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ABSTRACT 

Object detection is an important yet challenging task in 
video understanding & analysis, where one major challenge lies 
in the proper balance between two contradictive factors: 
detection accuracy and detection speed. In this paper, we pro
pose a new adaptive patch-of-interest composition approach for 
boosting both the accuracy and speed for object detection. The 
proposed approach first extracts patches in a video frame which 
have the potential to include objects-of-interest. Then, an adap
tive composition process is introduced to compose the extracted 
patches into an optimal number of sub-frames for object detec
tion. With this process, we are able to maintain the resolution of 
the original frame during object detection (for guaranteeing the 
accuracy), while minimizing the number of inputs in detection 
(for boosting the speed). Experimental results on various datasets 

demonstrate the effectiveness of the proposed approach. 

Index Terms-object detection, patches-of-interest, deep convo
lutional networks 

1. INTRODUCTION AND RELATED WORKS 

Object detection is of increasing importance in many applica
tions including content understanding, media retrieval and so on. 
In object detection, one major challenge is the tradeoff between 
two contradictive factors: detection accuracy and detection speed. 

Most researchers focus their researches on improving the 
detection accuracy. Early works try to find proper hand-crafted 
features in order to improve the accuracy, such as DPM [7] , 

HOG [1] and CENTRIST [8] . The performances for these 
methods are often restrained since hand-crafted features have 
limitations in effectively capturing the complex characteristics of 
objects. With the advances in deep convolutional networks 
(ConvNets), ConvNet-based detection methods have shown big 
improvements on detection accuracy and have become the 
mainstream approaches for object detection [9-10, 13] . However, 
many ConvNet-based approaches have high computation 
complexity, which obviously limits their applications. 

In order to reduce the complexity of ConvNet-based detection, 
some speed-up methods are proposed, which improve detection 
speed by directly regressing object locations (e.g., SSD [3] , 

YOLO [4] ) or extracting object proposal regions & features after 
convolution (e.g., Faster-RCNN [5] ). However, in order to 
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guarantee the speed of convolution computation, most existing 
works need to perform down-sampling on the input video frames, 
which obviously reduces the visual information of small objects, 
leading to reduced detection performances. On the other hand, 
simple ways to maintain input frame resolutions, such as directly 
inputting original-resolution frames or dividing into sub-frames 
& performing recognition respectively, will greatly increase the 
complexity of ConvNet computation, resulting in obviously 
reduced speed. Therefore, it is still an unsolved yet challenging 
problem to maintain the resolution of input information while 
guaranteeing the object detection speed. 

In this paper, we propose a new adaptive patch-of-interest 
composition approach for boosting both the accuracy and speed 
for object detection. Our approach first extracts patches in a 
video frame which have the potential to include objects-of
interest. Then an adaptive composition process is introduced to 
compose the extracted patches into an optimal number of sub
frames for object detection. With this approach, we are able to 
maintain the resolution of the original frame during object 
detection, while minimizing the number of inputs in detection, so 
as to guarantee both object detection accuracy and speed. 

The rest of this paper is organized as follows. Section 2 
describes the framework of the proposed approach. Sections 3 to 
4 describe the details of our proposed adaptive patch-of-interest 
composition approach, respectively. Section 5 shows the experi
mental results and Section 6 concludes the paper. 

2. OVERVIEW OF OUR APPROACH 

The framework of our approach is shown in Fig. l. We first 
extract patches-of-interest in an original frame, where each 
patch-of-interest correspond to a region including potential 
objects-of-interests (cf. Fig. 1 (b». Then a patch composition 
process is performed, which automatically finds a set of optimal 
locations for sub-frames and moves the extracted patches into 
these sub-frames (cf. Fig. 1 (c». Finally, the compo sited sub
frames are input the ConvNet-based detectors to obtain detection 
results (cf. Fig. 1 (d», and the detection results in sub-frames are 
simply mapped back into the original frame to achieve the final 
result (cf. Fig. I (e». 

In our framework, patch-of-interest extraction and patch 
composition are the key components for our approach. Their 
details are described in Sections 3 and 4, respectively. 

3. PATCH-OF-INTEREST EXTRACTION 

The patch-of-interest extraction component includes two steps: 
potential region detection and patch extraction. They are 
described in the following: 
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(a) (b) (c) (d) (e) 
Fig. I Framework of the proposed approach. (a) The input image. (b) Detected patches. (c) The patch composition (left) and sub-frames 
(right). (d) Detection results on sub-frames. (e) Map back and get the final result on the original image. 

Potential region detection. Potential region detection step 
aims to detect potential regions that may include objects of 
interest. In this paper, since we mainly focus on surveillance 
scenarios whose backgrounds are normally static, we use 
foreground extraction followed by simple morphological 
filtering [11, 12] to detect potential regions, as shown in Fig. 
2 (b). It should be noted that foreground extraction is just one 
way to obtain potential regions. In practice, we can also use 
other methods to get potential regions in various scenarios, 
e.g., first detect region proposals [6] and then filter the results 
by a simple classifier [2] . 

(a) (b) (c) 
Fig. 2 Procedure of extracting patches: (a) The original image, (b) 
The foreground after morphological filtering, (c) The image 
including patches. 

Patch extraction. Patch extraction step aims to identifY 
rectangular-shaped patches that include the detected potential 
regions. In this paper, we simply derive a bounding box for 
each connected potential region as the extracted patch as 
shown in Fig. 2 (c). 

(a) (b) 
Fig. 3 (a) Scaling factor calculation procedure. (b) Sub-frames with 
different sizes. 

Two things need to be mentioned about the patch extrac
tion step: (1) we leave a blank region of 3-pixel width on the 
edge of each patch, so as to guarantee reliable detection 
performances when the patch is composited with other 
patches. (2) More importantly, since object sizes in a scene 
often vary a lot due to their different distances to a camera, 
we give patches different scaling factors according to their 
locations in a scene. In this way, we are able to composite 
patches with similar  object  sizes into sub-frames 
(cf. Section 4) and reduce the impact of large size variance in 
the detection process. 

The scaling factor of a patch is calculated as shown in Fig. 
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3 (a). Specifically, we first find a region which corresponds 
to a rectangle in the real scene (cf. the green rectangle in Fig. 
3 (a)), and measure the vertical axis Yab and Yed of the 
rectangle's near-end and far-end lines ab and cd in the frame. 
Then, we select two people appearing at the near and far ends 
of the rectangle, and measure their heights lab and led in the 
frame (cf. the red rectangles in Fig. 3 (a)). Finally, the scaling 
factor of an object located at vertical axis Yinput is calculated 
by Eg. (1): 

R. =k.( lab -led y. +Yab . led -Yed .lab) PmplIl mplll 
Yab -Yed Yab -Yed 

(I) 

where f3input is the scaling factor for object vertically located 
at Yinput, k is a constant. In this paper, considering the 
ConvNet-based detector has a certain ability to detect objects 
of different sizes, we do not calculate f3input for each object. 
Instead, when the object sizes vary widely, we divide an 
input scene into 2-3 vertical regions and use a fixed scaling 
factor for each region. 

4. ADAPTIVE PATCH COMPOSITION 

After extracting patches-of-interest, we apply an adaptive 
composition process to composite the extracted patches into 
an optimal number of sub-frames for object detection. Note 
that this component is the key part of our approach. 

4.1 Objective function 

Given a set of patches-of-interest extracted from a frame: 
Sp = {Pi> Pz, ... , PNp}, where Ni' is the number of patches, we 
aim to composite them into an optimal set of sub-frames such 
that: (I) these sub-frames can include all patches (to make the 
detector cover all potential regions), and (2) the number of 
sub-frames are minimized (to reduce detection complexity). 
The objective function is described by Eg. (2). 

NF 
aj'f'(nJ,0p) + a2 L <I>(Fl,0p) 

(2) )=1 

s.t.Vp,,3Ff, P, is included by Ff,iE [1,Np],jE [l,NJ.] 

where fi� = {F;, F;, ... , F�F} is the optimal set of sub
frames. l¥(fiF' Sp) is the term measuring the suitability of 
sub-frame locations. <I> (Fj' S p) is the term measuring the 
suitability of patch distributions in a sub-frame Fl. H(NF) is 
the optimality evaluation on the number of sub-frames Np. 
The terms l¥(fiF'Sp), <I>(Fj,Sp), and H(NF) are detailed in 
the following. 



Sub-frame location term. When composltmg sub-frames, 
we first want to determine proper locations of sub-frames and 
move patches that are not covered by sub-frames into the 
blank regions of sub-frames (cf. Fig. 4). In our approach, we 
view locations consisting of a large number of patches-of
interest with large sizes as the proper locations of sub-frames, 
since it can greatly reduce the number and total size of 
uncovered patches. Therefore, we define the term of 
measuring the sub-frame location as: 

{D' 
g(i,j) = 

1, 

F covers P I 
' ,i E [I, Nl']' j E [I, NF] F; not covers � 

(4) 

where Pi represents the i-th patch-of-interest. (xr, yn repre
sents the location of Pi. (wr, hi) represents the width and 
height of Pi. f3r is the scaling factor of Pi. Fjrepresents thej
th sub-frame. e is the base of the natural logarithmic function. 
The numerator of Eq. (3) represents the area sum of all 
patches in a frame, and the denominator represents the area 
sum of patches that are covered by any sub-frame. With Eq. 
(3), we are able to find suitable sub-frame locations which 
consist of large numbers of patches-of-interest with large 
sizes (cf. Fig. 4 (a) and (b)). 

Moreover, note that since we introduce a scaling factor f3 
for patches at different vertical locations (cf. Fig. 3 (a)), the 
size of sub-frames at different locations are also controlled by 
the same scaling factor. For example, in Fig. 3 (b), the sub
frame on the top has smaller size while the sub-frame in the 
bottom has larger size. 

Fig. 4 Different locations and patch distributions of sub-frames in an 
image: (a) Detected patch locations with the sub-frame location term 
and the patch distribution term. (b) Detected patch locations with the 
patch distribution term, but without the sub-frame location term. (c) 
Detected patch locations with the sub-frame location term, but 
without the patch distribution term. 

Patch distribution term. The sub-frame location term in Eq. 
(3) cannot perfectly determine the location of a sub-frame 
since multiple locations in a neighborhood may create the 
same value in Eq. (3) but have different patch distributions. 
For example, in Fig. 4, since the sub-frames in (a) and (c) 
cover the same patches, they have the same value in Eq. (3). 
However, their patch distributions are different where patches 
in (a) are located closer to the border of sub-frames. 
Obviously, the sub-frame locations in (a) is better than (c), 
since sub-frames in (a) have more blank regions where more 
uncovered patches can be moved in, while an uncovered 
patch fails to be moved into sub-frames in (c). 
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Therefore, we further introduce a patch distribution term to 
encourage covered patches to stay close to the border of sub
frames: 

t�l(x{ -x�). (y{ - y;)I' �h{ . w{ . g(i,j) 
<I>(F,,01') = 

i�1 
VI 
Lg(i,j) 
i=l 

(5) 

where g(i,j) is calculated according to Eq. (4), (xj,yj) is the 

location of sub-frame Fj, (xr, y[) is the location of patch Pi, 

(wr, hi) is the width and height of Pi. 

Sub-frame number term. One major target of sub-frame 
composition is to find minimum number of sub-frames to 
cover all patches-of-interest, so as to minimize the compu
tation complexity of ConvNet-based detection. Therefore, we 
also define a sub-frame number term by: 

H( N F ) = k . N F + b 
where k and b are constants. 

4.2 Optimization of the objective function 

(6) 

Since the objective function of Eq. (2) is non-convex with 
non-linear constraints, it is difficult to directly solve Eq. (2). 
Therefore, in this paper, we develop an iterative optimization 
approach to approximately solve Eq. (2), which is able to find 
ideal solution with low complexity. 

4.2.1 . Simplified objective function 

Since the constraint in the original objective function in Eq. 
(2) is complex, we utilize a simple inequality to approximate 
it and convert this inequality to a penalty function. The 
simplified objective function is described by: 

a1,¥(QF,0p) + aoI: <!>(0,0p) 
_____ -'ic::·� 1 ___ oG(QF,0p) (7) 

H(NF) 

lo,tw� .h; .p; 2 Iw;' · h/' 'Pi',iE [I,Npl.JE [I,NFI 
(8) 

G(QJ,0p) = Vi,. V" 

I'Lw; · h; .pj < LW/' · h/' 'P/',iE [I,Npl,JE [I, NFl 
I 

where (j is a positive constant with a large value. G (nF, S p) in 
Eq. (8) is the inequality condition to approximate the 
constraint in Eq. (2). According to Eq. (8), when the area sum 
of sub-frames is less than that of patches, the candidate sub
frame solution nF is considered as unsatisfactory. Otherwise, 
nF is probable to hold all patches. Therefore, by optimizing 
Eq. (7), we are able to find a satisfactory set of sub-frames 
n� which comprehensively consider all important factors 
including sub-frame location lJ1(nF'Sp), sub-frame number 
H(NF), sub-frame coverage G(nF' Sp), and patch distribution 
<t>(Fj' Sp). 

4.2.2 Solving simplified objective function 

The objective function in Eq. (7) can be solved by different 
ways. In this paper, we develop a generic-based process [15] 
to solve Eq. (7). The process includes five steps as described 
in the following. 

. 

.



Algorithm 1 Process of solving objective function 
Input: A set of patches 0pfrom an image 
Output: A set of sub-frames nF that including all patches 

1: Down-sample the image and determine Lmin & Lmax to 
initialize sub-tl"ame locations & number, which is calculated by Eq. 
(9), then generate a set of probable initial sub-frame sets (nF). 

2: Update sub-frame sets ( nF )  by elite retention, selection, 
crossing and mutation [15]. 

3: Update sub-frame sets {n F } by the local search. 
4: Calculate the objective cost value in Eq. (7), and determine 

whether the iterative updating process can be terminated. If false, 
go back to step 2. 

5: Verify whether the final solution n} in step 4 satisfies the 
strict constraint in Eq (2). If true, the process ends. Otherwise, 
update Lmil1 and Lmax, then return to step 1. 

Step 1: Initializing sub-frame locations & number. Initia
lizing sub-frames with proper locations and number is impor
tant to quickly find the solution of the objective function. In 
this paper, we apply a real number coding strategy [16] to 
perform sub-frame initialization, which simultaneously 
creates a large number of initial sub-frame sets covering the 
variations of sub-frame number and sub-frame locations. 
However, since the possible variations of sub-frame number 
and locations are huge, directly creating initial sets is compu
tationally intensive. Therefore, in this paper, we introduce a 
sampling strategy to reduce the number of initial sets. 
Specifically, we first down-sample the original frame, so that 
the possible variation of sub-frame locations are reduced. 
Then, we further utilize a greedy strategy to reduce the possi
ble value range of sub-frame numbers, as shown in Fig. 5. 

According to Fig. 5, we first sort patches-of-interest in a 
frame from large sizes to small sizes (cf. the red numbers in 
Fig. 5). Then, we add sub-frames to sequentially cover 
patches from large sizes to small ones until all the patches are 
covered (cf. the yellow rectangles and yellow numbers in Fig. 
5). Note that during the process of adding sub-frames, if an 
uncovered patch can be covered by any existing sub-frame, 
we will not add new sub-frames to cover this patch. Finally, 
we can determine the upper bound Lmax and lower bound Lmin 

of sub-frame number range through the sub-frame adding 
process. Specifically, when in a certain step, the total size of 
sub-frames exceeds the total size of patches, Lmil1 will be set 
as this sub-frame number. Similarly, Lmax is set by the sub
frame number when the total sub-frame size exceeds twice of 
the total patch size. 

After determining the possible range of sub-frame 
numbers, we can create a reduced number of initial sets to 
cover the variations of sub-frame number and locations, 
where Nil. is calculated by: 

N - (L2 
-(L. _1)2) g - a3 ma'\. 11Ull 

(9) 

where (1.3 is a constant, and Lmax and Lmin are the upper and 
lower bounds of sub-frame numbers. Compared with directly 
deriving initial sets from the entire range of sub-frame 
number & locations, the number of initial sets in Eq. (9) is 
greatly reduced. According to our experiments, this reduced 
initial set number can still properly cover the proper variation 
of sub-frames and create satisfactory results. 
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Fig. 5 Greedy strategy that adds sub-frames to cover patches-of
interest and determine the possible range of sub-frame numbers. 

Step 2: Updating sub-frame sets by elite retention, 
selection, crossing and mutation. After obtaining initial sets 
of sub-frame locations and numbers, we follow similar steps 
as the generic process which simultaneously update all sub
frame sets through elite retention, selection, crossing and 
mutation operations [15] and gradually search for better 
results. Note that in order to prevent the best sub-frame set in 
one iteration from being destroyed in the next iteration, we 
utilize the elite retention strategy by mandatorily adding the 
best sub-frame set in the next iteration. Besides, in order to 
avoid the inclusion of too many noisy updates, we only 
receive the mutation result where the new sub-frame covers 
at least one patch. 

Step 3: Local search updating. Since the update process in 
step 2 is random, the convergence speed by step 2 is slow. In 
order to speed up the convergence process, we propose an 
additional local search strategy. Specifically, during each 
iteration, we let sub-frames in each sub-frame set to search in 
a neighborhood region and evaluate the cost value according 
to Eq. (7). If a better location is found, a sub-frame will be 
moved to this location. 

Step 4: Termination evaluation. After each iteration, we 
will check the result to see whether the iterative updating 
process can be terminated. Specifically, after each iteration, 
we calculate the objective cost value in Eq. (7) for all sub
frame sets and record the best one. I f the best sub-frame set 
does not change in four iterations, we will terminate the 
iteration process and use this best sub-frame sets as the 
optimal solution. Otherwise, go back to step 2. 

Step 5: Result verification. Since the condition of the 
objective function in Eq. (8) is an approximation of the strict 
condition in Eq. (2), the optimized solution after step 4 may 
not perfectly satisfY the condition in Eq. (2) (i.e., the derived 
sub-frames may not be able to completely include all 
patches). Therefore, we further introduce a verification 
process to verify whether the final solution llj, in step 4 

satisfies the strict constraint in Eq. (2). Specifically, suppose 
the final solution llj, contains N; sub-frames, the verification 
process includes four sub-steps. 

Rk = {Rkl,Rw···,RkN }, kE [I,N/] (10) 
" 

• Find up to NR of the largest blank rectangles in each 
sub-frames, which are represented as Eq. (10). 

• Find the uncovered patches and sort them from large 
sizes to small ones. 

• Sequentially pick out uncovered patches from large 
sizes to small ones, and determine whether there exists a 



rectangle blank region Rki that can contain the current 
patch. If not, the verification process is failed. We will 
go back to step 1, increase the lower and upper bounds 
of sub-frame numbers (Lmin and Lmax) by 1, and find a 
new set of sub-frame solutions. 

• If all uncovered patches can be covered by the blank 
regions of sub-frames, the verification process is 
successful, and the entire optimization process is 
finished. 

Note that since the objective function in Eq. (7) properly 
approximates the original objective function in Eq. (2), most 
solutions from step 4 can successfully pass the verification 
process without having to re-solve the entire optimization 
process. According to our experiments, the entire optimi
zation process only takes less than 3 ms for a frame (cf. 
Section S), which is computationally very efficient. The 
entire optimization process is summarized by Algorithm 1. 

5. EXPERIMENTAL RESULTS 

5.1 Experiments setting 

We perform experiments on two real-scene surveillance 
video sequences: CANTEEN and STATION. The resolution 
of both sequences are 1280xnO, and the number of frames in 
these sequences are 1212 and IS33, respectively. Some 
example frames for these sequences are shown in Fig. 7 and 
Fig. 8. Note that these sequences are challenging in that: (1) 

Objects (i.e., pedestrians) in both scenes are crowded and 
difficult to differentiate; (2) The size of pedestrians varies a 
lot with both large-size pedestrians and small-size ones. 

Moreover, in order to further demonstrate the effective
eness of our approach on multiple-camera scenarios, we also 
perform experiments on a public BEST dataset [14] . 

Specifically, we select 4 video sequences related to the same 
building from BEST and sequentially stitch their frames into 
super frames for later detection, as in Fig. 9. 

We perform experiments on a PC with ISG memory, 4 

GHz CPU, and a NYIDIA TITAN X GPU. The Single Shot 
Multi Box Detector (SSD) with input size 300x300 [3] is used 
as the ConvNet-based detector in our framework since it has 
relatively high detection speed. Note that our framework is 
general and in practice, other detectors [4-S] can also be 
integrated into our approach. 

5.2 Performance comparisons 

In order to evaluate the effectiveness of our approach, we 
compare the following four methods. 

(1) Directly down-sample the original frames into 300x300 

and input into ConvNet-based detector (OS). 
(2) Divide each frame into 300x300 non-overlapping sub

frames and input them into ConvNet-based detector 
respectively (DIV). 

(3) Our approach which uses sub-frames with 300x300 

sizes to cover patches-of-interest (Our-S). 
(4) Our approach which uses sub-frames with SOOxSOO 

sizes to cover patches-of-interest (Our-L) and then down
samples them to 300x300 for detection. This method can be 
viewed as a fast version of our approach, which utilizes 
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larger sub-frame sizes to cover more patches, so as to reduce 
the number of sub-frames in later detection steps. 

Table I speed on the video sequence of CANTEEN 
I-precision Recall FI Speed (frame/s) 

OS 0.36 0.60 0.62 32.1 
DIY 0.25 0.65 0.68 3.8 
Our-L 0.21 0.64 0.71 25.5 
Our-S 0.19 0.66 0.73 14.3 

T bl 2 R  h 'd a e esu ts on t e VI eo sequence 0 f STATION 
I-precision Recall F1 Speed (frame/s) 

OS 0.46 0.36 0.43 29.6 
DIY 0.42 0.47 0.52 3.7 
Our-L 0.41 0.44 0.50 23.8 
Our-S 0.33 0.48 0.56 13.7 

Table 3 Results on the BESTDATASET 
I-precision Recall F1 Speed (trame/s) 

OS 0.39 0.35 0.44 28.8 
DIY 0.27 0.44 0.55 3.3 
Our-L 0.25 0.43 0.54 25.7 
Our-S 0.18 0.42 0.57 24.2 

Table 4 Time consumin in each part of our method (mslperframe) 

Our-L 

Patch Patch detection total 
extraction composition 

4.65 2.62 31.9 39.2 

(a) (b) (c) 
Fig. 6 Recall vs I-Precision Curve: (a) CANTEEN sequence; (b) 
STATION sequence; (c) BEST dataset. 

From Table 1-3 and Figs. 6-9, we can observe that: 

(1) The DS method has poor performance due to the loss of 
visual details for small objects. For example, we can see from 
Fig. 8 (a) that the DS method misses many small objects. 

(2) The DIV method can effectively improve the detection 
accuracy. However, it still has two limitations: a) The 
computation complexity of the DIV method is high since it 
needs to input a large number of sub-frames into a detector 
(cf. the last column in Tables 1-3). b) Since directly dividing 
frames may separate one object into different sub-frames, this 
also results in false or repeated detection (cf. the person 
circled by yellow in Fig. 7 (b». 

(3) Compared with the DS and DIV methods, our approach 
(Our-S and Our-L) has obvious advantages: a) Since our 
approach composites sub-frames adaptively, it can effectively 
avoid the problem of dividing an object into different sub
frames. b) Since the adaptive patch composition process 
reduces the number of sub-frames, the detection speed is 
significantly improved from the DIV method (cf. the last 
column in Tables 1-3). c) Since our approach properly 
maintains the potential objects' visual information in original 
resolutions, the recognition accuracy is also significantly 
improved from the direct down-sampling method (DS). 



(c) Our-S (d) Our-L 
Fig. 7 Examples of detection results on CANTEEN sequence. 

(c) Our-S (d) Our-L 
Fig. 8 Examples of detection results on STA nON sequence. 

(c) Our-S (d) Our-L 
Fig. 9 Examples of detection results on BEST dataset. 

Fig. 10 Examples of composited sub-frames by our approach in 
different datasets. 

(4) Comparing Our-S method with Our-L method, since Our
L method increases the size of sub-frames, the number of 
sub-frames that are input into detectors are further reduced. 
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This can obtain further improved detection speed with 
slightly reduced accuracy due to the down-sampling of these 
large sub-frames into a standard 300x300 input size of 
detectors. Moreover, Table 4 also shows the running time of 
each component in Our-L approach. We can see that the 
overall complexity of our approach is low. Specifically, the 
running time of patch extraction and patch composition 
components is even less than 8 ms, which is able to guarantee 
real-time processing. 

6. CONCLUSION 

In this paper, a new approach is proposed to boost both the 
accuracy and speed for object detection. The proposed appro
ach first extracts patches in a video frame which are potential 
to include objects-of-interest, then adaptively composes the 
extracted patches into an optimal number of sub-frames for 
object detection. In this way, we are able to maintain the 
resolution of the original frame during object detection to 
guarantee the accuracy, while minimizing the number of 
input frames to boost the speed. Experimental results demon
strate the effectiveness of the proposed approach. 
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