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Information TheoryInformation Theory
Information theory is one of the key concepts in moderny y p
communications
It deals with fundamental limits on communications

Wh i h hi h hi h i f i b li blWhat is the highest rate at which information can be reliably
transmitted over a communication channel?
What is the lowest rate at which information can be
compressed and still be retrievable with small or no error?
What is the complexity of such optimal schemes?

T i t diTopics to discuss
Modeling of information source
Source coding theoremSource coding theorem
Modeling of communication channel
Channel capacity
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10.1 ModelingModeling ooff IInformationnformation SourceSource

Information sources can be modeled by random processesInformation sources can be modeled by random processes

The simplest model for information source is discrete
memoryless source (DMS) a discrete-time discrete-memoryless source (DMS), a discrete time, discrete
amplitude random process with i.i.d random variables

A full description of DMS is given by:A full description of DMS is given by:
Alphabet set                           where the random variable X 
takes its values

1 1{ , , , }Na a a= KA

Probabilities  { } 1

N
i i

p
=

The information conveyed in different information sources
can be different
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InformationInformation

How to give a quantitative measure of information?How to give a quantitative measure of information?
Examples:

“the sun will rise” ⇒ no information
“it will rain tomorrow”
“Final exam will be canceled”

⇒ some information
⇒ infinite information

Information is connected with the elements of surprise,
which is the result of uncertaintywhich is the result of uncertainty.

The smaller the probability of an event is, the more information the
occurrence of that event will convey
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Measure of InformationMeasure of Information

The information I that a source event x can will convey andThe information I that a source event x can will convey and
the probability of the event P(x) satisfy:
1. I=I[P(x)][ ( )]
2. P(x)↓→I↑, vice versa

P(x)=1，I=0( ) ，

3. Consider multiple independent events x1, x2, …
I[P(x1)P(x2) …]=I[P(x1)]+I[P(x2)]+…I[P(x1)P(x2) …] I[P(x1)] I[P(x2)] …

Definition (self information of symbol x):
1

a=e nat a=2 bit

)(log
)(

1log XP
XP

I aa −==
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Entropy (爑)Entropy (爑)

Consider a discrete source with N possible symbolsConsider a discrete source with N possible symbols

Entropy H(.) is defined as the average amount of
information conveyed per symbolinformation conveyed per symbol

( )2
1

1( ) ( ) ( ) log bit/symbol
( )

N

j j
j j

H X E I x P x
P x

Δ

=

⎡ ⎤= =⎣ ⎦ ∑

Example: Consider a source having 3 symbols alphabet where
P(x1) = ½, P(x2) =P(x3)= ¼, and symbols are statically

1 ( )j j=

( 1) ( 2) ( 3) y y
independent. Determine the entropy of the source.

Solution: 1 1 1log log logH p p p= + +1 2 2 2 3 2
1 2 3

log log log

1 1 11 2 2 1.5bit/Symbol

H p p p
p p p

= + +

= × + × + × =
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Entropy (Cont’d)Entropy (Cont d)

How to maximize entropy?How to maximize entropy?

Consider binary case with two symbol alphabet {0, 1},
if we let P(1) = p and P(0) = 1 p thenif we let P(1) = p, and P(0) = 1-p, then

ppH −+=
1log)1(1log 22 p

p
p

p
−1

g)(g 22

1.0

H

Entropy is maximized when all

p0

1.0 Entropy is maximized when all 
the symbols are equiprobable

N symbols:

p0 0.5 1

bit/symbolloglog1
22 NNH

N

==∑
2009/2010 Meixia Tao @ SJTU

N symbols: 
7
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N
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ExerciseExercise

A source with bandwidth 4000Hz is sampled at theA source with bandwidth 4000Hz is sampled at the 
Nyquist rate. Assuming that the resulting 
sequence can be approximately modeled by asequence can be approximately modeled by a 
discrete memoryless source with alphabet {-2, -1, 
0 1 2} and with corresponding probabilities {1/20, 1, 2} and with corresponding probabilities {1/2, 
¼, 1/8, 1/16, 1/16}, determine the rate of the 
source in bit/secsource in bit/sec
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SolutionSolution

We haveWe have
2 2 2 2

1 1 1 1( ) log 2 log 4 log 8 2 log 16
2 4 8 16
15

H X = + + + ×

Since we have 8000 samples/sec the source

15  bits/sample
8

=

Since we have 8000 samples/sec the source
produces information at a rate of 15kbits/sec.
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Joint and Conditional EntropyJoint and Conditional Entropy

When dealing with two or more random sources, exactly inWhen dealing with two or more random sources, exactly in 
the same way that joint and conditional probabilities are 
introduced, one can introduce joint and conditional 
entropies. 

The joint entropy of (X, Y) is defined as

,
( , ) ( , ) log ( , )

x y
H X Y p x y p x y= −∑

The conditional entropy of X given Y is defined as
( | ) ( , ) log ( | )H X Y p x y p x y= −∑

Using chain rule, it can be shown that
,x y

( ) ( | ) ( )H X Y H X Y H Y= +
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Mutual InformationMutual Information

Given byGiven by
H(X) denotes the uncertainty of the random varaible X
H(X|Y) denotes the uncertainty of random variable X afterH(X|Y) denotes the uncertainty of random variable X after
random variable Y is known.

Then, H(X)-H(X|Y)Then, H(X) H(X|Y)
Denotes the amount of uncertainty of X that has been
removed given Y is knowng
In other words, it is the amount of information provided by
random variable Y about random variable X

Definition of mutual information
( ; ) ( ) ( | )I X Y H X H X Y= −
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Entropy, Conditional Entropy and 
M t l I f tiMutual Information

H(X Y)
H(X) H(Y)

H(X,Y)

H(X|Y) H(Y|X)

I(X;Y)
H(X|Y)
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Differential EntropyDifferential Entropy

The differential entropy of a discrete-time continuousThe differential entropy of a discrete time continuous
alphabet source X with pdf f(x) is defined as:

( ) ( ) l ( )h f f d
∞

∫

E l th diff ti l t f i

( ) ( ) log ( )X Xh X f x f x dx
−∞

= −∫
2Example: the differential entropy of                       is2~ (0, )X N σ

( )21( ) log 2 bitsh X eπ σ

Mutual information between two continuous random

( )2( ) log 2  bits
2

h X eπ σ=

Mutual information between two continuous random 
variables X and Y: 

( ; ) ( ) ( | )I X Y h X h X Y= −
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10.2 SourceSource CodingCoding TheoremTheorem

Source coding theorem:Source coding theorem:
A source with entropy (or entropy rate) H can be
encoded with an arbitrarily small error probability atencoded with an arbitrarily small error probability at
any rate R (bits/source output) as long as R > H.
C l if R < H th b bilit ill bConversely, if R < H, the error probability will be
bounded away from zero, independent of the
complexity of the encoder and decoder employedcomplexity of the encoder and decoder employed
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10.3 ModelingModeling ofof CommunicationCommunication CChannelhannel

Recall that a communication channel is any medium overRecall that a communication channel is any medium over
which information can be transmitted

It is characterized by a relationship between its input andIt is characterized by a relationship between its input and
output, which is generally a stochastic relation due to the
presence of fading and noise

Waveform (continuous-time) channel

Discrete-time channel

Sampling theorem

Discrete-input discrete-
t t h l

continuous alphabet 
channel
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Binary-Symmetric ChannelBinary Symmetric Channel 

BSC channel is characterized by the crossoverBSC channel is characterized by the crossover
probability e=P(0|1)=P(1|0)

F i t 2E⎛ ⎞For instance, 
0

2 bEe Q
N

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

P(0/0)=1-e

P(1/0)= P(0/1)=e

P(1/1)=1-e
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AWGN ChannelAWGN Channel

Both input and output are real numbersBoth input and output are real numbers

The input satisfy some power constraint
2

1

n

i
i

x P
=

≤∑

+X

Z

Y=X+Z
+
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10.4 ChannelChannel CapacityCapacity

In 1948, Shannon proved thatIn 1948, Shannon proved that
there exists a maximum rate, called channel capacity and
denoted as C in bits/sec, at which one can communicate over
a channel with arbitrarily small error probability
one can theoretically transmit over a channel at a rate R ≤ C
with almost error freewith almost error free
Otherwise, if R > C, then reliable transmission is not possible
The capacity of a discrete-memoryless channel is given byp y y g y

C C
( )

max ( ; )
p x

C I X Y= (max over all possible input distribution)

The Noisy Channel Coding Theorem 
(one of the fundamental results in information theory)
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Claude E. Shannon 
(1916 2001)(1916-2001)
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Binary Symmetric Channel CapacityBinary Symmetric Channel Capacity

Since ( ; ) ( ) ( | )I X Y H Y H Y X= −Since ( ; ) ( ) ( | )
( ) ( ) ( | )

( ) ( ) ( )e

I X Y H Y H Y X
H Y p x H Y X x

H Y p x H P

= − =

= −
∑
∑( ) ( ) ( )

( ) ( )
1 ( )

e

e

e

p
H Y H P

H P
= −

≤ −

∑

Here, 2 2( ) log (1 ) log (1 )H p p p p p= − − − −

( ) 1 E lit h ld h X i l b bl

Th th it f BSC i

( ) 1H Y ≤ Equality holds when X is equal probably

Thus, the capacity of a BSC is 

1 ( )eC H P= −
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Gaussian Channel CapacityGaussian Channel Capacity

Consider a discrete-time Gaussian channel withConsider a discrete time Gaussian channel with

Y X Z= +

Input power constraint: 2

1

n

i
i

x P
=

≤∑

~ (0, )NZ N P

Its capacity is given by (proof?)

⎛ ⎞1 log 1
2 N

PC
P

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
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Now, consider a continuous-time, bandlimited AWGN channel 
with noise PSD=N0/2, input power constraint P, bandwidth W.

Sample it at Nyquist rate and obtain a discrete-time channel. 
The power/sample will be P and the noise power/sample will be

0
02

W

N
NP df WN= =∫

Thus, 
2W−

∫

0

1 log 1
2

PC
N W

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
bits/transmission

Since the number of transmissions/sec is 2W, we obtain the 
channel capacity in bits/sec 

0N W⎝ ⎠

log 1 bits/secPC W
⎛ ⎞

= +⎜ ⎟
0

log 1  bits/secC W
N W

= +⎜ ⎟
⎝ ⎠

(Shannon Formula)
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ExampleExample

Find the capacity of a telephone channel withFind the capacity of a telephone channel with
bandwidth W=3000Hz, and SNR of 39dB

Solution:
The SNR of 39 dB is equivalent to 7943. Using
Shannon formula we haveShannon formula, we have

( )3000log 1 7943 ~38 867 bits/secC = + ≈( )3000log 1 7943  ~38,867 bits/secC = + ≈
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Insights from Shannon FormulaInsights from Shannon Formula

1. Increasing signal power P increases the capacity Cc eas g s g a po e c eases e capac y C
When SNR is high enough, every doubling of P adds additional B 
bits/s in capacity
When P approaches infinity, so is C

2. Increasing channel bandwidth W can increase C, but cannot 
i i fi it l ( i l i )increase infinitely (as noise power also increases)

0lim lim log 1WN P PC
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
0 0

g

log 1.44

W W P N W N

P Pe
N N

→∞ →∞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

= =
0 0

g
N N
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3. Bandwidth efficiency – energy efficiency tradeoff3. Bandwidth efficiency energy efficiency tradeoff
In any practical system, we must have

l 1 PR W
⎛ ⎞

≤ ⎜ ⎟

Defining r=R/W the spectral bit rate

2
0

log 1R W
N W

≤ +⎜ ⎟
⎝ ⎠

Defining r R/W, the spectral bit rate

2
0

log (1 )R Pr
W N W

= ≤ +

Let Eb be the energy per bit,
0

b
PE
R

=

Then, 2
0

log 1 bEr r
N

⎛ ⎞
≤ +⎜ ⎟

⎝ ⎠
Eb/N0 = SNR per bit
r = spectral efficiency
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Capacity boundary 
with R = C

As r=R/B > 0As r=R/B -> 0

0

1lim (2 1)rb

r

E
N r→

= −
0

0 0

ln 2
0 693

r
r

N r→
→

=
0.693

1.59dB
=
= −

Shannon Limit，an 
absolute minimum for 
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