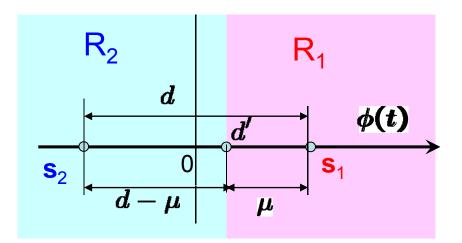
 $P(C|m_k) = P(\vec{r} \in R_k | m_k \text{ is sent})$

- Averaging over all possible transmitted symbols, we obtain the average probability of making correct decision $P(C) = \sum_{k=1}^{M} P(\vec{r} \in R_k | m_k \text{ is sent}) P(m_k)$
- Average probability of error

$$P_e = 1 - P(C) = 1 - \sum_{k=1}^M P(\vec{r} \in R_k | m_k \text{ is sent}) P(m_k)$$

Example: P_e analysis

 Now consider our example with binary data transmission



$$P(C|s_1) = P(r \in R_1|s_1)$$
$$= P(s_1 + n > d')$$
$$= P(n > -\mu)$$

•Since n is Gaussian with zero mean and variance $N_0/2$

$$P(C|s_1) = 1 - Q\left(\frac{\mu}{\sqrt{N_0/2}}\right)$$

$$\mu = \frac{d}{2} + \frac{N_0}{2d} \ln \frac{P(m_1)}{P(m_2)}$$

• Likewise

$$P(C|s_{2}) = P(s_{2}+n < d') = P(n < d-u) = 1 - Q\left(\frac{d-\mu}{\sqrt{N_{0}/2}}\right)$$
• Thus,

$$P(C) = P(m_{1})\left\{1 - Q\left[\frac{\mu}{\sqrt{N_{0}/2}}\right]\right\} + P(m_{2})\left\{1 - Q\left[\frac{d-\mu}{\sqrt{N_{0}/2}}\right]\right\}$$

$$= 1 - P(m_{1})Q\left[\frac{\mu}{\sqrt{N_{0}/2}}\right] - P(m_{2})Q\left[\frac{d-\mu}{\sqrt{N_{0}/2}}\right]$$

$$P_{e} = P(m_{1})Q\left[\frac{\mu}{\sqrt{N_{0}/2}}\right] + P(m_{2})Q\left[\frac{d-\mu}{\sqrt{N_{0}/2}}\right]$$

where

$$d = 2\sqrt{E} \quad \text{and} \quad \mu = \frac{N_0}{4\sqrt{E}} \log \left[\frac{P(m_1)}{P(m_2)}\right] + \sqrt{E}$$
2009/2010 Meixia Tao @ SJTU 60

Example: P_e analysis (cont'd)

• Note that when $P(m_1) = P(m_2)$

$$\mu = \sqrt{E} = \frac{d}{2}$$

$$P_{e} = Q\left[\frac{\frac{d}{2}}{\sqrt{N_{0}/2}}\right] = Q\left[\sqrt{\frac{d^{2}}{2N_{0}}}\right] = Q\left[\sqrt{\frac{2E}{N_{0}}}\right]$$
$$= Q\left[\sqrt{\frac{E_{1} + E_{2} - 2\rho_{12}\sqrt{E_{1}E_{2}}}{2N_{0}}}\right] = Q\left[\sqrt{\frac{2E}{N_{0}}}\right]$$

Example: P_e analysis (cont'd)

This example demonstrates an interesting fact:

- When optimal receiver is used, P_e does not depend upon the specific waveform used
- P_e depends only on their geometrical representation in signal space
- In particular, P_e depends on signal waveforms only through their energies (distance)

Exercise

Three equally probable messages m1, m2, and m3 are to be transmitted over an AWGN channel with noise power-spectral density $N_0/2$. The messages are

- $s_{1}(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & otherwise \end{cases}$ $s_{2}(t) = -s_{3}(t) = \begin{cases} 1 & 0 \le t \le \frac{T}{2} \\ -1 & \frac{T}{2} \le t \le T \\ 0 & otherwise \end{cases}$
- 1. What is the dimensionality of the signal space ?
- 2. Find an appropriate basis for the signal space (Hint: You can find the basis without using the Gram-Schmidt procedure).
- 3. Draw the signal constellation for this problem.
- 4. Sketch the optimal decision regions R1, R2, and R3.
- 5. Which of the three messages is more vulnerable to errors and why? In other words, which of

 $p(Error \mid m_i \quad transmitted), \quad i = 1, 2, 3 \text{ is larger }?$

General Expression for \mathbf{P}_{e}

Average probability of symbol error

$$P_{e} = 1 - P(C) = 1 - \sum_{k=1}^{M} P(\vec{r} \in R_{k} | m_{k} \text{ is sent}) P(m_{k})$$

$$Likelihood function$$
Since $P(\vec{r} \in R_{k} | m_{k} \text{ is sent}) = \int_{R_{k}} f(\vec{r} | m_{k}) d\vec{r}$
N-dim integration

 Thus we rewrite P_e in terms of likelihood functions, assuming that symbols are equally likely to be sent

$$P_e = 1 - \frac{1}{M} \sum_{k=1}^{M} \int_{R_k} f(\vec{r}|m_k) d\vec{r}$$

Union Bound

- Multi-dimension integrals are quite difficult to evaluate
- To overcome this difficulty, we resort to the use of bounds
- Now we develop a simple and yet useful upper bound for P_e, called union bound, as an approximation to the average probability of symbol error

Key Approximation

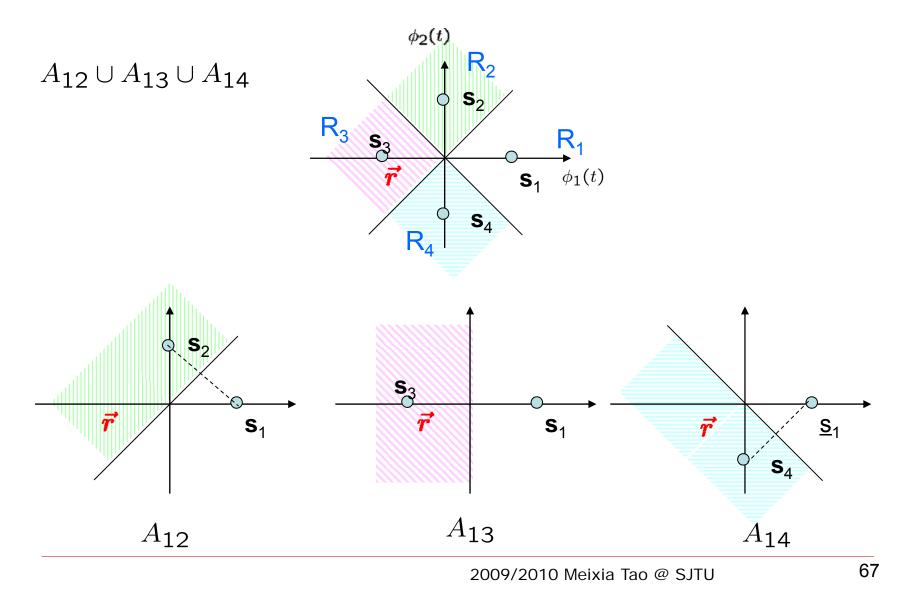
- Let A_{kj} denote the event that \vec{r} is closer to \vec{s}_j than to \vec{s}_k in the signal space when $m_k(\vec{s}_k)$ is sent
- Conditional probability of symbol error when m_k is sent

$$P(error|m_k) = P(\vec{r} \notin R_k|m_k) = P\left(\bigcup_{j \neq k} A_{kj}\right)$$

But

$$P\left(\bigcup_{j\neq k} A_{kj}\right) \leq \sum_{\substack{j=1\\ j\neq k}}^{M} P\left(A_{kj}\right)$$

Key Approximation (cont'd)



Pair-wise Error Probability

- Define the pair-wise (or component-wise) error probability as $P(\vec{s}_k \rightarrow \vec{s}_j) = P(A_{kj})$
- It is equivalent to the probability of deciding in favor of s_j when s_k was sent in a simplified binary system that involves the use of two equally likely messages s_k and s_j
- Then

$$P\left(\vec{s}_k \to \vec{s}_j\right) = P\left(n > d_{kj}/2\right) = Q\left(\sqrt{\frac{d_{kj}^2}{2N_0}}\right)$$

• $d_{kj} = \|\vec{s}_k - \vec{s}_j\|$ is the Euclidean distance between \vec{s}_k and \vec{s}_j

Union Bound

Conditional error probability

$$P(error|m_k) \le \sum_{\substack{j=1\\ j \neq k}}^M P(\vec{s}_k \to \vec{s}_j) = \sum_{\substack{j=1\\ j \neq k}}^M Q\left(\sqrt{\frac{d_{kj}^2}{2N_0}}\right)$$

 Finally, with M equally likely messages, the average probability of symbol error is upper bounded by

$$P_{e} = \frac{1}{M} \sum_{k=1}^{M} P(error|m_{k})$$
$$\leq \frac{1}{M} \sum_{\substack{k=1 \ j=1 \ j\neq k}}^{M} Q\left(\sqrt{\frac{d_{kj}^{2}}{2N_{0}}}\right)$$

The most general formulation of union bound

Union Bound (cont'd)

• Let d_{\min} denote the minimum distance, i.e.

$$d_{\min} = \min_{\substack{k,j \\ k \neq j}} d_{k,j}$$

Since Q(·) is a monotone decreasing function

$$\sum_{\substack{j=1\\j\neq k}}^{M} Q\left(\sqrt{\frac{d_{kj}^2}{2N_0}}\right) \le (M-1)Q\left(\sqrt{\frac{d_{\min}^2}{2N_0}}\right)$$

Consequently, we may simplify the union bound as

$$P_e \leq (M-1)Q\left(\sqrt{\frac{d_{\min}^2}{2N_0}}\right)$$

Simplified form of union bound

What makes a good signal constellation?