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Abstract—Trajectory analysis is essential in many applications. In this paper, we address the problem of representing motion

trajectories in a highly informative way, and consequently utilize it for analyzing trajectories. Our approach first leverages the complete

information from given trajectories to construct a thermal transfer field which provides a context-rich way to describe the global motion

pattern in a scene. Then, a 3D tube is derived which depicts an input trajectory by integrating its surrounding motion patterns contained

in the thermal transfer field. The 3D tube effectively: 1) maintains the movement information of a trajectory, 2) embeds the complete

contextual motion pattern around a trajectory, 3) visualizes information about a trajectory in a clear and unified way. We further

introduce a droplet-based process. It derives a droplet vector from a 3D tube, so as to characterize the high-dimensional 3D tube

information in a simple but effective way. Finally, we apply our tube-and-droplet representation to trajectory analysis applications

including trajectory clustering, trajectory classification & abnormality detection, and 3D action recognition. Experimental comparisons

with state-of-the-art algorithms demonstrate the effectiveness of our approach.

Index Terms—Trajectory representation, trajectory analysis, 3D tube, abnormality detection, 3D action recognition

Ç

1 INTRODUCTION

MOTION information, which reflects the temporal varia-
tion of visual contents, is essential in depicting the

semantic contents in videos. As the motion information of
many semantic contents is described by motion trajectories,
trajectory analysis is of considerable importance to many
applications including video surveillance, object behavior
analysis, and video retrieval [1], [2], [3], [4], [5]. Formally,
trajectory analysis can be defined as the problem of deciding
the class of one or more input trajectories according to their
shapes and motion routes [4], [6], [7], [8].

A motion trajectory is in general obtained by tracking an
object over frames and linking object positions into a posi-
tion sequence [1], [2], [9]. Although trajectories contain
detailed information of object movements, reliable trajec-
tory analysis remains challenging due to the uncertain

nature of object motion and the ambiguity from similar
motion patterns.

One major challenge for trajectory analysis is to differen-
tiate trajectory classes with only subtle differences. For
example, Fig. 1a shows three trajectory classes CP1, CP2,
and CP3, where CP1 and CP2 include vehicle trajectories fol-
lowing two adjacent leftward street lanes and CP3 includes
vehicle trajectories following a left-turn street lane. Since
trajectories in CP1 and CP2 are similar in both motion direc-
tion and location, the original position sequence representa-
tion is insufficient to differentiate them. This necessitates
the development of more informative motion trajectory
representation. However, most existing trajectory represen-
tation methods [3], [4], [10], [11] focus on performing trans-
formation or parameterization on the original position
sequence, while the problem of more informative represen-
tation is not well addressed. Although some trajectory-
modeling or local-modeling methods [4], [6], [7], [12], [13]
increase the informativeness of trajectories by including the
contextual information among multiple trajectories, they
only model partial contextual information from trajectories
with similar patterns or trajectories in the same class. Thus,
they still have limitations when differentiating ambiguous
trajectories, such as trajectories near the boundary of similar
trajectory classes (e.g., trajectories A and B in Fig. 1a).

We argue that due to the stable constraint from a scene,
the complete contextual motion pattern around a trajectory
provides an important cue for trajectory depiction. By com-
plete, we refer to the contextual motion information from all
given trajectories in the neighborhood of an input trajectory.
For example, Fig. 1b shows the complete contextual motion
patterns of two easily-confused trajectories A and B which
are extracted from two similar trajectory classes CP1 and
CP2. If we look at the contextual motion information in the
neighborhood of trajectory A, there is a strong left and
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slightly upward motion pattern (in green color) towards the
end of A. In contrast, if we look at the contextual motion
information in the neighborhood of trajectory B, there is an
obvious upward motion pattern in the middle of B. Thus,
the ambiguity between trajectories is expected to be reduced
if the above-mentioned contextual motion information is
properly modeled (cf. Fig. 1c).

1.1 Our Work

Based on this intuition, we develop a novel framework
which utilizes the global motion trends in a scene to
describe a trajectory. Specifically, for each point in a trajec-
tory, we derive the dominant scene motion pattern around
the point and utilize it to depict the point’s complete contex-
tual motion pattern. By integrating the dominant scene
motion patterns for all points in a trajectory, we are able to
describe a trajectory in a highly informative way and make
fine distinctions among similar trajectories. The framework
of our approach is shown in Fig. 2.

Given a set of trajectories, thermal transfer fields are first
constructed to describe the global motion pattern in the
scene (cf. module ‘constructing thermal transfer fields’ in
Fig. 2). Then, for an input trajectory, we expand it over the
time domain to construct a 3D spatio-temporal curve, and
derive an equipotential line for each point in this curve (cf.
module ‘deriving equipotential lines’ in Fig. 2). The equipo-
tential lines are decided by the locations of spatio-temporal
curve points and their surrounding dominant scene motion
patterns defined in thermal transfer fields. In this way, the
complete contextual motion pattern can be captured.

After obtaining equipotential lines, a 3D tube is con-
structed which concatenates equipotential lines according
to the temporal order of spatio-temporal curve points (cf.
module ‘constructing 3D tubes’ in Fig. 2). This 3D tube is
able to depict an input trajectory in a highly informative
way, where the movement of a trajectory and the contextual
motion pattern around a trajectory are effectively captured
by the route and shape of the 3D tube.

Finally, a droplet-based process is applied which ‘injects’
water in one end of a 3D tube and achieves a water droplet
flowed out from the other end. This water droplet is further
sampled to achieve a low-dimensional droplet vector to
characterize the 3D tube shape (cf. module ‘droplet-based
process for feature extraction’ in Fig. 2). Since different tra-
jectories are depicted by 3D tubes with different shapes, by
suitably modeling the water flow process, the droplet vector
can precisely catch the unique characteristics of a 3D tube.
The droplet vector will serve as the final trajectory represen-
tation format and is applied in trajectory analysis.

In summary, our contributions are three folds.

� We construct a thermal transfer field to describe the
global motion pattern in a scene, derive equipoten-
tial lines to capture the contextual motion informa-
tion of trajectory points, and introduce a 3D tube by
concatenating equipotential lines to represent a
motion trajectory. These components establish a
novel framework for addressing the informative tra-
jectory representation problem.

� Under this framework, we develop a droplet-based
process which derives a simple but effective low-
dimensional droplet vector to characterize the high-
dimensional information in a 3D tube. The derived
droplet vector can not only capture the characteris-
tics of a 3D tube, but also suitably reduce the distur-
bance from trajectory noises.

� We investigate our tube-and-droplet representation to
various trajectory analysis applications including tra-
jectory clustering, trajectory classification & abnormal-
ity detection, and 3D action recognition, and achieve
the state-of-the-art performance.

2 RELATED WORKS

2.1 Trajectory Representation and Modeling

Properly representing motion trajectories is crucial to trajec-
tory analysis. Many algorithms [1], [5], [6], [9], [14] have
been proposed for trajectory representation. Most of them

Fig. 1. (a) An example of ambiguous trajectories: The orange, red, and
green curves labeled by CP1-CP3 indicate three trajectory classes. The
black curves labeled by Trajectory A and B are two trajectories from
CP1 and CP2, respectively. (b) Complete contextual motion patterns of
trajectories A and B in (a): Contextual motion patterns are described by
the motion flows of all trajectory points in the neighborhood of A and B
(Note: We use color to differentiate motion flows from different trajectory
classes only for a clearer illustration. In our approach, we do not differen-
tiate motion flows’ classes and directly use all motion flows in the neigh-
borhood of an input trajectory to model its contextual motion pattern). (c)
Use our 3D tube to model A and B’s complete contextual motion pat-
terns. (Best viewed in color.)

Fig. 2. The framework of the proposed approach. It constructs a scene-specific thermal transfer field via trajectory training data; for a test trajectory
sample, it builds a 3D tube based on the constructed thermal transfer field, and generates a feature vector via a droplet process. The obtained feature
vector is applicable to various trajectory analysis applications. (Best viewed in color).
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[3], [10], [11], [14] aim to find suitable parameter sets to
describe trajectories. Discrete Fourier transform (DFT) coef-
ficients [10] and polynomial curve fitting [3] are two exam-
ples. Rao et al. [14] extracted dynamic instants and used
them as the key points to represent the spatio-temporal cur-
vature of trajectories. These methods focus more on the
effective representation of a trajectory’s position sequence,
while the issue of more informative representation is not
addressed. Although some works [1], [2], [3], [12], [14]
increase the informativeness of trajectory representation by
introducing additional information such as motion velocity,
temporal order, or object size, the added information is still
restricted within a single trajectory and cannot be used to
discriminate trajectories with similar patterns.

Trajectory-modeling methods that include the contextual
information of multiple trajectories are also proposed [4], [6],
[7]. Thesemethods construct probability models for each tra-
jectory class and utilize them to guide the trajectory analysis
process. Kim et al. [6] introduced Gaussian process regres-
sion flows to model the location and velocity probability for
each trajectory class. Morris and Trivedi [7] clustered trajec-
tories into spatial routes and encoded the spatio-temporal
dynamics of each cluster by hiddenMarkov models (HMM).
Hu et al. [4] built a time-sensitive Dirichlet process mixture
model (tDPMM) to represent the spatio-temporal character-
istics of each trajectory class. These methods only focus on
modeling the contextual information inside each individual
class, while ignoring information from external trajectory
classes. Therefore, they still have limitations when differenti-
ating ambiguous trajectories, such as trajectories near the
boundary of similar trajectory classes.

Another line to integrate contextual information is the
local-modeling methods [13], [15]. These methods aim to
utilize dynamic models or topic models to describe
trajectories’ local motion patterns. Nascimento et al. [15]
introduced low-level dynamic models to decompose trajec-
tories into basic displacement patterns, and recognized tra-
jectories based on the switch among these low-level models.
Wang et al. [13] proposed a non-parametric topic model
called Dual Hierarchical Dirichlet Processes (Dual-HDP),
which constructs local semantic regions including similar
trajectory segments and performs trajectory analysis accord-
ingly. Although these models share the contextual informa-
tion from multiple trajectory classes, only the contextual
information from similar trajectory segments is considered.
Therefore, they are less effective when trajectories have
large variations or reliable local models cannot be con-
structed due to insufficient similar trajectory segments.

The proposed 3D tube representation differs with exist-
ing approaches in the following aspects:

� We model the complete contextual information
around a trajectory, not only the contextual informa-
tion from partial trajectories. This enables us to pre-
cisely catch the subtle changes among different
trajectory classes.

� Most existing works handle trajectory analysis with
complex probability models, which require sufficient
trajectory data to construct reliable models. We estab-
lish a novel framework to model trajectories in a sim-
ple but effective way, which can work robustly under
relatively small data size. Experimental evaluation

shows we can achieve state-of-the-art performance
on benchmark datasets with this simple procedure.

� Existing methods focus on the abstract modeling of
trajectory information where the modeled trajectory
information cannot be easily visualized. Our 3D tube
representation is able to visualize a variety of trajec-
tory information, including spatial-temporal move-
ments, contextual motion patterns, and possible
motion directions, in a clear and unified way.

2.2 Handling High-Dimensional Representations

Since highly informative trajectory representation often
leads to a complex and high-dimensional representation
format, it is non-trivial to find suitable ways to handle this
high-dimensional representation for trajectory analysis.

In [16], Euclidean distance and dynamic time wrapping
(DTW) distance were utilized to measure the distance of
two time-series trajectory sequences. Vlachos et al. [17] fur-
ther introduced the longest common subsequence (LCSS)
distance. While these methods can handle the original posi-
tion sequence format of a trajectory, they are not suitable to
process higher dimensional representations.

In order to handle higher-dimensional data representa-
tions, some dimension reduction approaches were developed
[18], [19]. However, due to the large variation and ambiguity
among trajectories, trajectory representations often have com-
plex distributions. Thus, simply applying dimension reduc-
tion cannot achieve satisfactory results. Moreover, some
advanced manifold approaches were also introduced [20],
[21], [22]. In [20], Lui modeled high-dimensional inputs as
high-order tensors. The similarity between inputs were mea-
sured by the intrinsic distance between tensors, which is esti-
mated through manifold charting. Although these methods
can achieve better results when processing high-dimensional
trajectory representations, they have considerably high com-
putation complexity. Thus they are difficult to be applied on
large scale trajectory analysis.

Besides dimension reduction, other works [12], [23], [24]
aim to develop proper distance metrics to measure the simi-
larity between high-dimensional inputs. Lin et al. [12] intro-
duced a surface matching distance to measure the similarity
between high-dimensional surface shapes. Sangineto [23]
and Gao et al. [24] developed advanced Hausdorff distance
which treats each high-dimensional input as a set of points
and estimates the similarity between inputs from the dis-
tance between point sets. These methods are dependent on
the quality of high-dimensional inputs, and noisy inputs
will adversely affect the performance of these methods.

Different from the previous methods, we develop a novel
droplet-based process which simulates the physical water
flow process and derives a low-dimensional droplet vector
to characterize the high-dimensional 3D tube shape. This
process has low complexity and can suitably reduce the dis-
turbance from trajectory noises.

3 3D TUBE REPRESENTATION

In order to include the complete contextual motion informa-
tion in trajectory representation, it is important to properly
model and embed the global motion pattern information in a
scene. More specifically, assuming that there are M
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trajectories available from a scene, denoted as fGmgMm¼1. Each

trajectory is represented as Gm ¼ fpm
n gL

m

n¼1, where pm
n 2 R2 is

the position of the nth point of the trajectory and Lm is the
length of trajectory Gm. Accordingly, the speed of the point in

the position is calculated as um
n ¼ pm

nþ1
�pmn

Dt 2 R2, where Dt is

the sampling interval between adjacent points. We aim to
find the scene’s global motion pattern which best describes
themotion trends provided byM given trajectories1, and use
this global motion pattern to derive the complete contextual
motion patterns for positions along the route of an input tra-
jectory. In this way, we are able to construct a 3D tube from
these contextual motion patterns and obtain an informative
representation for the input trajectory.

In this paper, we borrow the idea from thermal propaga-
tion [25], [26], [27] and introduce a trajectory model, which
finds global motion pattern, derives contextual motion pat-
terns, and constructs 3D tube representations with thermal
propagation processes.

3.1 Constructing Thermal Transfer Fields

First, we model the global motion pattern in a scene based
on the works in fluid thermal propagation [25], [26], [27].
Specifically, the aggregation of M given trajectories is mod-
eled as a ‘fluid’ in the scene, where each pm

n is a sample of
the fluid and the corresponding um

n refers to the movement
of the fluid which results in the transfer of thermal energies
in position pm

n .
According to thermal transmission theories [25], [26], the

thermal diffusion result of the entire fluid is affected by a
scene-related thermal transfer field which decides the thermal
propagation strengths at different positions and in different
directions. Therefore, by constructing an optimal thermal
transfer field that best suits the thermal dynamics of the fluid
defined by given trajectories, the fluid’s thermal dynamics,
which characterize the motion pattern fromM given trajecto-
ries, can be effectively embedded in the thermal transfer field.

In this work, we construct a scene’s thermal transfer field
based on the strategy of finite-element analysis [27]. For-
mally, we first segment the scene into grids of positions
G ¼ ½1; . . . ;W � � ½1; . . . ; H�, where W and H are the width
and height of the scene. Then, the thermal transfer field of
the scene can be represented as

K ¼ ½kðp; aÞ�W�H�jAj; (1)

where kðp; aÞ (p 2 G, a 2 A) is the thermal transfer coeffi-
cient indicating the thermal propagation strength along
direction a at position p. Here a is a normalized vector
(kak2 ¼ 1) indicating thermal propagation directions, which
is selected from a pre-defined direction set A. jAj counts the
number of directions in the set. In this paper, A contains
four directions, which depicts a scene’s global motion pat-
tern in upward (y�), downward (yþ), leftward (x�), and
rightward (xþ) directions, respectively (cf. module
‘constructing thermal transfer fields’ in Fig. 2).

Assuming that the given trajectories correspond to a sta-
ble fluid, we can construct an optimal thermal transfer field

K by minimizing the total amount of thermal energies being
transferred during the fluid flow process, as

min
K

X
a2A

X
p2G

DEðkðp; aÞÞ

s:t: kðp; aÞ � 0;
X
p2G

kðp; aÞ ¼ k; for a 2 A:
(2)

where DEðkðp; aÞÞ is the amount of thermal energy trans-
ported by the fluid from position p along direction a within
a unit time interval. k (k > 0) is a constant. The first con-
straint in (2) guarantees to achieve physically-meaningful
thermal transfer fields (i.e., avoid negative transfer fields),
and the second constraint guarantees to obtain proper dis-
tributions of kðp; aÞ (i.e., avoid transfer fields becoming all
infinite values). DEðkðp; aÞÞ can be calculated from thermal
transmission theories [25], [26]:

DEðkðp; aÞÞ ¼ h
rðpÞuðp; aÞ
kðp; aÞ : (3)

Here h is a parameter related to the temperature difference
between a position p and its neighbors [25], [26]. In our
paper, since we want to focus on the relationship between
DE and kðp; aÞ, we simply assume the temperature differ-
ence condition to be the same when calculating DE at dif-
ferent positions, and set h as a constant. rðpÞ is the density
of fluid at position p, uðp; aÞ is the moving velocity along
direction a at position p. Physically, rðpÞuðp; aÞ measures
the number of fluid particles passing through position p
along direction a within a unit time interval. kðp; aÞ indi-
cates the efficiency of thermal energy transfer along direc-
tion a at p. As a result, kðp; aÞDE refers to the amount of
thermal energies actually received by p’s neighboring
position when an amount of energy DE is transferred out
from p [25], [26].

According to (2) and (3), we let a fluid flow along the
aggregated routes of M given trajectories, and measure the
total amount of thermal energy transfers over all positions.
The thermal transfer field that leads to the smallest total
transferred energy will be the optimal field that best suits
the scene.

More specifically, from (3), the amount of energy
transfer DE is jointly decided by kðp; aÞ (thermal transfer
coefficient), rðpÞ (fluid’s density), and uðp; aÞ (fluid’s
velocity). When rðpÞuðp; aÞ increases, the amount of fluid
flowing along direction a at p becomes stronger, which
leads to larger chances of energy transfer. Thus, by mini-
mizing

P
a;p DE in (2), kðp; aÞ is proportionally adjusted

with rðpÞuðp; aÞ such that kðp; aÞ with higher energy
transfer efficiencies are assigned to positions/directions
with stronger fluid flows. In this way, the resulting ther-
mal transfer field can properly suit the thermal dynamics
of the fluid.

rðpÞ in (3) is calculated based on the nonparametric
estimation of sample points pm

n in given trajectories:

rðpÞ ¼
XM
m¼1

XLm

n¼1

exp �kp� pm
n k

2s2

� �
: (4)

1. Note that we do not differentiate given trajectories’ class labels,
and directly use all given trajectories to find global motion patterns.
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Similarly, uðp; aÞ in (3) is the nonparametric estimation of
sample points and their corresponding projected speeds:

uðp; aÞ ¼
XM
m¼1

XLm

n¼1

maxða>um
n ; 0Þexp �kp� pm

n k
2s2

� �
; (5)

where a>um
n is the projection of speed um

n in ath direction.

maxða>um
n ; 0Þ ensures that only the directions with positive

velocity are considered.
Eqs. (4) and (5) ensure that rðpÞuðp; aÞ can correctly reflect

the global motion pattern contained in given trajectories. For
example, when a large number of trajectories pass through a
positionpwith relatively high speed, rðpÞuðp; aÞwill become
a large number. On the contrary, for positions where trajecto-
ries rarely pass, rðpÞuðp; aÞwill be small. Moreover, note that
rðpÞuðp; aÞ in (4) and (5) is estimated by integrating the infor-
mation of all trajectories without differentiating their classes.
Therefore, the resulting thermal transfer fields in fact include
the complete contextual motion information among given
trajectories. This enables the embedding of the complete con-
textual motion pattern in later 3D tube construction and tra-
jectory representation steps.

Based on (3), (4), and (5), (2) can be solved by the Cauchy–
Schwarz inequality and the optimal solutions turns out to be:

kðp; aÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðpÞuðp; aÞ

p
: (6)

Figs 2 and 3b show some examples of the constructed
thermal transfer fields from given trajectories. We can see
that the thermal transfer fields constructed by our approach
can effectively capture the four-direction global motion pat-
terns contained in given trajectories. For example, in Fig. 3,
both the upward and rightward motion patterns of the blue
trajectories in Fig. 3a are effectively embedded in the upward
and rightward thermal transfer fields in Fig. 3b.

3.2 Deriving Equipotential Lines

Based on the constructed thermal transfer field K, we
can perform thermal propagation for each point in an
input trajectory, so as to embed the input trajectory’s
contextual motion information. More specifically, we first
obtain a thermal diffusion map for an input trajectory
point pm

n , which depicts the dominant scene motion pat-
tern around pm

n by propagating thermal energies from
pm
n to the entire scene through K. Then we derive a con-

stant-energy line called equipotential line from this map,
and use it to capture the contextual motion information
for the trajectory point.

Formally, for each trajectory point pm
n , we denote its

corresponding thermal diffusion map as Eðpm
n Þ ¼

½Eðpm
n ;pÞ�W�H , p 2 G, where Eðpm

n ;pÞ is the thermal energy
at position p in pm

n ’s map. Taking Eðpm
n Þ as a function of

time t and direction a 2 A, we calculate Eðpm
n Þ via an itera-

tive method. Specifically, the initial map E0ðpm
n Þ is defined

as follows:

E0ðpm
n ;pÞ ¼

E�; if p ¼ pm
n

0; otherwise

�
; (7)

where E0ðpm
n ;pÞ is the initialized thermal energy at posi-

tion p. E� ¼ 100 is a constant. According to (7), the ther-
mal diffusion map of trajectory point pm

n is initialized by
assigning a large thermal energy to pm

n ’s position and
assigning zero energies to other positions. Then, a ther-
mal diffusion process is applied which transfers thermal
energies from pm

n to other positions through the con-
structed thermal transfer field, and creates an energy-
propagated thermal diffusion map. The thermal diffusion
process is defined by [25]:

@Eðpm
n ;pÞ
@t

¼
X
a2A

kðp; aÞ @
2Eðpm

n ;pÞ
@a2

: (8)

Here
@2Eðpmn ;pÞ

@a2
means the 2nd order partial derivative of

Eðpm
n ;pÞ along direction a. kðp; aÞ is a thermal transfer

coefficient in the constructed thermal transfer field K
(cf. (1), (2)). From (8), the thermal diffusion process is
mainly controlled by the thermal energy difference
among neighboring positions and the thermal transfer
coefficients from thermal transfer field. Thus, by properly
setting the initial energy difference (cf. (7)), the resulting
thermal diffusion map can effectively capture the desired
contextual motion pattern contained in the thermal trans-
fer field.

Eq. (8) is difficult to solve because: 1) The thermal diffu-
sion process is performed by integrating the information
from multiple directions a; 2) The thermal transfer fields are
non-homogeneous whose thermal transfer coefficients
kðp; aÞ vary over different locations. We propose an approx-
imation solution which obtains thermal diffusion map in an
iterative way, as illustrated in Fig. 4a.

From Fig. 4a, after initializing a thermal diffusion map
by (7), the thermal energy at pm

n is diffused iteratively
outward to other positions. During each iteration t, posi-
tions which were diffused in the previous iteration t � 1
will diffuse energies to their outside neighboring posi-
tions (as indicated by arrows in Fig. 4a). According to
the thermal diffusion process in (8), thermal diffusion

Fig. 3. (a) Input trajectories (black solid curves) and given trajectories
(blue dashed curves). (b) Thermal transfer fields constructed from the
blue dashed curves in (a). Figures from left to right correspond to ther-
mal transfer fields in directions upward (y�), downward (yþ), leftward
(x�), rightward (xþ), respectively. (Best viewed in color.)

Fig. 4. Examples of equipotential lines. (a) The process of iterative ther-
mal diffusion. (b)-(d) Lower figures: The thermal diffusion maps and the
equipotential lines for trajectory points pa, pb, and pc in Fig. 3a; upper fig-
ures: The thermal diffusion maps and the equipotential lines displayed in
3D. (Best viewed in color.)
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between neighboring positions in one iteration can be
approximated by:

Etðpm
n ;pÞ �

P
p02BðpÞ Et�1ðpm

n ;p
0Þexp � kp�p0k

kðp; p�p0
kp�p0kÞ

 !
jBðpÞj ; (9)

where BðpÞ is the neighborhood of p and jBðpÞj is the size of
the neighborhood. For p and its neighbors p0 2 BðpÞ,
kp� p0k is their distance and kðp; p�p0

kp�p0kÞ is the thermal

transfer coefficient along direction p�p0
kp�p0k at position p.

Eq. (9) reveals that: 1) The diffused thermal energy in a
position p0 is summed over all energies propagated from its
neighboring positions in both vertical and horizontal direc-
tions. In this way, the complete contextual information can
be included. 2) The thermal transfer coefficients kðp; aÞ con-
trol the thermal diffusion results. In this way, the motion
pattern information from the thermal transfer field can be
properly reflected in the resulting thermal diffusion map.
3) The thermal diffusion map Eðpm

n Þ for position pm
n is fully

decided by the thermal transfer field K (cf. (7) and (9)). This
implies that the contextual motion information Eðpm

n Þ for
each position in a scene is fixed after a scene’s global motion
pattern K is determined. Therefore, if two input trajectories
pass through position pm

n with different routes, they will
have the same thermal diffusion map at pm

n .
Fig. 4 shows some examples of thermal diffusion map

results derived from the thermal transfer fields in Fig. 3b. In
Figs. 4, 4b, 4c, and 4d show the thermal diffusion maps of
three points pa, pb, pc on the black trajectory A in Fig. 3a.

According to Fig. 3a, since moving rightward from pa

appears frequently in the scene (as there are lots of dashed
blue trajectories moving rightward around pa), large right-
ward-direction thermal transfer coefficients are obtained
around pa. This allows more thermal energies being propa-
gated to pa’s right side, thus leading to a long rightward tail
in the thermal diffusion map of pa (cf. Fig. 4b). Similarly,
since pb is located in a region including frequent move-
ments in both rightward and upright-ward directions, pb’s
thermal diffusion map includes big tails in both directions

and displays a V -like shape (cf. the lower figure in Fig. 4c).
Comparatively, since pc is located in a region where seldom
trajectories pass, the constructed thermal transfer coeffi-
cients are small in all directions around pc. This makes pc’s
thermal diffusion map decay quickly around pc, as in
Fig. 4d. From the example of Figs. 4b, 4c, and 4d, our ther-
mal diffusion map indeed provides a reliable way to cap-
ture the complete and unique contextual motion patterns
for input trajectory points.

In order to represent thermal diffusion maps in a more
effective way, we further derive equipotential lines to cap-
ture the fundamental information of thermal diffusion
maps. An equipotential line can be easily achieved by find-
ing a constant-energy line on a thermal diffusion map. In
this paper, we acquire constant-energy line whose energy
decreases to half of the initial energy E�, as indicated by the
red circles in Figs. 4b, 4c, and 4d.

3.3 Constructing 3D Tubes

After deriving equipotential lines for all points in a trajec-
tory, a 3D tube can be constructed to represent this trajec-
tory by concatenating these equipotential lines according to
their temporal order in the trajectory.

Fig. 5 shows some 3D tube examples for the black input
trajectories A-D in Fig. 3. The first row in Fig. 5 shows the
results by expanding trajectories in Fig. 3a into 3D spatio-
temporal curves. The second row of Fig. 5 illustrates the 3D
tube representations for trajectories A-D in Fig. 3a. Further-
more, the equipotential lines for three points on one input
trajectory (i.e., trajectory A in Fig. 3a) are also displayed by
red slices in Fig. 5a. These red slices clearly show that a 3D
tube is constructed by sequentially concatenating a
trajectory’s equipotential lines in a 3D spatio-temporal space.

From Fig. 5, we can observe that:

� The constructed 3D tube contains rich information
about a trajectory, where both the movement and the
contextual motion pattern are effectively embedded.
For example, the route of a 3D tube represents the
movement. The thickness variation of a 3D tube indi-
cates whether there are frequent motion patterns in
the context around a trajectory (e.g., a 3D tube will
become narrow if a trajectory goes through a region
where trajectories rarely pass, such as trajectory A in
Fig. 5a). Moreover, the shapes of equipotential lines
in a 3D tube also indicate possible motion trends
provided by the contextual motion patterns. For
example, the convex part circled by the green dashed
line in the second row of Fig. 5c indicates that mov-
ing upleft-ward around pb (i.e., turn left in the origi-
nal 2D scene) is another possible motion trend which
also appears frequently in the scene. More discus-
sions about the informativeness of 3D tube represen-
tation will be provided in the experimental results.

� Different from the previous trajectory modeling
methods [4], [7] whose modeled trajectory informa-
tion cannot be easily visualized, our 3D tube repre-
sentation is able to visualize information of a
trajectory in a clear and unified way. For example,
one can easily observe a trajectory’s movement and
contextual motion pattern from the route and shape

Fig. 5. Examples of 3D tubes and water droplet results. First row: results
by expanding trajectories in Fig. 3a into 3D spatio-temporal curves; sec-
ond row: 3D tube representations for the black input trajectories A-D in
Fig. 3a; third row: water droplet results derived from 3D tubes. (Note: In
the middle row of (a)-(d), the thickness of a tube is represented by differ-
ent colors where yellow indicates thick and red indicates narrow. Best
viewed in color.)
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variation of its 3D tube representation. This in fact
provides a useful tool for people to intuitively
observe and analyze trajectory information.

4 THE WATER-DROPLET PROCESS

After constructing 3D tubes for input trajectories, we need
to find suitable ways to effectively handle the high-dimen-
sional information included in 3D tubes. In this paper, we
introduce a droplet-based process which simulates the
physical water flow process [26] and derives a low-dimen-
sional droplet vector to characterize a high-dimensional 3D
tube shape.

The process of the droplet-based process is displayed in
Fig. 6. We inject a drop of water with fixed shape in one end
of a 3D tube (cf. Fig. 6a) and achieve a water droplet flowed
out from the other end (cf. Fig. 6b, note that the water is
flowed along the time-axis in a 3D spatial-temporal space).
According to fluid mechanic theories [26], when a water
droplet passes through a 3D tube, its shape will be affected
by the friction and extrusion forces from the boundary of the
tube. 3D tubes with different shapes will provide different
impacts to water passing through them, and create different
droplet outputs. Therefore, by properly designing the water
flow process, the derived droplet can effectively capture the
characteristics of a high-dimensional 3D tube shape.

A water droplet is described by a center point wc and a
set of boundary points fwbgb¼1;...;Nw

where Nw ¼ 36 is the

total number of boundary points being considered. More-
over, two distances are defined to represent the relative
location between a boundary point wb and wc: 1) d

t
b is the

distance between wb and wc in the time axis; 2) dsb is the dis-
tance between wb and wc in the spatial plane, as in Fig. 6b.
In order to simplify calculation, we only calculate dtb at the
output of a 3D tube, such that a 3D droplet can be simply

described by dtb in a 2D plane, as in Fig. 6b. Therefore, in the

following, we focus on discussing dtb.
Before water starts to flow in a 3D tube, dtb are initialized

as 0 to make all boundary points located on the same spatial
plane as the center point wc, as in the upper figure in

Fig. 6a. Then, during the water flow process, we let the cen-
ter point wc follow the route of a 3D tube’s input trajectory
(i.e., the input trajectory that creates the 3D tube), as indi-

cated by fPc;ngLn¼1, where L is the length of the input trajec-

tory and Pc;n is the location of the nth input-trajectory point
in the spatial-temporal space (cf. the black line in Fig. 6a).
Similarly, a boundary point wb ðb 2 f1; . . . ; NwgÞ will follow
the route constructed by the bth boundary points on a 3D

tube: fPb;ngLn¼1, where Pb;n is the position located on bth

direction of Pc;n on Pc;n’s equipotential line (cf. the blue line
in Fig. 6a).

When the center point wc of a water droplet passes
through a 3D tube with a constant velocity in the time-axis,
the velocity of the droplet’s boundary points
wb ðb ¼ 1; . . . ; NwÞ will be jointly affected by two forces: the
viscosity force from wc which pulls wb close to wc, and the
friction force from a 3D tube’s boundary which resists wb

from approaching wc [26]. Since both forces are controlled
by the shape of a 3D tube, by calculating the relative distan-
ces dtb between wc andwb at a tube’s output, the characteris-
tics of a 3D tube can be properly captured.

The time-axis distance dtb between points wc and wb at
the output of a tube (cf. Fig. 6b) can be approximated by:

dtb /
1

L
XL
n¼1

ðvc;n � vb;nÞ; (10)

where L is the length of a 3D tube. vc;n and vb;n are the time-
axis velocities when points wc and wb pass through posi-
tions Pc;n and Pb;n, respectively. vc;n ¼ vC meaning that wc

passes through different Pc;n with a constant time-axis

velocity vC. 1L is included to normalize dtb.

From (10), the time-axis distance dtb is measured by accu-
mulating the velocity difference vc;n � vb;n between points
wc and wb when passing through a 3D tube. By performing
velocity accumulation, we are able to characterize high-
dimensional tube information in a relative simple way
while reducing the disturbance from trajectory noises.

According to fluid viscosity theories [28], vc;n � vb;n in
(10) can be approximated by (see Appendix in the supple-
mentary material for details, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2016.2608884):

vc;n � vb;n � 1� �1

rsb;n�1

 !
ðvC � vb;n�1Þ þ �2 cos ub;n�1; (11)

where �1 and �2 are constant coefficients. vb;n is the time-
axis velocity of wb when passing through position Pb;n. wb’s
velocity is initialized as 0 before the water flow process (i.e.,
vb;0 ¼ 0). rsb;n�1 is the distance from (n� 1Þth trajectory posi-

tion Pc;n�1 to its bth direction boundary position Pb;n�1 on
the equipotential line (cf. Fig. 6a). ub;n�1 is the angle between

lines Pc;n�1Pb;n�1
��������!

and Pc;n�1P
0
c;n

������!
, where P0

c;n is the projected

position of Pc;n on Pc;n�1’s spatial plane, as in Fig. 6a.
Basically, rsb;n�1 in (11) reflects the size variation of a

water droplet, while ub;n�1 evaluates the relative location of
a boundary position Pb;n�1 with respect to the motion direc-

tion Pc;n�1P
0
c;n

������!
of a water droplet. Since the size and motion

Fig. 6. The water droplet process. (a) Illustrations of the input water drop-
let, Pb;n, Pc;n, ub;n, and routes of water droplet pointswc,wb when passing
through a 3D tube. (b) The resulting 3D water droplet (left) and the sim-
plified 2D droplet by only considering dtb (right).
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direction of a water droplet is controlled by the shape and
route of the 3D tube it passes through, by introducing rsb;n�1

and ub;n�1, a 3D tube’s shape and route information can be
effectively embedded.

Moreover, the terms �1
rs
b;n�1

and cos ub;n�1 in (11) reflect the

impact of a 3D tube’s shape to the viscosity and friction
forces applied on a water droplet point wb. When wb passes
through a boundary position Pb;n�1 located in front of the
motion route of wb’s water droplet (i.e., small ub;n�1), the
friction force on wb becomes large due to the increased nor-
mal force that wb’s water droplet applies on tube boundary
Pb;n�1. This will reduce the velocity of wb and lead to larger

dtb. Similarly, when a 3D tube becomes slim on bth direction
(i.e., small rsb;n�1), the viscosity force on wb will be enlarged

which pulls wb closer to wc and creates smaller dtb. This
point will be further discussed in the experimental results.

The third row of Fig. 5 shows the droplet results derived
from the 3D tubes in the second row of Fig. 5 by using (10)
and (11). From Fig. 5, we can observe the effectiveness of
our water-droplet process:

� The major motion directions of 3D tubes are properly
captured by the large sectors in droplet results. For
example, the water droplet of trajectory C has a large
sector in the upward direction since trajectory C
moves forward only. Comparatively, the water drop-
let of trajectory B has large sectors in both top and
left directions. This indicates the ‘forward+left turn’
movement of B.

� Droplets derived from thick 3D tubes have larger sizes
than those derived from slim tubes. For example, the
droplet for trajectory C has large size since C follows
a frequent motion pattern in the scene and has a thick
3D tube. Comparatively, since trajectoryA turns to an
irregular region in the middle, its 3D tube becomes
narrow in the later part. This leads to a small size in its
corresponding droplet. Fig. 5 implies that the size of a
droplet can effectively differentiate regular and irreg-
ular motion patterns. Therefore, in this paper, droplet
size is utilized as a major feature to detect abnormali-
ties in trajectory analysis (cf. (13)).

Finally, the obtained water droplet is sampled to achieve
a low-dimensional droplet vector. In this paper, we simply
concatenate time-axis distances dtb in a water droplet as the
low-dimensional droplet vector:

Vm ¼ ½dt;m1 ; dt;m2 ; . . . ; dt;mNw
�; (12)

where Vm is the droplet vector for trajectory Gm. dt;mb is the
time-axis distance in bth direction of Gm’s water droplet. Nw

is the length of the vector and is set as 36 in our experiments.

5 IMPLEMENTATION IN TRAJECTORY ANALYSIS

With the tube-and-droplet representation, trajectories can
be depicted by droplet vectors and analyzed accordingly. In
this section, we discuss the implementations of our tube-
and-droplet representation in three trajectory analysis
applications: trajectory clustering, trajectory classification &
abnormality detection, and 3D action recognition.

5.1 Trajectory Clustering

When performing trajectory clustering, we first utilize all
trajectories being clustered as the given trajectories to con-
struct thermal transfer fields (cf. Section 3.1). Then, a 3D
tube and a droplet vector are derived based on the con-
structed thermal transfer fields to represent each trajectory
(cf. Sections 3.3 and 4). Finally, we measure the distance
between trajectories by calculating the distance between
their corresponding droplet vectors, and perform trajectory
clustering according to these droplet-vector distances. In
this paper, we utilize euclidean distance to measure the dis-
tance between droplet vectors, and utilize spectral cluster-
ing [29] to cluster trajectories.

5.2 Trajectory Classification and Abnormality
Detection

In trajectory classification and abnormality detection, a set of
normal training trajectories are provided whose class labels
are given. We aim to recognize the classes of input test trajec-
tories with the guidance of training trajectories, and identify
abnormal test trajectories which do not follow the regular
motion patterns provided by training trajectories.

Similar to trajectory clustering, we utilize all normal tra-
jectories in the training set to construct thermal transfer
fields, and derive a droplet vector for each individual train-
ing trajectory. Note that since our approach utilizes the com-
plete contextual information, we do not differentiate
trajectory classes, that is, normal training trajectories from
different trajectory classes are utilized indiscriminatively
when constructing thermal transfer fields.

During testing, we first obtain a droplet vector for an
input test trajectory. Then, the abnormality of a test trajec-
tory is evaluated by its corresponding droplet vector. Since
the size of a droplet can effectively differentiate regular and
irregular motion patterns, we detect a test trajectory Gm to
be abnormal if:

max
b

fdt;mb g þ 1

Nw

X
b

dt;mb < TH; (13)

where dt;mb is the bth element in Gm’s droplet vector. Nw is
the length of the droplet vector (cf. (12)). TH is a threshold
decided by specific scenario. In the experiments of this

paper, we simply calculate maxbfdt;mb g þ 1
Nw

P
b d

t;m
b value

for all normal trajectories in the training set, select the small-
est value T from them, and set 0.9T as the threshold. In (13),

the term 1
Nw

P
b d

t;m
b is calculated to measure the size of a

droplet while the term maxbfdt;mb g is used to evaluate the

normality in a trajectory’s major motion direction.
Finally, if a test trajectory Gm is evaluated as normal by

(13), a one-against-all linear SVM classifier [30] trained
directly from the droplet vectors of training trajectories is
applied to classify Gm into one of the trajectory classes.

5.3 3D Action Recognition

We also extend our tube-and-droplet approach into the
application of 3D action recognition. In 3D action recogni-
tion, 3D skeleton sequences are provided which depict
human actions in a 3D x-y-depth space [31], [32], [33], [34],
[35]. An example skeleton sequence is shown in Fig. 7.
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Since skeleton sequences are described by the trajectories
of multiple body points (e.g., the red curve in Fig. 7), they
are able to be represented and analyzed by the proposed
tube-and-droplet approach. However, a 3D skeleton
sequence differs from a regular motion trajectory in: 1) A
3D skeleton sequence includes multiple trajectories for dif-
ferent body points of a human; 2) The trajectory of a body
point is located in 3D space (x-y-depth) instead of a 2D
plane. Therefore, we extend our tube-and-droplet represen-
tation into higher dimension to depict 3D trajectories.
Besides, in order to handle multiple trajectories in a 3D skel-
eton sequence, we represent each trajectory independently
and then combine them together to achieve a unified depic-
tion of the entire skeleton sequence.

The detailed implementation of our approach on 3D
action recognition is described in the following.

First, thermal transfer fields are constructed for each body
point based on the trajectories from training skeleton sequen-
ces. Since trajectories are located in 3D space, thermal transfer
fields need to bemodeled by 3D volumes. Therefore, we intro-
duce two additional directions (i.e., z� and zþ representing
forward and backward directions in depth axis) and extend
the process of constructing thermal transfer fields (cf. (1)) into
3D space. Furthermore, in order to make thermal transfer
fields more powerful for different 3D actions, we construct a
set of 3D thermal transfer fields for each individual action
class under each body point. Therefore, if there are NA action
classes being recognized and NB body points in a skeleton, a
total ofNA �NB sets of thermal transfer fields are constructed.

Fig. 8 shows an example set of thermal transfer fields
which represents the motion pattern of ‘horizontal wave’
action for a ‘left hand’ body point (cf. Fig. 7). According to
Fig. 8, six thermal transfer fields are constructed to describe
global motion patterns in six directions inside a 3D space
(cf. Figs. 8c, 8d, 8e, 8f, 8g, and 8h). Besides, each thermal

transfer field is modeled as a 3D volume indicating the ther-
mal propagation strength at different positions.

After thermal transfer fields are constructed, a tube and a
droplet vector is constructed to depict the information of an
input trajectory. Due to the 3D feature of input trajectories,
the constructed tube is extended to a combination of 3D equi-
potential surfaces instead of 2D equipotential lines, as in the
left figure of Fig. 9. Similarly, the obtained droplet is also
extended from a surface to a sphere which is represented by
a center point and a set of boundary points located on a
closed surface surrounding it (cf. right figure in Fig. 9).

Finally, a skeleton sequence can be described by
concatenating droplet vectors from different body points
and for different action classes, as

Um ¼ ½v1V
m
1;1; . . . ;vNBV

m
NB ;1;v1V

m
1;2; . . . ;vNBV

m
NB ;2;

v1V
m
1;NA ; . . . ;vNBV

m
NB ;NA�;

(14)

where Um is the droplet-based feature vector for the mth
skeleton sequence. Vm

b;a is the droplet vector derived for bth

body point and ath action class. vb is the weighting factor
balancing the relative importance of bth body point and it
can be decided by cross-validation [36]. NB and NA are the
total number of body points and action classes.

During 3D action recognition, we first derive a droplet
feature vector Um for an input skeleton sequence, and then
utilize a classifier to recognize the action class of this skele-
ton sequence. In this paper, we use two different classifiers :
1) KNN, and 2) one-against-all linear SVM classifier [30].

6 EXPERIMENTAL RESULTS

We evaluate the performance of our trajectory representa-
tion approach on three trajectory analysis applications: tra-
jectory clustering, trajectory classification & abnormality
detection, and 3D action recognition. The experiments are
performed on multiple benchmark trajectory datasets
including Vehicle Motion Trajectory dataset (VMT) [4], Sim-
ulated Traffic Intersection dataset (CROSS) [7], our own
constructed crossroad traffic dataset (TRAFFIC)2, and MSR-
Action3D Dataset (MSR) [8]. �1 and �2 in (11) are set as 2
and 0.1, which are decided from experimental statistics.

6.1 Trajectory Clustering

We perform trajectory clustering experiments on a bench-
mark Vehicle Motion Trajectory dataset (VMT) [4]. The
VMT dataset includes 1,500 real-scene vehicle trajectories
labeled in 15 clusters. Some example trajectories in VMT
dataset is shown in Fig. 10. In this experiment, we cluster
trajectories into the same number of clusters as the ground

Fig. 7. An example of 3D skeleton sequence from MSR-Action3D data-
set. Left: The 3D trajectory of ‘horizontal wave’ action of a ‘left hand’
body point. Right: The skeleton sequence for ‘horizontal wave’ action.

Fig. 8. An example of thermal transfer fields for 3D trajectories. (a) Given
3D trajectories. (c)-(h) Constructed thermal transfer fields for the given
3D trajectories in (a). Note that (c)-(h) correspond to the thermal transfer
fields in directions y�, x�, z�, yþ, xþ, zþ, respectively. (b) An illustration
of details inside a 3D thermal transfer field when cutting a high-value vol-
ume in a transfer field.

Fig. 9. An example of equipotential surfaces (left) and the resulting water
droplet sphere (right) for 3D trajectories.

2. www.dropbox.com/s/ahyxw6vqypgb0uf/TRAFFIC.zip?dl=0
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truth (i.e., 15 clusters), and evaluate the consistency between
trajectory labels in the clustering results and those in the
ground truth.

We compare our approach with seven methods: 1) Using
Euclidean distance to measure the distance between trajec-
tories plus using K-means clustering to cluster trajectories
(ED+Kmeans); 2) Using euclidean distance plus spectral
clustering [29] (ED+SC); 3) Using dynamic time warping to
measure trajectory distances plus K-means [37] (DTW
+Kmeans); 4) Using DTW plus spectral clustering [38]
(DTW+SC); 5) Using a time-sensitive Dirichlet process mix-
ture model [4] to represent and cluster trajectories
(tDPMM); 6) Using a 3-stage hierarchical learning model
[7] to represent and cluster trajectories (3SHL); 7) Using a
heat-map model [12] to represent and cluster (HM).

Note that the ‘tDPMM’ and ‘3SHL’ methods are state-of-
the-art trajectory-modeling methods which increase the
informativeness of trajectories by constructing probability
models for each trajectory class. Besides, the ‘HM’ method
encodes the temporal variation of a trajectory.

Moreover, in order to evaluate the effectiveness of our
water droplet process, we further include the results of
three additional methods: 1) Using our approach to con-
struct 3D tubes for trajectory representation, plus using
Hausdorff distance [24] to capture the high-dimensional
information in these 3D tubes for trajectory clustering (3D
Tube+Hausdorff); 2) Using 3D tubes plus using a state-of-
the-art Grassmann manifold method [20] (3D Tube+Mani-
fold); 3) Using our approach to achieve thermal diffusion
maps for each trajectory point (cf. Fig. 3), and directly
concatenating these thermal diffusion maps as the represen-
tation of a trajectory, finally using the Grassmann manifold
method [20] to capture the high-dimensional information
(Thermal map+Manifold).

Note that the major difference between the ‘Thermal map
+Manifold’ method and ‘3D Tube+Manifold’ method is that
‘Thermal map+Manifold’ skips the step of equipotential
line extraction (cf. Section 3.2), and directly utilizes a ther-
mal diffusion map to represent a trajectory point.

6.1.1 Comparison of Clustering Results

Table 1 compares the cluster learning accuracy [4] for differ-
ent methods on VMT dataset, where the cluster learning
accuracy measures the total percentage of trajectories being
correctly clustered. From Table 1, approaches using our 3D
tube representation (3D Tube+Hausdorff, 3D Tube+Mani-
fold, Thermal map+Manifold, Ours) achieve obviously bet-
ter clustering results than the compared methods. This
demonstrates the usefulness of our 3D tube representation.
Moreover, we can also observe from Table 1 that: 1) Our
approach, which integrates both 3D tube representation and
water droplet process, achieves the best clustering results.
This demonstrates the effectiveness of our tube+droplet
framework. 2) The ‘3D Tube+Manifold’ method has slightly
better results than the ‘Thermal map+Manifold’ method.
This implies that equipotential lines (cf. Section 3.2) can not
only capture the useful information in thermal diffusion
maps, but also suitably avoid the disturbance from noise in
thermal diffusion maps.

6.1.2 Robustness to Noises and Trajectory Breaks

We further demonstrate the effectiveness of our approach in
dealing with noisy or broken trajectories. Following [4], we
add Gaussian noise to all points in a trajectory to simulate a
noisy trajectory. Three noise levels are used to derive three
trajectory datasets with different noise strengths (i.e., Noise
Level 1, 2, and 3 in Table 2). Similarly, we omit the initial or
last G points in two of 10 trajectories in each cluster to simu-
late datasets with broken trajectories (i.e., omit G ¼ 10 per-
cent, G ¼ 20 percent, G ¼ 30 percent, and G ¼ 40 percent in
Table 2) [4].

Table 2 compares the clustering results of different
methods on noisy or broken trajectories derived from
VMT dataset. Table 2 shows that our approach achieves
the best clustering results under different noise or trajec-
tory break levels. Moreover, when noise or trajectory
break level increases, the clustering performance
decrease by our approach is relatively small among the

Fig. 10. (a) Trajectories from different groundtruth clusters in VMT data-
set (color curves) and five input trajectories (black curves labeled by
A-E). (b) Upper: 3D tubes for trajectories A, B, and C in (a); lower:
Water droplets for A, B, and C. (c) Comparison of water droplet results
between clean trajectories (B, C) and noisy trajectories (D, E) in (a)
(note that B, D are from one cluster and C, E are from another cluster).
(d) Upper: Droplets for trajectory A’s 3D tube in Fig. 10b under different
�1 where �2 ¼ 0:1; lower: Droplets for trajectory A’s 3D tube in Fig. 10b
under different �2 where �1 ¼ 2. (Best viewed in color.)

TABLE 1
Cluster Learning Accuracy for Different Methods

on VMT Dataset (%)

Method Cluster Accuracy

ED+Kmeans 82.6
ED+SC[29] 85.0
DTW+Kmeans[37] 83.2
DTW+SC[38] 85.3
tDPMM [4] 86.7
3SHL [7] 84.4

HM [12] 82.0
3D Tube+Hausdorff 91.5
Thermal Map+Manifold 92.2
3D Tube+Manifold 93.6
Ours 93.8
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compared methods, this further demonstrates the robust-
ness of our tube-and-droplet approach when handling
noises or trajectory breaks.

6.1.3 Effectiveness of 3D Tube Representation

Figs 10 illustrates a more detailed example about the effec-
tiveness of our 3D tube representation. In Fig. 10a, the col-
ored curves are trajectories to be clustered and the black
trajectories labeled in A, B, and C are three trajectories from
them. In order to ease the discussion, trajectories from dif-
ferent groundtruth clusters are displayed by different col-
ors. Since trajectories A, B, and C come from three
trajectory clusters which are located close to each other and
have similar motion patterns (cf. the clusters in yellow,
orange, and red in Fig. 10a), existing methods have limita-
tions in differentiating them which only consider the pair-
wise correlation between trajectories (ED+Kmeans, ED+SC,
DTW+Kmeans, DTW+SC, HM) or intra-cluster correlation
among trajectories (tDPMM, 3SHL).

With our 3D tube representation, the differences among
A, B, and C can be properly highlighted by embedding the
complete motion information from all trajectories, as the
upper figures in Fig. 10b. For example, the 3D tube of trajec-
tory A shows an obvious leftward convex part since there is
a large left-turn pattern provided by the purple cluster
along A’s route. Trajectory B’s tube is thicker since it is
located in the middle of a large upleft-ward motion pattern
jointly provided by the yellow, orange, and red clusters.
Besides, trajectory C’s tube includes an obvious rightward
convex part due to the rightward contextual patterns pro-
vided by the blue and green clusters next to C. Therefore,
by suitably capturing the high-dimensional information in
these 3D tubes, the difference among trajectories can be
effectively reflected in the resulting droplet vectors (cf. the
lower figures in Fig. 10b).

6.1.4 Effectiveness of Water Droplet Process

In order to evaluate our water droplet process, we compare
our approach with ‘3D Tube+Hausdorff’, ‘3D Tube+Man-
ifold’, and ‘Thermal Map+Manifold’. These methods use
the same 3D tube representation to depict a trajectory, but
use different schemes to capture the high-dimensional
information in a 3D tube. The clustering results of these
methods under different noise or trajectory break levels are
shown in Table 2. Furthermore, Table 3 compares the run-
ning time of the 3D tube information handling & clustering
steps in these methods. We observe that:

� From Table 2, the clustering-accuracy difference
between our approach and ‘3D Tube+Hausdorff’
becomes larger for higher noise levels. This implies
that satisfactory results cannot be easily achieved
without suitably capturing the high-dimensional
information in 3D tubes. More specifically, since
Hausdorff distance is easily affected by noise, its
results decrease more rapidly for large noises. In
contrast, since our water droplet process character-
izes a 3D tube by accumulating information at differ-
ent parts in a tube (cf. (10)), the disturbance from
noise can be effectively reduced.

� Although ‘3D Tube+Manifold’ and ‘Thermal Map+
Manifold’ can achieve relatively better results than
‘3D Tube+Hausdorff’, their computation complexi-
ties are considerably high (cf. Table 3). Compara-
tively, our water droplet process handles
information of a 3D tube in a simple but effective
way, which is able to perform clustering in less than
1 minute while achieving better results than ‘3D
Tube+Manifold’ and ‘Thermal Map+Manifold’.

Moreover, Fig. 10c shows the droplet results for four tra-
jectories where trajectories B and D belong to the orange
cluster and trajectories C and E belong to the yellow cluster.
Since trajectories D and E are interfered by noise, the ambi-
guity among trajectories increases. However, with our
water droplet process, these noisy effects can be properly
reduced and the major characteristics of a 3D tube can be
properly obtained. For example, in Fig. 10c, the common
characteristics of trajectories B and D are captured in their
droplets which include larger sectors on both sides of the
trajectories’ major motion direction.

6.1.5 Effect of Different Parameter Values

Fig. 10d shows the droplet results for trajectory A’s 3D tube
in Fig. 10b under different �1 and �2 values (cf. (11)).

TABLE 2
Cluster Learning Accuracy with Different Noise or Trajectory Break Levels on VMT Dataset (%)

Datasets ED+Kmeans ED+SC
[29]

DTW+Kmeans
[37]

DTW+SC
[38]

tDPMM
[4]

3SHL
[7]

HM
[12]

3D Tube+
Hausdorff

3D Tube+
Manifold

Ours

Noise Level 1 80.6 83.3 81.2 83.5 84.3 83.2 80.3 88.7 91.3 91.7
Noise Level 2 78.8 81.2 80.0 81.9 83.3 80.1 78.9 85.3 89.1 90.7
Noise Level 3 77.0 81.2 78.8 74.6 81.5 79.2 71.8 79.5 86.4 88.1

Omit G ¼ 10% 80.8 84.4 81.1 85.1 86.1 84.0 82.0 90.6 92.9 93.1
Omit G ¼ 20% 78.9 82.7 76.5 83.5 85.7 80.4 81.8 89.7 91.3 92.1
Omit G ¼ 30% 76.5 79.3 74.4 81.1 81.8 76.7 80.3 87.2 88.7 89.5
Omit G ¼ 40% 72.3 76.1 71.8 77.5 78.1 74.1 78.1 84.3 83.2 87.2

TABLE 3
Running Time of Different Steps for Table 2

Method Transfer field
+3D tube

Handling 3D tube
+clustering

3D Tube+Hausdorff

11.2 min

38.4 min
3D Tube+Manifold 12.0 hr
Thermal Map+Manifold 12.0 hr
Ours 47.5 sec

(Note: ‘Transfer field+3D tube’ refers to the steps of constructing thermal transfer
fields and 3D tubes ‘Handling 3D tube+clustering’ refers to the steps of handling
the high-dimensional information in 3D tubes and performing clustering. Imple-
mented byMatlab and evaluated on a PCwith 4 core CPU and 8G RAM.)
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From Fig. 10d, we can see that �1 mainly controls the
effect from a 3D tube’s shape. More specifically, when �1

increases, a droplet becomes more concentrated on a tube’s
true motion directions and convex parts, while sectors not
along a tube’s direction or convex part will shrink. At the
same time, with the increase of �1, the thickness of a tube is
also reflected more obviously in a droplet. For example,
since trajectory A’s 3D tube in Fig. 10b is relatively narrow,
increasing �1 will decrease the size of its droplet and make
the droplet more coherent with the tube’s thickness.

Besides, Fig. 10d reveals that �2 controls the impact of a 3D
tube’s route. When �2 is extremely small, the route informa-
tion of a 3D tube cannot be fully included in a droplet (i.e., a
droplet cannot tell whether a trajectory is moving upward or
downward along a 3D tube, cf. Fig. 10b). This will create obvi-
ous sectors in the opposite direction to a trajectory’s motion
route (cf. the leftmost figure in Fig. 10d). When �2 increases,
the route information is more clearly included in its corre-
sponding droplet, and sectors opposite to a trajectory’s route
will shrink. We set �1 and �2 as 2 and 0.1. Experiments show
that these values can properly embed both the shape and
route information of a 3D tube and create satisfactory results.

6.2 Trajectory Classification and Abnormality
Detection

6.2.1 Results on TRAFFIC Dataset

We perform experiments of trajectory classification &
abnormality detection on our own constructed TRAFFIC
dataset. This dataset includes 300 real-scene trajectories
where 200 trajectories are for normal activities and the other
100 trajectories are abnormal ones. The normal trajectories
includes seven classes, with about 30 trajectories for each
class. The major motion routes of different trajectory classes
are indicated in Fig. 11b. Some example normal and abnor-
mal trajectories are shown in Fig. 11a.

Note that this is a challenging dataset in that: 1) The total
number of trajectories in the dataset is small, making it diffi-
cult to construct reliable models; 2) The motion trajectories
within the same class have large variations due to the large
width of roads; 3) Due to the visual angle of the surveillance
camera, trajectories from different class are easily confused
and are difficult to differentiate.

We compare our approach (cf. Section 5.2) with two
methods: 1) The GPRF method [6] which introduces Gauss-
ian process regression flows to model the location and
velocity probability for each trajectory class, and utilizes

them to classify trajectories (GPRF); 2) The DTW method
[37] which classifies a test trajectory by measuring its
dynamic-time-warping distance with the center of different
trajectory classes (DTW).

We split the dataset into 50 percent training-50 percent
testing parts. Note that in our experiments, only normal tra-
jectories are used for training. Four independent runs are
performed where the training and testing sets are randomly
selected in each run, and the final results are averaged.
Fig. 12 compares the confusionmatrices of different methods
for classifying normal trajectories and detecting abnormal
ones. Fig. 11c further compares the ROC curves of different
methods when discriminating normal/abnormal trajectories
under different abnormality detection thresholds.

From Figs. 12 and 11c, we can observe that:

� Our approach can achieve obviously better results
than the compared methods. More specifically, the
compared methods have low effectiveness in dis-
criminating trajectory classes such as RD, L, and LU.
This is because trajectories in these classes are easily
confused with similar trajectories from other classes
such as R and AB (e.g., L, LU are similar to patterns
UL and U in the abnormal class AB, cf. Fig. 11b).
Comparatively, since our approach introduces infor-
mative tube-and-droplet representation to capture
the subtle difference between trajectory groups,
more satisfactory results can be achieved.

� Although the GPRF method constructs probability
models to encode the spatial-temporal variation of tra-
jectory classes, it still creates less satisfactory results.
This is because: (a) The GPRF method only focuses on
modeling the contextual information inside each tra-
jectory class, which has limitations in differentiating
trajectories from similar classes; (b) The number of
training trajectories is small, which makes it difficult
for the GPRF method to construct reliable probability
models. Comparatively, our approach is able to work
reliably under relatively small trajectories. Besides, by
leveraging the complete contextual motion informa-
tion, the subtle difference between different classes are
also properly discriminated by our approach, thus
obtainingmore improved results.

6.2.2 Results on CROSS Dataset

We also perform experiments of trajectory classification and
abnormality detection on CROSS dataset [7]. It includes
11,400 normal trajectories labeled in 19 clusters and 200
abnormal trajectories (one example in Fig. 2).

Following [7], we utilize 1,900 normal trajectories in
training. The constructed thermal transfer fields or

Fig. 11. (a) Example trajectories of the TRAFFIC dataset (yellow curves:
normal trajectories, red curves: abnormal trajectories). (b) Major motion
routes of different trajectory classes. The yellow and red curves indicate
routes for normal and abnormal trajectory classes (‘U’,‘D’,‘L’,‘R’ refers to
‘upward’,‘downward’,‘leftward’,‘rightward’ respectively. For example,
‘LU’ means moving leftward and then upward). (c) ROC curves of differ-
ent methods when discriminating normal/abnormal trajectories under dif-
ferent abnormality detection thresholds. (Best viewed in color.)

Fig. 12. Confusion matrices of different methods when classifying nor-
mal trajectories and detecting abnormal ones (denoted as ‘AB’). (a)
GPRF [6]. (b) DTW [37]. (c) Ours.

1500 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 8, AUGUST 2017



trajectory class models are then utilized to classify the rest
9,500 normal and 200 abnormal trajectories. We use (13) to
detect abnormal trajectories and a simple K-nearest neigh-
bor (KNN)[39] strategy to classify normal trajectories.

Table 4 compares the trajectory classification & abnor-
mality detection results. Classification results are evaluated
by classification accuracy (CA) which is the ratio between
total number of correctly classified normal trajectories and
total number of normal trajectories. Abnormality detection
results are evaluated by abnormality detection rate (DR)
and abnormality false positive rate (FPR) [7]. Note that
besides the DTW and GPRF methods, we also include the
results of two state-of-the-art methods on CROSS dataset in
Table 4 (i.e., 3SHL [7] and tDPMM [4]).

Our approach achieves the best performance in classifica-
tion. When detecting abnormal trajectories, our approach
can also achieve obviously improved results than the com-
pared methods (DTW [37], 3SHL [7], and GPRF [6]) and
similar results to a state-of-the-art tDPMMmethod [4].

6.3 3D Action Recognition

Finally, we evaluate the performance of our approach in 3D
action recognition.We perform experiments on a benchmark
MSR-Action3D Dataset [8] which includes 557 3D skeleton
sequences for 20 human actions performed by 10 different
subjects. One example skeleton sequence is shown in Fig. 7.

Following the previous works on MSR-Action3D dataset
[8], [40], we evaluate the recognition accuracy over all 20
actions where actions of half of the subjects are used for
training and the rest actions are used for testing. Besides, a
trajectory alignment process similar to [31] is applied as a
pre-processing step to reduce 3D trajectory variations.

We utilize the process in Section 5.3 to implement our
approach for 3D action recognition, where ‘Droplet+KNN’
and ‘Droplet+SVM’ in Table 5 refer to using KNN and SVM
classifiers to recognize our droplet feature vectors (cf. (14)),
respectively. Moreover, we also include the results by com-
bining our droplet feature vector with a state-of-the-art
‘Moving Poselets’ method [41] which introduces sophisti-
cated mid-level classifiers to improve recognition accuracy
(cf. ‘Droplet+Moving Poselets’ in Table 5). Specifically, we
concatenate our droplet feature vectors with the body point
velocity & acceleration features used in [41], and follow the
‘Moving Poselets’ classification process [41] to recognize the
action class of the concatenated feature vectors.

We compare our approach with the state-of-the-art 3D
action recognition methods using skeleton sequences [32],
[33], [34], [35], [40], [41], [42], [43]. Table 5 shows the recogni-
tion accuracy. According to Table 5, our ‘Droplet+SVM’

approach outperforms all the existing techniques except [41].
This demonstrates that our tube-and-droplet framework can
be reliably applied to handle sequence analysis with multi-
ple trajectories. Besides, our ‘Droplet+KNN’ approach also
achieves satisfactory results. It implies that our droplet fea-
tures can effectively capture the discriminative characteris-
tics of trajectories, such that good results can be achieved
with simple recognition strategies such as KNN. Moreover,
the ‘Droplet+Moving Poselets’ approach achieves the best
performance. It further indicates that our droplet features
can be effectively combined with more sophisticated recog-
nition strategies to achieve further improved performances.

7 CONCLUSION

In this paper, we study the problem of informative trajec-
tory representation and introduce a novel tube-and-drop-
let framework. The framework consists of three key
ingredients: 1) introducing the idea of constructing ther-
mal transfer fields to embed the global motion patterns in
a scene; 2) deriving equipotential lines and concatenating
them into a 3D tube to establish a highly informative
representation, which properly embeds both the motion
route and the contextual motion pattern for a trajectory;
3) introducing a simple but effective droplet-based pro-
cess to effectively capture the rich information in 3D tube
representation. We apply our tube-and-droplet approach
to various trajectory analysis applications including clus-
tering, abnormality detection, and 3D action recognition.
Extensive experiments on benchmark demonstrate the
effectiveness of our approach.
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