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Information Theory

= |nformation theory is one of the key concepts in modern
communications
= |t deals with fundamental limits on communications

= What is the highest rate at which information can be reliably
transmitted over a communication channel?

= What is the lowest rate at which information can be
compressed and still be retrievable with small or no error?

= What is the complexity of such optimal schemes?

= Topics to discuss
= Modeling of information source
= Source coding theorem
= Modeling of communication channel
= Channel capacity
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10.1 Modeling of Information Source

Information sources can be modeled by random processes

The simplest model for information source is discrete
memoryless source (DMS), a discrete-time, discrete-
amplitude random process with i.i.d random variables

A full description of DMS is given by:

= Alphabet set 1={a,a,...,a,} where the random variable X
takes its values

= Probabilities { p }N_

1Ji=1

The information conveyed in different information sources
can be different
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Information

= How to give a quantitative measure of information?

= Examples:
= “the sun will rise” = no information

= “it will rain tomorrow” = some information
= “Final exam will be canceled” = infinite information

= |[nformation is connected with the elements of surprise,
which is the result of uncertainty.

= The smaller the probability of an event is, the more information the
occurrence of that event will convey
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Measure of Information

= The information | that a source event x can will convey and
the probability of the event P(x) satisfy:
1. 1=I[P(x)]
2. P(x)|—I1, vice versa
P(x)=1, 1=0
3. Consider multiple independent events x1, x2, ...
IP(X)P(Xy) ... JEIP(x)+I[P(x,)]*...

;] -

= Definition (self information of symbol x):

| = Iogaﬁ =—log, P(X)

a=e nat a=2 bit
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Entropy (1)
ENLro \/¥»/

Consider a discrete source with N possible symbols

Entropy H(.) is defined as the average amount of

information conveyed per symbol

A N 1
H(X)=E|I(x;)|=) P(x:)log, —— (bit/symbol
(X) =E[1(x;) ] Z (x;) gzp(xj)( ymbol)
Example: Consider a source having 3 symbols alphabet where
P(x4) = Y2, P(x,) =P(x;3)= "4, and symbols are statically
independent. Determine the entropy of the source.

ion: 1 1 1
Solution: y _ p, 1og, =+ p, log, —+ p, log, —
J P, Py

L i o 21 sbivsymbol
2T
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Entropy (Cont’d)

= How to maximize entropy?

= Consider binary case with two symbol alphabet {0, 1},
if we let P(1) = p, and P(0) = 1-p, then

1 1
H = plog, =+ (1- p)log, ——
p 92p+( p) 921 5

H 9
(D v
1.0 oo 5 Entropy is maximized when all
the symbols are equiprobable
0l o5 1 S
N1 :
= Nsymbols: H :Zﬁlog2 N =log, N bit/symbol
n=1
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Exercise

= A source with bandwidth 4000Hz is sampled at the
Nyquist rate. Assuming that the resulting
sequence can be approximately modeled by a
discrete memoryless source with alphabet {-2, -1,
0, 1, 2} and with corresponding probabilities {1/2,
Ya, 1/8, 1/16, 1/16}, determine the rate of the
source in bit/sec
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Solution

= \We have
H(X)—_—1 lo 2+—1 lo 4+—1 lo 8+2><—1 log, 16

:% bits/sample

= Since we have 8000 samples/sec the source
produces information at a rate of 15kbits/sec.
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Joint and Conditional Entropy

When dealing with two or more random sources, exactly in
the same way that joint and conditional probabilities are
iIntroduced, one can introduce joint and conditional
entropies.

The joint entropy of (X, Y) is defined as

H(X,Y) == p(x y)log p(x,y)

The conditional entrgypy of X given Y is defined as
H(XY)=-2_ p(x y)log p(x|y)

Using chain rule, it ca;iybe shown that

H(X,Y)=H(X|Y)+H()
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Mutual Information

= Given by
= H(X) denotes the uncertainty of the random varaible X

= H(X|Y) denotes the uncertainty of random variable X after
random variable Y is known.

= Then, H(X)-H(X|Y)

= Denotes the amount of uncertainty of X that has been
removed given Y is known

= |n other words, it is the amount of information provided by
random variable Y about random variable X

= Definition of mutual information
1(X;Y)=H(X)-H(X]Y)
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Entropy, Conditional Entropy and
Mutual Information

H(X,Y)
H(X) T~ H(Y)
Z.
7
7
H(X|Y) H(YIX)
106Y)
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Differential Entropy

The differential entropy of a discrete-time continuous
alphabet source X with pdf f(x) is defined as:

h(X)=- jo‘; £, (x)logf, (x)dx

Example: the differential entropy of X~ N(0,5°) is

_1
h(X)==lo 2(%0

2 Y ey
| B

N

Mutual information between two continuous random
variables X and Y:

1(X;Y) =h(X)=h(X |Y)
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10.2 Source Coding Theorem

= Source coding theorem:

= A source with entropy (or entropy rate) H can be
encoded with an arbitrarily small error probability at
any rate R (bits/source output) as long as R > H.

= Conversely, if R < H, the error probability will be
bounded away from zero, independent of the
complexity of the encoder and decoder employed
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10.3 Modeling of Communication Channel

= Recall that a communication channel is any medium over
which information can be transmitted

= |t is characterized by a relationship between its input and
output, which is generally a stochastic relation due to the
presence of fading and noise

Waveform (continuous-time) channel

Sampling theorem

Discrete-time channel

/\

Discrete-input discrete- continuous alphabet
output channel channel
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Binary-Symmetric Channel

= BSC channel is characterized by the crossover
probability e=P(0[1)=P(1]0)

. 2E
= For |nstan0e,e=Q£ N—b]
0

P(0/0)=1-¢

P(1/0)= P(0/1)=¢

1 it
P(1/1)=1-¢
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AWGN Channel

= Both input and output are real numbers

= The input satisfy some power constraint

Zn:xf <P
i=1

lz
X Y=X+Z

é+

2009/2010 Meixia Tao @ SJTU

17



10.4 Channel Capacity

= |n 1948, Shannon proved that

there exists a maximum rate, called channel capacity and
denoted as C in bits/sec, at which one can communicate over
a channel with arbitrarily small error probability

one can theoretically transmit over a channelatarate R<C
with almost error free

Otherwise, if R > C, then reliable transmission is not possible
The capacity of a discrete-memoryless channel is given by

C= m(a§< I (X;Y) (max over all possible input distribution)
p(x

— > The Noisy Channel Coding Theorem

(one of the fundamental results in information theory)
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Claude E. Shannon
(1916-2001)

2009/2010 Meixia Tao @ SJTU 19



Binary Symmetric Channel Capacity

= Since 1(X;Y)=H()-H( |X)
=H(Y)-D_ pO)H(Y | X =X)

=H(Y)-2> p(x)H(R)
=H(Y)-H(F)
<1-H(P)

" Here, H(p)=-plog, p—(1-p)log,(1- p)

H(Y) <1 Equality holds when X is equal probably

= Thus, the capacity of a BSC is

C=1-H(P)
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Gaussian Channel Capacity

= Consider a discrete-time Gaussian channel with
Y=X+Z

= Input power constraint: 2% <P
i=1

= Z~N(O,P,)

= |ts capacity is given by (proof?)

C :ilog l+i
2 P,
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Now, consider a continuous-time, bandlimited AWGN channel
with noise PSD=NO0/2, input power constraint P, bandwidth W.

Sample it at Nyquist rate and obtain a discrete-time channel.
The power/sample will be P and the noise power/sample will be

W

P, = [ No g =WN,
w2
Thus,
C—ilog 1+ bits/t Ty
5 NOW Its/trransmission

Since the number of transmissions/sec is 2W, we obtain the
channel capacity in bits/sec

* C:WIOg[l-F P )bits/sec
N W

(Shannon Formula)
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Example

* Find the capacity of a telephone channel with
bandwidth W=3000Hz, and SNR of 39dB

= Solution:
= The SNR of 39 dB is equivalent to 7943. Using

Shannon formula, we have

C =3000log(1+7943) ~~38,867 bits/sec
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Insights from Shannon Formula

1. Increasing signal power P increases the capacity C

=  When SNR is high enough, every doubling of P adds additional B
bits/s in capacity

=  When P approaches infinity, so is C

2. Increasing channel bandwidth W can increase C, but cannot
increase infinitely (as noise power also increases)

lim C = lim Wi, log| 1+ P P
W —o0 W —o0 P NOW NO

P loge = 1.44i
N

0 0
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3. Bandwidth efficiency — energy efficiency tradeoff

= |n any practical system, we must have

R<W Iog2[1+

0

W,

= Defining r=R/W, the spectral bit rate

r =Es log, (1+

W

P

N,W

0

= Let Eb be the energy per bit,

= Then,

P
Eb :E

rslog{

1+r—2
0

5

E,/N, = SNR per bit
r = spectral efficiency

2009/2010 Meixia Tao @ SJTU

25



[ Asr=R/B->0

S5 imieoy
NO r—0 oo

Il
I
=
o1 ©
©
Q.
vy

Shannon Limit, an
absolute minimum for
reliable communication

10

Pa=107°

capacity limit

A =16 QAM
M =4 PANM

Channel

Capacity boundary
withR=C

M =64 QAM
A =8 PAM (SSB)

N (SSB)
Ew\ 5 PSK
@
=, Af=16
= N DPSK
2%
2
Bandwidth-limited
region: R 1
W
~1.6 , o
3 5 10 15 20 25
ptote il B Af— % SNR per bit, y, = &/Np (dB)
1
i fr
i' - 0.5 AM=16 Power-limited
EI region: R <1
Hor W
1
: L 0.3 M=32
1
1
W 92 M= 64
Orthogonal signals
Coherent detection
- 0.1




