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6.1 StatisticalStatistical DecisionDecision TheoryTheory
Demodulation and decoding of signals in digital communications is
directly related to Statistical decision theorydirectly related to Statistical decision theory

In the general setting, we are given a finite set of possible hypotheses
about an experiment, along with observations related statistically to thep , g y
various hypotheses.

The theory provides rules for making the best possible decision
( di t f it i ) b t hi h h th i i(according to some performance criterion) about which hypothesis is
likely to be true

In digital communications, hypotheses are the possible messages andIn digital communications, hypotheses are the possible messages and
observations are the output of a channel

A decision on the transmitted data is made based on the observed
values of the channel output

We are interested in the best decision making rule in the sense of
minimizing the probability of error
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Detection TheoryDetection Theory

Given M possible hypotheses Hi (signal mi) with probabilityGiven M possible hypotheses Hi (signal mi) with probability 

Pi represents the prior knowledge concerning the probability 
,

i p p g g p y
of the signal mi – Prior Probability

The observation is some collection of N real values, ,
denoted by                              with conditional pdf

-- conditional pdf of observation given the signal mi

Goal: Find the best decision-making algorithm in the sense 
of minimizing the probability of decision error.

conditional pdf of observation    given the signal mi

of minimizing the probability of decision error.

Message Channel Decision

2009/2010 Meixia Tao @ SJTU 4

g



Observation SpaceObservation Space

In general, can be regarded as a point in someIn general,     can be regarded as a point in some
observation space

Each hypothesis Hi is associated with a decision region Di:Each hypothesis Hi is associated with a decision region Di:

The decision will be in favor of Hi if      is in Di

E h d i i i d i f f thError occurs when a decision is made in favor of another
when the signals falls outside the decision region Di
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MAP Decision CriterionMAP Decision Criterion

Consider a decision rule based on the computation of theConsider a decision rule based on the computation of the
posterior probabilities defined as

= P( signal mi was transmitted given    observed)

Known as a posterior since the decision is made after (or

( g i g )

Known as a posterior since the decision is made after (or 
given) the observation
Different from the a prior where some information about thep
decision is known in advance of the observation

By Bayes’ Ruley y
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MAP Decision Criterion (cont’d)MAP Decision Criterion (cont d)

Since our criterion is to minimize the probability ofSince our criterion is to minimize the probability of
detection error given  , we deduce that the optimum
decision rule is to choose               if and only if
is maximum for

Equivalently,

Choose if and only if

This decision rule is known as maximum a posterior or
MAP decision criterion
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ML Decision CriterionML Decision Criterion
If p1=p2= …=pM,i.e. the signals {mk} are equiprobable,p1 p2 pM, g { k} q p ,
finding the signal that maximizes          is equivalent to 
finding the signal that maximizes
The conditional pdf             is usually called the likelihood
function. The decision criterion based on the maximum of
i is called the Maximum-Likelihood (ML) criterioni         is called the Maximum Likelihood (ML) criterion.
ML decision rule:

Choose             if and only if

In any digital communication systems, the decision task
lti t l t t f th l
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6.2 OOptimalptimal ReceiverReceiver inin AWGNAWGN ChannelChannel

Transmitter transmits a sequence of symbols orTransmitter transmits a sequence of symbols or
messages from a set of M symbols m1, m2, …, mM.

The symbols are represented by finite energy
waveforms s (t) s (t) s (t) defined in thewaveforms s1(t), s2(t), …, sM(t), defined in the
interval [0, T]

Assume the symbols are transmitted with
probability
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AWGN Channel ModelAWGN Channel Model

The channel is assumed to corrupt the signal byThe channel is assumed to corrupt the signal by
additive white Gaussian noise (AWGN)

C id th f ll i i ti d lConsider the following communication model

Transmitter
s(t)

Σ
r(t) = s(t) + nw(t)

Receiver }{m̂
}{ km channel

Transmitter Σ Receiver }{ km

n w(t) ~ Sn(f) = N0/2
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Signal Space RepresentationSignal Space Representation

The signal space of {s1(t) s2(t) sM(t)} isThe signal space of {s1(t), s2(t), …, sM(t)} is
assumed to be of dimension N (N ≤ M) 

for k = 1, …, N will denote an orthonormal
basis function

Then each transmitted signal waveform can be
represented asrepresented as

hwhere
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Note that the noise n (t) can be written asNote that the noise nw(t) can be written as

where

Projection of nw(t) on the N-dim space
orthogonal to the space, falls outside the signal 
space spanned by 

The received signal can thus be represented as

where 
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Graphical IllustrationGraphical Illustration

In vector forms we haveIn vector forms, we have

Received signal point

Observation Noise vector

Message point

Signal vector

Observation 
vector

Signal vector
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Receiver StructureReceiver Structure

Subdivide the receiver into two partsSubdivide the receiver into two parts
Signal demodulator: to convert the received waveform r(t)
into an N-dim vector
Detector: to decide which of the M possible signal waveforms
was transmitted based on observation of the vector

Signal Detector
r(t)

receiver

demodulator Detector

Two realizations of the signal demodulator
Correlation-Type demodulator
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7.3 What is Matched Filter?

The matched filter (MF) is the optimal linear filter forThe matched filter (MF) is the optimal linear filter for
maximizing the output SNR.

Derivation of the MFDerivation of the MF

( )h t( ) ( ) ( )i ix t s t n t= + 0t t=
( )0y t

Input signal component

( )H f ( ) ( ) ( )o oy t s t n t= +

( ) ( ) j t
iA f s t e dtω∞ −

∞
= ∫( )is t ↔p g p

Input noise component           with PDS
The signal component in the filter output is

( ) ( )
−∞∫( )i

( )in t ( ) 0 / 2
inS f N=

g p p
( ) ( ) ( )

( ) ( )

o i

j t

s t s t h d

A f H f e dfω

τ τ τ
∞

−∞

∞

= −

=

∫
∫
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Output SNROutput SNR

At the sampling instance ,0t t= ( ) ( ) ( ) 0
0

j ts t A f H f e dfω∞
= ∫At the sampling instance         ,

Average power of the output noise is
2N

0t t ( ) ( ) ( )0os t A f H f e df
−∞∫

Now the problem is to select the filter’s freq response that

( ) ( ) 22 0{ }
2o

NN E n t H f df
∞

−∞
= = ∫

Now the problem is to select the filter s freq. response that 
maximizes the output SNR, defined as

( ) ( ) 0

2
j tA f H f dfω∞⎡ ⎤∫( )

( )
( ) ( )

( )

02
0

2 20{ }
2

j t

o

o

A f H f e dfs t
d NE n t H f df

ω

−∞

∞

⎡ ⎤
⎢ ⎥⎣ ⎦= =
∫

∫ ( )
2

f f
−∞∫

Find H(f) that can maximize d
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Maximum Output SNRMaximum Output SNR
Schwarz’s inequalityq y

( ) ( ) ( ) ( )
22 2 *F x dx Q x dx F x Q x dx

∞ ∞ ∞

−∞ −∞ −∞
≥∫ ∫ ∫

with equality holds when                      for any arbitrary constant C.( ) ( )F x CQ x=

Let                                  ,  then
( ) ( ) 0* j tF x A f e ω=

( ) ( )Q f H f=

( ) ( ) ( )2 2 2

2A f df H f df A f df Ed N N N

∞ ∞ ∞

−∞ −∞ −∞≤ = =∫ ∫ ∫
E: signal energy

( ) 20 0 0

2 2
N N NH f df

∞

−∞∫
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Solution of Matched FilterSolution of Matched Filter

When the max output SNR 2E/N0 is achieved, we haveWhen the max output SNR 2E/N0 is achieved, we have

( ) ( ) 0* j t
mH f A f e ω−= ( ) ( ) j t

m mh t H f e dfω∞

−∞
= ∫( ) ( )m f f

( ) ( )0m ih t s t t= − ( ) ( )

( )

0*

*

j t tA f e df

t t

ω

−∞

∞ − −

−∞
=

∫
∫

The transfer function of MF is the complex conjugate of

( )0is t t= −

p j g
the input signal spectrum
The impulse response of MF is a time-reversal andp p
delayed version of the input signal s(t)
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Properties of MF (1)Properties of MF (1)

Choice of t0 versus the causality
( )is t

Choice of t0 versus the causality 

T0
t

( )s t

t

( )is t−

( ) ( )0 00is t t t t
h t

⎧ − ≤ <
= ⎨ 0

t
( )mh t

Not implementable
( )is T t−

( )
0mh t = ⎨

⎩ otherwise

t
0

0t T<

0t T≥where

0t T=

0t T>
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Properties of MF (2)Properties of MF (2)

Equivalent form – CorrelatorEquivalent form Correlator
Let        is within [0, T]( )is t

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

*o o i i m

T

i i i

y t s t n t s t n t h t

s n s T t dτ τ τ τ

= + = +⎡ ⎤⎣ ⎦

= + − +⎡ ⎤⎣ ⎦∫
MF

( )x t
t T=

Observe at sampling time

( ) ( ) ( )
0 i i is n s T t dτ τ τ τ+ +⎡ ⎤⎣ ⎦∫

t T=

( ) ( ) ( ) ( ) ( )
0 0

( )
T T

i i i iy T s n s d x t s t dtτ τ τ τ= + =⎡ ⎤⎣ ⎦∫ ∫

( )T
d∫

( )x t ( )y t
Correlation 
integration

( )
0

dt∫ .

( )is t

( )y
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Correlation IntegrationCorrelation Integration

Correlation function in time domainCorrelation function in time domain

( ) ( ) ( ) ( ) ( )12 1 2 1 2 21( )R s t s t dt s t s t dt Rτ τ τ τ
∞ ∞

−∞ −∞
= + = − = −∫ ∫

Autocorrelation function ( ) ( ) ( )R s t s t dtτ τ
∞

−∞
= +∫

( ) ( )R Rτ τ= −

( ) ( )0R R τ≥( ) ( )0R R τ≥

( ) ( )20R s t dt E
∞

−∞
= =∫ ∞∫

( ) ( ) 2
R A fτ ↔ ( ) ( ) ( ) 220R s t dt A f df

∞ ∞

−∞ −∞
= =∫ ∫
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Properties of MF (3)Properties of MF (3)

MF output signal is the autocorre. function of input signalMF output signal is the autocorre. function of input signal

( ) ( ) ( ) ( ) ( )0o i m i is t s t u h u du s t u s t u du
∞ ∞

−∞ −∞
= − = − −∫ ∫

( ) [ ]
00 0( )i i ss s t t d R t tμ μ μ

∞

−∞
= + − = −∫

The peak value of          happens at 0t t=

( ) ( )2s t s du Eμ
∞

= =∫

0 ( )s t

is symmetric at 

( ) ( )0o is t s du Eμ
−∞

= =∫

0 ( )s t 0t t=

( ) ( ) ( ) ( ) 0
2 j t

o mA f A f H f A f e ω−= =

( ) 0 0'( )os t s t t= −
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Properties of MF (4)Properties of MF (4)

MF output noiseMF output noise
The statistical autocorrelation of n0(t) depends on the
autocorrelation of si(t)autocorrelation of si(t)

( ) ( ) ( ){ } ( ) ( )0

2on o o m m
NR E n t n t h u h u du

N

τ τ τ
∞

−∞
= + = +∫

Average power

( ) ( )0

2 i i
N s t s t dtτ

∞

−∞
= −∫

Average power
( ){ } ( ) ( )2 200

2oo n i
NE n t R s duμ

∞

−∞
= = ∫ （time domain）

( ) ( )2 20 0

0

2 2 m
N NA f df H f df

N

∞ ∞

−∞ −∞
= =∫ ∫ （freq. domain）
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Example: MF for a rectangular pulseExample: MF for a rectangular pulse

Consider a rectangular pulse s(t)
A

s(t)

The impulse response of a filter

A

t0 TThe impulse response of a filter
matched to s(t) is also a rectangular
pulse

t0 T

A

h(t) =s(T-t)
p

The output of the matched filter s (t)

A

t0 TThe output of the matched filter so(t) 
is  h(t) * s(t)

The output SNR is

t0 T

so(t)
The output SNR is A2T

2

0

2 2)(2)(
N

TAdtts
N

SNR
T

o ∫ ==
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What if the noise is Colored?What if the noise is Colored?

Basic idea: preprocess the combined signal and noiseBasic idea: preprocess the combined signal and noise
such that the non-white noise becomes white noise  -
Whitening Process

( ) ( ) ( )ix t s t n t= + ( )nS fwhere n(t) is colored noise with PSD

( )x t ( )y t
( )1H f

( )x t′
( )2H f

( ) ( ) ( )x t s t n t′ ′ ′= +

Choose H1(f) so that n’(t) is white i e ( ) ( ) ( )2
S f H f S f C′ = =
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H1(f), H2(f)H1(f), H2(f)

( ) 2 CH1(f):

H2(f) should match with乪s’(t)

( ) ( )
2

1
n

CH f
S f

=

( ) ( ) ( )A f H f A f′ =H2(f) should match with乪s (t) ( ) ( ) ( )1A f H f A f=

( ) ( ) ( ) ( )0 02 2
2 1

j ft j ftH f A f e H f A f eπ π− −∗ ∗ ∗′= =

The overall transfer function of the cascaded system is

( ) ( ) ( ) ( ) ( ) ( ) 02j ftH f H f H f H f H f A f e π−∗ ∗= =( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0

0

1 2 1 1

2 2
1

j ft

H f H f H f H f H f A f e

H f A f e π−∗

= ⋅ =

=

MF f l dMF for colored 
noise( ) ( )

( )
02j ft

n

A f
H f e

S f
π

∗
−=
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UpdateUpdate

We have discussed what is matched filterWe have discussed what is matched filter

Let us now come back to the optimal receiver
t tstructure

Signal 
demodulator Detector

r(t)
receiver

Two realizations of the signal demodulatorg
Correlation-Type demodulator
Matched-Filter-Type demodulator

2009/2010 Meixia Tao @ SJTU
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Correlation Type DemodulatorCorrelation Type Demodulator

The received signal r(t) is passed through a parallelThe received signal r(t) is passed through a parallel 
bank of N cross correlators which basically compute 
the projection of r(t) onto the N basis functionsthe projection of r(t) onto the N basis functions

To detector
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Matched-Filter Type DemodulatorMatched Filter Type Demodulator

Alternatively we may apply the received signal r(t) toAlternatively, we may apply the received signal r(t) to
a bank of N matched filters and sample the output of
filters at t = T. The impulse responses of the filters arep p

To detector

S l t t T

The output SNR is the maximum, 
given by 2 s

o
ESNR

N
=
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UpdateWe have demonstrated that 
for a signal transmitted over an g
AWGN channel, either a 
correlation type demodulator or a 
matched filter type demodulatormatched filter type demodulator
produces the vector                             
which contains all the necessary y
information in r(t)

N ill diNow, we will discuss 
the design of a signal detector that makes a decision of the 
transmitted signal in each signal interval based on thetransmitted signal in each signal interval based on the 
observation of    , such that the probability of making an 
error is minimized (or correct probability is maximized)
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Decision RulesDecision Rules

Recall thatRecall that 
MAP decision rule:

h if d l ifchoose if and only if

ML decision rule
choose if and only if

In order to apply the MAP or ML rules, we need to evaluate 
th lik lih d f ti
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Distribution of the Noise VectorDistribution of the Noise Vector

Since n (t) is a Gaussian random processSince nw(t) is a Gaussian random process, 
is a Gaussian random variable 

(from definition)

Mean: 

Correlation between n and n
,

( )

Correlation between nj and nk

PSD of            is
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Using the property of a delta functionUsing the property of a delta function

we have:

Therefore, nj and nk (        ) are uncorrelated Gaussian 
random variables 

They are independent with zero-mean and variance N0/2

The joint pdf ofThe joint pdf of 
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Likelihood FunctionLikelihood Function

If mk is transmitted, withIf mk is transmitted, with

Transmitted signal values in each dimension represent the
l f h i d i lmean values for each received signal

Conditional pdf of the random variables
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Log-Likelihood Function

To simplify the computation, we take the natural logarithm

Log Likelihood Function

To simplify the computation, we take the natural logarithm
of             , which is a monotonic function. Thus

Let

is the Euclidean distance between    and     in the N-
dim signal space. It is also called distance metrics
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Optimum DetectorOptimum Detector
MAP rule:

ML rule:

ML detector chooses iff received vector    is closer to     
in terms of Euclidean distance than to any other     for i ≠ k

Minimum distance detection 
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Optimal Receiver StructureOptimal Receiver Structure

From previous expression we can develop a receiverFrom previous expression we can develop a receiver 
structure using the following derivation

in which

= signal energy

= correlation between the received signal 
vector and the transmitted signal vector

= common to all M decisions and hence can be ignored
2009/2010 Meixia Tao @ SJTU 37
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The new decision function becomesThe new decision function becomes

Now we are ready draw the implementation 
diagram of MAP receiver (signal demodulator + 
detector)
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MAP Receiver Structure 
Method 1 (Signal Demodulator + Detector)

+

Compute Comparator
(select the 

largest)
+

largest)

+

This part can also be implemented 
i t h d filt
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MAP Receiver Structure 
Method 2 (Integrated demodulator and detector)

+

Comparator
(select the 

largest)
+

g )

+

This part can also be implemented 
using matched filters
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Method 1 vs. Method 2Method 1 vs. Method 2

Both receivers perform identicallyBoth receivers perform identically

Choice depends on circumstances

For instance, if N < M and         are easier to 
generate than , then the choice is obvious g ,
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Example: optimal receiver designExample: optimal receiver design

Consider the signal setConsider the signal set
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Example (cont’d)Example (cont d)

Suppose we use the following basis functionsSuppose we use the following basis functions

Since the energy is the same for all four signals,
we can drop the energy term from
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Example (cont’d)Example (cont d)

Method 1Method 1

Compute +

ChooseChoose 
the 

Largest
+

+
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Example (cont’d)Example (cont d)

Method 2Method 2

+

Chose 
the 

Largest

+
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ExerciseExercise

In an additive white Gaussian noise channel with aIn an additive white Gaussian noise channel with a 
noise power-spectral density of N0/2, two 
equiprobable messages are transmitted by q p g y

⎪
⎨
⎧

=)(1 T
At

ts 0 ≤ t ≤ T

⎪⎩
⎨

0
)(1 Tts

otherwise

⎧ At

⎪⎩

⎪
⎨
⎧ −=

0
)(2 T

AtAts 0 ≤ t ≤ T

otherwise

Determine the structure of the optimal receiver.

⎩
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Notes on Optimal Receiver DesignNotes on Optimal Receiver Design

The receiver is general for any signal formsThe receiver is general for any signal forms

Simplifications are possible under certain 
scenarios
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We have considered
MAP and ML decision rules

Update
MAP and ML decision rules
Correlation-type demodulator
M t h d filt t d d l tMatched-filter-type demodulator
Implementation of optimal receiver

We will now consider
Graphical interpretation of design regions
Analysis of probability of errorAnalysis of probability of error
Union bound
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7.4 Graphical Interpretation 
– DcDe iisiion RRegiions

Signal space can be divided into M disjoint decisionSignal space can be divided into M disjoint decision
regions R1 R2, …, RM.

If decide mk was transmitted

Select decision regions so that Pe is minimized

Recall that the optimal receiver sets               iffp

For simplicit if one ass mes p 1/M for all k then the

is minimized

For simplicity, if one assumes pk = 1/M, for all k, then the
optimal receiver sets iff

i i i i d
2009/2010 Meixia Tao @ SJTU 49
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Decision RegionsDecision Regions

Geometrically this meansGeometrically, this means
Take projection of r(t) in the signal space (i.e.    ). Then,
decision is made in favor of signal that is the closest todecision is made in favor of signal that is the closest to
in the sense of minimum Euclidean distance

And those observation vectors     with
for all should be assigned to decision region Rfor all           should be assigned to decision region Rk

2009/2010 Meixia Tao @ SJTU 50



Example: Binary CaseExample: Binary Case

Consider binary data transmission over AWGNConsider binary data transmission over AWGN
channel with PSD Sn(f) = N0/2 using

Assume P(m1) ≠ P(m2)( 1) ( 2)

Determine the optimal receiver (and optimal
decision regions)decision regions)
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Solution

Optimal decision making
Ch

<
>

Choose m1

Ch

Let and
Choose m2

Equivalently, Choose m1

Choose m2 Constant c2 Constant c

R1: R2:and
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S l ti ( t’d)Solution (cont’d)
Now consider the example with    on the decision
boundary

RR

r

R1R2

s2 s10
r
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Determining the Optimum Decision 
R iRegions

In general boundaries of decision regions areIn general, boundaries of decision regions are
perpendicular bisectors of the lines joining the
original transmitted signalsoriginal transmitted signals

Example: three equiprobable 2-dim signals

R2

s2
s1

R1

s3R3
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Example: Decision Region for QPSKExample: Decision Region for QPSK

Assume all signals are equally likelyAssume all signals are equally likely

All 4 signals could be written as the linear combination of 
two basis functionstwo basis functions

Constellations of 4 signals 

s1=(1,0)

R

R2

s2

s2=(0,1)

s3=(-1,0)

R3 R1

s1

s3

s4=(0,-1) R4

s4
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ExerciseExercise
Three equally probable messages m1, m2, and m3 are to be transmitted over an AWGN channel
with noise power spectral density 2/N The messages arewith noise power-spectral density 2/0N . The messages are

⎩
⎨
⎧ ≤≤

=
otherwise

Tt
ts

0
01

)(1

⎪
⎪
⎪

⎨

⎧ ≤≤

T

Tt
2

01

⎪
⎪
⎪

⎩

⎪
⎨ ≤≤−=−=

otherwise

TtTtsts

0
2

1)()( 32

⎪⎩
1. What is the dimensionality of the signal space ?
2. Find an appropriate basis for the signal space (Hint: You can find the basis without using the

Gram-Schmidt procedure ).p )
3. Draw the signal constellation for this problem.
4. Sketch the optimal decision regions R1, R2, and R3.
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Notes on Decision RegionsNotes on Decision Regions

Boundaries are perpendicular to a line drawnBoundaries are perpendicular to a line drawn
between two signal points

If i l i b bl d i i b d i liIf signals are equiprobable, decision boundaries lie
exactly halfway in between signal points

If signal probabilities are unequal, the region of the
less probable signal will shrinkp g
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7.5 Probability of Error using Decision 
RRegions

Suppose mk is transmitted and is receivedSuppose mk is transmitted and     is received

Correct decision is made when          with probability

Averaging over all possible transmitted symbols we obtainAveraging over all possible transmitted symbols, we obtain 
the average probability of making correct decision

Average probability of errorg p y
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Example: P analysisExample: Pe analysis

Now consider our example with binary dataNow consider our example with binary data
transmission

•Given m1 is transmitted, then1 ,

R1R2

s2 s10

•Since n is Gaussian with zero
mean and variance N0/2
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Lik iLikewise

Thus,
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Example: P analysis (cont’d)

Note that when P(m1) = P(m2)

Example: Pe analysis (cont d)

Note that when P(m1)  P(m2)
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Example: P analysis (cont’d)Example: Pe analysis (cont d)

This example demonstrates an interesting fact:This example demonstrates an interesting fact:

When optimal receiver is used, Pe does not 
d d th ifi f ddepend upon the specific waveform used

Pe depends only on their geometrical e p y g
representation in signal space

In particular P depends on signal waveforms onlyIn particular, Pe depends on signal waveforms only 
through their energies (distance)
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ExerciseExercise
Three equally probable messages m1, m2, and m3 are to be transmitted over an AWGN channel
with noise power-spectral density 2/N The messages arewith noise power-spectral density 2/0N . The messages are
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2
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⎪⎩
1. What is the dimensionality of the signal space ?
2. Find an appropriate basis for the signal space (Hint: You can find the basis without using the

Gram-Schmidt procedure ).
3. Draw the signal constellation for this problem.
4. Sketch the optimal decision regions R1, R2, and R3.
5 Which of the three messages is more vulnerable to errors and why ? In other words which of
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5. Which of the three messages is more vulnerable to errors and why ? In other words, which of
3,2,1),|( =idtransmittemErrorp i   is larger ?



General Expression for PGeneral Expression for Pe

Average probability of symbol errorAverage probability of symbol error

Since
Likelihood function

Since

N-dim integration

Thus we rewrite Pe in terms of likelihood functions,
assuming that symbols are equally likely to be sent

g

g y q y y
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Union BoundUnion Bound

Multi-dimension integrals are quite difficult toMulti dimension integrals are quite difficult to
evaluate

T thi diffi lt t t th fTo overcome this difficulty, we resort to the use of
bounds

Now we develop a simple and yet useful upper
bound for Pe, called union bound, as ane, ,
approximation to the average probability of symbol 
error
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Key ApproximationKey Approximation

Let denote the event that is closer to than toLet        denote the event that     is closer to     than to            
in the signal space when mk (    ) is sent 

Conditional probability of symbol error when mk is sentConditional probability of symbol error when mk is sent

But
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Key Approximation (cont’d)Key Approximation (cont d)

R2
s2

s3 R1

2

R3

s1

s4R44

s

s1

s2

s1

s3

s1s1 s1 s1

s4
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Pair-wise Error ProbabilityPair wise Error Probability

Define the pair-wise (or component-wise) error probabilityDefine the pair wise (or component wise) error probability
as

It is equivalent to the probability of deciding in favor of
when     was sent in a simplified binary system that
i l th f t ll lik l dinvolves the use of two equally likely messages    and

Then

is the Euclidean distance between     and
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Union BoundUnion Bound

Conditional error probabilityConditional error probability

Finally, with M equally likely messages, the average
b bilit f b l i b d d bprobability of symbol error is upper bounded by

The most general 
formulation of union boundformulation of union bound
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Union Bound (cont’d)Union Bound (cont d)

Let denote the minimum distance, i.e.Let         denote the minimum distance, i.e.

Since Q(.) is a monotone decreasing function

Consequently, we may simplify the union bound as

Simplified form of 
union bound
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What makes a good signalWhat makes a good signal 
constellation?
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