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ABSTRACT
Monitoring the population and movements of endangered species
is an important task to wildlife conversation. Traditional tagging
methods do not scale to large populations, while applying computer
vision methods to camera sensor data requires re-identification (re-
ID) algorithms to obtain accurate counts and moving trajectory of
wildlife. However, existing re-IDmethods are largely targeted at per-
sons and cars, which have limited pose variations and constrained
capture environments. This paper tries to fill the gap by introduc-
ing a novel large-scale dataset, the Amur Tiger Re-identification in
the Wild (ATRW) dataset. ATRW contains over 8,000 video clips
from 92 Amur tigers, with bounding box, pose keypoint, and tiger
identity annotations. In contrast to typical re-ID datasets, the tigers
are captured in a diverse set of unconstrained poses and lighting
conditions. We demonstrate with a set of baseline algorithms that
ATRW is a challenging dataset for re-ID. Lastly, we propose a novel
method for tiger re-identification, which introduces precise pose
parts modeling in deep neural networks to handle large pose varia-
tion of tigers, and reaches notable performance improvement over
existing re-ID methods. The ATRW dataset is public available at
https://cvwc2019.github.io/challenge.html
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1 INTRODUCTION
Wildlife conservation is critical for maintaining species biodiversity.
Failure to protect endangered species on Earth may lead to imbal-
ance ecosystems [3] and affect environmental health [35]. This
mission is increasingly depended on accurate monitoring of the
geospatial distribution and population health of these endangered
species [27], especially in the face of poaching and loss of habitats.
Traditional methods of attaching transmitters to wildlife are prone
to sensor failure, difficult to scale to large populations, and cannot
measure how the wildlife interacts with its environment.

Computer vision techniques are a promising approach to wildlife
monitoring, especially with the use of unmanned aerial vehicles or
camera traps to collect visual data [16]. In particular, re-identification
(re-ID) is a core vision method required to obtain accurate popu-
lation counts and track wildlife trajectory. Figure 1 illustrates one
such system which tracks the movement trajectory of individual
Amur tigers through an edge-to-cloud re-identification framework.
Amur Tigers are classified as an endangered species, with a remain-
ing population fewer than 600.

However, deployment of such systems is hampered by several
challenges. First, resource constraints on the edge camera require
low-power and accurate tiger detection to trigger the image capture
[23, 29, 31] and thus avoid that massive irrelevant image captur-
ing consumes space of storage card and battery life. Second, recent
re-ID methods [14, 33] typically use pedestrians and cars as target
objects, which usually have limited pose variations in a relatively
constrained environment. In contrast, wildlife data have a wide
range of pose variations due to unrestricted four-limbed movement,
complex natural backgrounds, and unconstrained lighting condi-
tions. Third, research into these open challenges is slow due to the
lack of datasets and benchmarks beyond object types such as pedes-
trian and cars [7, 43, 45] that have the aforementioned weaknesses.
Importantly, most existing datasets lack a systematic benchmark
protocol to evaluate end-to-end re-ID performance. This incurs
the strong requirement to build a new dataset and benchmark to
systematically study wildlife re-identification.

To address the above challenges, we present a novel large-scale
dataset named Amur Tiger Re-identification in the Wild (ATRW).
Identification of individual Amur Tigers are mostly based on the
body stripe patterns [15], which can be easily deformed due to the
posture and movement of the tiger. Manual corrections as in [15]
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Figure 1: Framework of Amur tiger re-ID system. Motion sensor triggers lightweight detector on smart camera to further filter non-tiger
images. Tiger related images are fetched or uploaded to cloud services, which will run pose estimation and re-ID algorithm to produce tiger
to camera association. As cameras are discrete placed in a conservation park, we could visualize the tiger moving trajectory on the park map
based on camera position information.

are labor intensive and not suited for wild environments. Automatic
correction requires identifying pose keypoints, and potentially ad-
ditional advanced modeling methods to account for non-rigid body
deformation due to tiger movement. Novel methods developed to
address these issues can extend to the monitoring of other wildlife
species or objects that rely on deformable body patterns for re-
identification. In summary, our major contributions are:

• We build a new large-scale wildlife dataset ATRW, which
contains 92 Amur tiger identities from multiple wild zoos,
8,076 high-resolution video clips from multiple cameras in
which tigers are annotated with bounding box positions,
pose keypoints and identities on sampled frames.

• We create a systematic benchmark and comprehensive base-
line on ATRW for the full tiger recognition pipeline, includ-
ing: Amur tiger detection, pose estimation, and re-identification.

• We propose a novel solution to tiger re-identification based
on precise pose parts modeling with deep neural networks to
handle the large pose variation of tigers, which demonstrates
noticeable performance improvement over traditional re-ID
approaches.

2 RELATEDWORK
Re-ID datasets. Several large scale person re-ID datasets have
been released in recent years [22, 30, 43] to support researches
to improve algorithms performance and robustness. Vehicles are
also an important object for re-ID due to its wide applications in
video surveillance [7]. Most re-ID datasets only contain cropped
images, with the exception of PRW [45], which provided raw frames
along with annotated bounding box for evaluation of the full re-ID
pipeline.

Besides the plethora of person or vehicle re-ID datasets, there are
also a few datasets on animal re-ID, which are well summarized in
the review [32], including primates [6, 11], tigers [19, 20], elephants
[21], and whales [28]. However, these animal re-ID datasets have
various weaknesses, such as small data sizes, limited annotations,
and captured in non-wild settings. Because of these limitations,
these datasets are notwidely used in re-ID research. Our contributed
dataset, ATRW, fills this gap to provide a large-scale, well-annotated,
full pipeline re-ID dataset, to challenge existing approaches. For a
comparison with existing animal re-ID datasets, see Table 1. People

may concern that the identity number in our ATRW is relatively small
(92). However, we should emphasize that the total number of wild
Amur tigers is less than 600, so that our collected indentity number
already reflects practical usage requirement. And this is common for
the re-identification of all the endangered species.
The term of Re-identification was first proposed in 2005 [39] to
supportmulti-camera person trackingwith explicit “re-identification”
based on appearance features. With large scale datasets, deep learn-
ing approaches become dominant in this field. Many approaches
learn identity-related representations for re-ID purposes [12, 25].
Others formulate re-ID as a ranking problem, and feed a pair of
images into a convolutional neural network to learn a ranking
function [1, 22, 38]. Another type of approaches formulates re-ID
as a metric learning problem, and combine CNNs with novel loss
functions to learn similarity metrics [5, 33]. Local modeling with
fusion of global and local representations is also used to enhance
re-ID [36, 41, 42].

Successful deployment of re-ID in the wild also requires object
detection and pose estimation methods to normalize the image for
accurate matching. Efficient object detection on the edge client is
an active area of research. Typical methods include MobileNet-SSD
[17, 31], SqueezeDet [37], and TinyDSOD [23]. Pose estimation
is useful for precise target modeling especially in datasets with rich
variations in pose. Human pose estimation is relatively well studied
with datasets such as COCO [24] and MPII[2]. To our knowledge,
there are no re-ID datasets that include annotated ground truth
for pose estimation, and also no datasets that permit studying how
pose estimation impacts the re-ID performance. Our ATRW dataset
will provide ground truth annotations for tiger pose, as well as
studies of the impact of generic pose estimation methods such as
OpenPose [4], AlphaPose [9] and HRNet [34].

3 THE ATRW DATASET
3.1 Annotation Description
TheAmur tiger (also known as Siberian tiger, Northeast-China tiger)
is a tiger population in the far east region (particularly the Russian
Far East and Northeast China), which currently has less than 600
wild individuals in the world. Capturing enough image data for free-
roaming Amur tigers is infeasible as these tigers have an activity
range over hundreds of kilometers. Instead, we capture Amur tigers



Table 1: Comparison of animal re-ID datasets. ‘*’ denotes number of video clips, and ‘-’ denotes no public data available. Our dataset is signif-
icantly larger, captured in the wild, with rich and dense bounding box annotations, as well as pose keypoint annotations.

Datasets ATRW [19, 20] C-Zoo[11] C-Tai[11] TELP[21] α-whale[28]
Target Amur Tiger Tiger Chimpanzees Chimpanzees Elephant Whale
Wild

√ √
× × ×

√

Pose annotation
√

× × × × ×

#Images or #Clips 8,076∗
- 2,109 5,078 2,078 924#BBoxes 9,496

#BBoxes with ID 3,649
#identities 92 298 24 78 276 38
#BBoxes/ID 39.7 - 19.9 9.7 20.5 24.3

from multiple large wild zoos with the help of the World Wildlife
Foundation (WWF). Images are collected in unconstrained settings
with time-synchronized surveillance cameras and tripod fixed SLR
cameras. In total, we captured 8,076 high resolution (1920×1080)
video clips with at least one Amur tiger, which are further uniformly
sampled (one out of ten) into frames. Some frames are discarded
due to motion artifacts, lack of tigers, or other noise.

The annotation contains three steps. First, we annotate a bound-
ing box for each tiger as well as the view orientation of the tiger in
the image (frontal, left, right, back). Second, professionals determine
the tiger identity based on temporal and appearance cues. Tigers
from different zoos are physically separated during annotation, so
that the id annotation is fairly accurate. If the tiger cannot be clearly
identified, an unknown id will be assigned to that tiger, which will
not be used in the re-ID procedure. Third, as the tiger movement
causes large pose variations, we further annotated skeleton key-
points for each tiger for downstream pose normalization or precise
pose modeling. Details of the keypoint definition will be discussed
in the following section.

Similar to many other re-ID datasets, we also provide a cropped
dataset uncoupled from the wild environment for isolated tests of
re-ID algorithms. The annotated images are cropped according to
the bounding boxes, and renamed with camera id, shot id, frame
number and entity id. Here we use entity to refer to a combination
of the tiger identity and its side information. Based on professional
consultations [15], the tiger stripe pattern is the most informative
marker of tiger identity. Since the left and right side of Amur Tigers
have different stripe patterns, and it is rare to capture both sides
of the tiger in the wild environment, we treat different sides of the
same tiger as a different entity.

The full pipeline of tiger re-identification contains three modules
as shown in Figure 1. We describe data information of each module
in detail below.

Detection Data. The object detection module allows the system
to select only frames that include an Amur tiger, thus reducing
storage, power, and networking consumption. Our tiger detection
dataset includes 4,434 images with 9,496 bounding boxes. Some
of the bounding boxes may have the ‘unknown’ tiger identity, as
described above, but the annotations can still be used for training
and testing object detector models. We provide annotations in the
same format as that of PASCAL VOC [8]. See Figure 5 for some
sample bounding boxes. The distribution of bounding box width
and aspect ratio are shown in Figure 2.
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Figure 2: Distribution of width and aspect ratio (width/height) of
bounding boxes in the dataset.

Pose Keypoint Data. This module performs pose estimation to locate
tiger skeleton keypoints, which are important to the re-ID task due
to the significant non-rigid movement of the tigers. The extracted
pose information could be used to align and normalize the tiger,
or provide precise modeling of the tiger to improve the accuracy
of re-ID algorithms. We defined a set of tiger skeleton keypoints
(Table 2), as illustrated in Figure 3 and Figure 6. If there are more
than two annotations per tiger, the keypoint positions are averaged
when the annotations are not too far apart. If there are significant
differences, we manually validate the keypoints. The annotation is
given in the COCO format.

Figure 3: Definition of tiger keypoints.

Table 2: Definition of key-points in our dataset

key-point definition key-point definition
1 left ear 9 right knee
2 right ear 10 right back paw
3 nose 11 left hip
4 right shoulder 12 left knee
5 right front paw 13 left back paw
6 left shoulder 14 root of tail
7 left front paw 15 center, mid point of 3 & 14
8 right hip



Re-ID Data. Stripe information is used for tiger re-ID based on
suggestions from professionals, so that we focus on images of the
left and right side of tiger body. Each side is viewed as different
entity of tiger as mentioned before.

We define two settings to evaluate re-ID algorithms. First, in
‘plain re-ID’ setting, both the query tigers and database tigers are
cropped and normalized with manually annotated bounding boxes
and poses. Second, ‘wild re-ID’ requires automatic tiger detection
and pose estimation to provide tiger normalization for the following
re-ID procedure.

The re-ID dataset contains 182 entities of 92 tigers, with a total
of 3,649 bounding boxes. Most of the entities appear at least 10
times in the subset, as shown in the histogram of the number of
occurrences in Figure 4. Unlike the popular person re-ID dataset
Market-1501 [44], not all entities appear cross camera due to cap-
turing restrictions in some wild zoos. In this case, we ensure that
significantly different frames from the same camera are selected
into our dataset. Table 3 lists the detailed data distribution among
cross-camera and single-camera, showing that each entity has an
average of 28.3 bboxes. As aforementioned, entity is the basic unit
of re-ID, which is a single side of a tiger.

Table 3: Individual distribution: single-camera vs cross-camera

#Entity #Tiger #BBox
Single-Cam 132 53 1927
Cross-Cam 50 39 1722
Total 182 92 3649
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Figure 4: Distribution of occurrence times.

3.2 Evaluation Protocol
The detection task. To conform with the following wild re-ID task
and avoid possible ground truth bounding box annotation leakage,
we split 1,651 images (about 37%) as testing set for the detection task,
which contains images from all tiger entities in the testing set of
the wild re-ID task, while keep the other images as the training set,
in which a portion of training subset (10%) are used for validation
purposes. Similar to the COCO object detection challenge [24], we
use the average precision (AP) at different Intersection-over-Union
(IoU) thresholds to evaluate the performance. As detectors will be
deployed on resource-constrained edge devices, we combine mAP
and FLOPs together to propose Performance per FLOPs (PPF) to
evaluate detectors in comparison to a baseline with 0.43 mAP and
1 Billion FLOPs as below:

PPF =
mAP − 0.43
BFLOPs

. (1)

The pose estimation task. The pose estimation task also randomly
splits the dataset into training and testing subset, containing 80%
and 20% bboxes with keypoint annotations respectively. The evalu-
ation metric is AP measured by Object Keypoint Similarity (OKS)
as defined in COCO [24]. Table 4 lists the annotation statistics for
each keypoint due to inhomogeneous annotations from different
annotators, where σ 2 denotes the variance of keypoint position
normalized by object scale. Formally, σ 2

i = E[d2i /s
2], di represents

the deviation of the i-th keypoint among different annotators, and
s represents the scale of the object. Then OKS is calculated as

OKS =

∑
i [δ (vi > 0) exp(−

d2
i

2s2k2i
)]∑

i [δ (vi > 0)]
, (2)

where ki = 2σi and vi > 0 if the i-th keypoint is visible.

Table 4: Variance of keypoints annotations.

keypoint σ 2(10−4) keypoint σ 2(10−4) keypoint σ 2(10−4)
1 7.7 6 6.9 11 11.1
2 67.7 7 41.7 12 29.9
3 69.0 8 9.1 13 6.9
4 4.1 9 19.4 14 46.7
5 51.3 10 10.0 15 29.0

Table 5: Statistics of training set and test set for re-ID task

Datasets #images #entities #tigers
Train 1887 107 75
Test 1762 75 58

Table 6: Statistics of query from cross-camera and single-camera
cases in the re-ID task.

Queries #images #entities #tigers
Single-Cam. 701 47 42
Cross-Cam. 1061 28 20

The re-ID task. As described previously, we have defined two tracks
(plain re-ID and wild re-ID) based on whether images are cropped
manually or automatically. Similar to Market-1501 [43], we choose
the mean average precision (mAP) as the primary metric to evaluate
the performance and top-k accuracy as the secondary metric. For
each query, the Re-ID algorithm produces a list of predictions from
which we measure the AP. The mean value of AP scores over all
queries is the mAP, which is based on the evaluation code from
Market-1501 [43], but with following difference. In Market-1501, if
the algorithm returns a result image that is from the same cameras
as the query image, a false positive is counted. In our dataset, we
sometimes have tiger identities that are only captured from a single
camera. Therefore, we modified the handling of returning images
from the same camera slightly differently. We exclude temporal
adjacent images within 1 second (forward and backward) to the
query image from the query results for computing the AP score. To
be more precise, we separate each query image into two categories:
‘single camera’, where the identity only appears in one camera, or
‘cross-camera’, where the target appears in multiple cameras. We
report performance for both cases.

We then constructed the training and testing sets with the fol-
lowing procedure. First, we randomly choose 60% entities from



Figure 5: Example images of detection subset.

Figure 6: Example images of pose subset.

the single-camera category and 40% entities from cross-camera
category. Collectively, this formed the training set. The remain-
ing images comprise the test set. Each image in testing set will
be queried once with respect to the whole testing set. Metrics are
calculated separately for single-camera and cross-camera part in
testing set. Detailed statistics about dataset split can be found in
Table 5 and Table 6.

As aforementioned, the re-ID task consists of both the ‘plain re-
ID’ case and the ‘wild re-ID’ case. The plain case uses manual tiger
bounding-box and pose annotations for the re-ID purpose, while
the wild case aims to evaluate full-pipeline performance based on
automatic tiger detection and pose estimation results. More strictly,
bounding-boxes of both the gallery and query are generated by
detection module. For those query tigers not found by the detectors,
the corresponding query AP is counted as 0.

4 BASELINE METHODS
Here we describe the baseline methods we used for re-ID, espe-
cially including our innovative pose part-based CNN modeling
framework. We use common baselines for object detection and
pose estimation, which we will introduce with the results.

4.1 Classification based Baseline
Large-scale trained classification networks are believed to produce
a rich representation that could be generalized to new tasks, partic-
ularly under the same dataset. Hence, we use a classification based
re-id method as proposed in [12] as a baseline. That model uses an
ImageNet pre-trained ResNet-50 [13] backbone, followed by two
fully-connected (FC) layers with 1024 and 107 neurons respectively
(Figure 7). The input image resolution is 256 × 128 to accommodate
the horizontal aspect ratio of tigers. The output feature length of the
network (n = 107) is set to the number of entities in the training set.
To avoid overfitting, the ResNet-50 backbone parameters are frozen,
and we only train the added classification layers. As classification
tasks usually use a cross entropy (CE) loss, we refer this baseline
as CE.

4.2 Triplet Loss Baseline
Metric learning is also widely used for re-ID, including methods
such as Triplet loss[33], Quadruplet loss[5], or TriHard loss [14].

Triplet loss aims to pull semantically similar points on the data
manifold close in the embedding space and push dissimilar points
farther apart. In this study, we choose TriHard, a triplet loss variant
with batch hard mining, as one of our baseline method. TriHard
loss examines the hardest pairs between positive pairs and negative
pairs in a mini-batch. Formally, the triplet loss is

Ltr i = [ ∥f (xa ) − f (xp ) ∥2 − ∥f (xa ) − f (xn ) ∥2 +m]+, (3)

where xa , xp , xn represents the anchor, positive and negative input
respectively, f (·) represents the network,m represents a margin.
And the TriHard loss is defined as

LTH (X ) =

P∑
i=1

K∑
a=1

[
m + max

p=1...K

f (x ia ) − f (x ip )

2

(4)

− min
j=1...P
n=1...K

j,i

f (x ia ) − f (x
j
n )

2

]
+
,

where X is a mini-batch of PK samples, which has P identities
and K samples from each identity. The max-term represents the
farthest positive pairs and the min-term represents the nearest
negative pairs. For simplicity and fair comparison, we used the
same network architecture as used in the classification baseline as
shown in Figure 7.

4.3 Aligned re-ID Baseline
The above methods use the global representation, which may not
be effective for targets with large pose variations. In the aligned
re-ID method [41], the authors propose a local distance concept to
enhance the feature representation. They use dynamic program-
ming to compute the shortest mapping path between two images,
and define local distance as the length of shortest path. The final
distance between two images is the sum of global distance and this
local distance. In our implementation, we only introduce the metric
loss to combine local distance and global distance, without using
other tricks in the original Aligned Re-ID work [41].

Due to the addition of local distance, the network architecture is
changed as shown in Figure 8. For the last pooling layer, we pool
along each column to obtain local features F (x) = { f1(x), . . . , fW (x)}
for input image x , whereW is the pooling feature map width (= 8
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as shown in Figure 8). We define some intermediate variables as

di, j (x, y) =
exp( ∥fi (x ) − fj (y) ∥2) − 1
exp( ∥fi (x ) − fj (y) ∥2) + 1

i, j ∈ 1, 2, 3 . . . ,W , (5)

Si, j (x, y) =


di, j i = j = 1

Si−1, j + di, j i , 1, j = 1
Si, j−1 + di, j i = 1, j , 1

min(Si−1, j , Si, j−1) + di, j i, j , 1,

(6)

and the local distance as
Dlocal (x1, x2) = SW ,W (x1, x2). (7)

A local distance based loss is defined as
Llocal = [Dlocal (xa, xp ) − Dlocal (xa, xn ) +m]+, (8)

where xa , xp , xn are examined by batch hard mining in TriHard
using global distance. The total loss L = LTH + Llocal is used for
this baseline.

4.4 Pose Part based Model
While the Aligned-ReID demonstrates strong performances for
pedestrian re-ID, the method performs worse than the triplet-loss
based baseline for tiger re-ID. Please see experimental section for de-
tailed comparison. Because tigers have much larger pose variation
due to non-rigid motion, the local feature representations created
by pooling do not provide an invariant representation or precise
modeling of the tiger body. Part-based models have shown great
success for objects that are composed of deformable parts in tasks
such as object detection [10] or fine-grained object recognition [40].
This kind of methods represent local parts by a rectangular patch,
and adopts structured SVM to learn part structures. Recently, pose
keypoint estimation techniques such as OpenPose [4] or AlphaPose
[9] provide even precise body parts and skeletons modeling, which
offers new opportunities for part-based model.

We propose pose part based model (PPbM) for tiger re-ID, which
seamlessly integrates the result of pose keypoint estimation into
deep neural networks. Figure 10 illustrates the network architec-
ture. We characterize a tiger with a 7-part star model, including
trunk, left and right of front legs, hind thighs, and hind shanks. For
each part, we compute Axes Aligned Bounding Box (AABB) accord-
ing to the pose skeleton, as shown in Figure 9. In fact, non-AABB
region representation is more accurate, but less efficient to compute
on feature-map during training phase, so that we have to resort to the
AABB approximation. For each AABB area, we apply the ResNet-50
backbone, and extract the local feature representation with regional
average pooling (RAP) on the res3d feature map. We use the in-
termediate layer res3d instead of the final residual layer because
relative higher feature-map resolution (32× 16 vs 8×4) can provide
more accurate RAP for each part. Nevertheless, most backbone
network layers are shared between the global features and the local
part-based features. Suppose {xi }7i=1 are the RAP representations
for the 7-parts, the local model is also trained with the TriHard loss
defined as below

Lpar t = LTH (g{Fi=1:7[fi (xi )]}), (9)

where fi (·) is local transformation (i.e., FC-layer) for each part,
Fi=1:7[·] is a function to aggregate 7-parts information together,
g{·} is global transformation (i.e., FC-layer), and LTH is TriHard
loss defined in Equation 4. Note the global transformation g{·}
outputs a 107-dimensional feature vector as final representation,
similar to the global representation as in previous two baselines.
There are two variants on aggregating local features from 7-parts:
PPbM-a and PPbM-b. (1) PPbM-a adopts a concatenating function
Fi=1:7[·] to concatenate features from 7-parts together, as shown in
top-right of Figure 10. (2) PPbM-b adopts a soft-attention strategy
to combine 7-parts together:

Fi=1:7[yi ] =
∑7

i=1
αiyi , (10)

where yi is local transformation result for part-i , αi is soft-attention
coefficient obtained similar as Squeeze-excitation networ (SENet)
[18] with shared FC layers as shown in bottom-right of Figure 10.

Both global representation and pose-part based representation
could be trained either with cross-entropy loss or triplet loss. In
our implementation, we defined a combined triplet loss to train the
whole network together as

L = LTH + λLpar t , (11)

where λ is a hyper-parameter to control contribution of global and
part based representation, with default value λ = 1 .
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5 EXPERIMENTS
5.1 Training Settings
For each of the three modules (object detection, pose estimation,
and tiger re-ID), we choose the most widely used methods either
with available open-source code or through re-implementation.
Hyper-parameters for these methods are kept as default or recom-
mended except when explicitly noted. We modified the number of
training epochs according to dataset size. Specifically, we continued
training until the accuracy on the validation set converged. We then
re-trained the model on the entire training set, including the vali-
dation set, using the same number of epochs. Since the bounding
boxes of tiger are usually horizontal major, which is different from
the vertical major case like pedestrian re-ID, we exchange all the
corresponding hyper parameters about width and height.

5.2 Benchmark Results
Tiger Detection. Since the object detector will be deployed on a
battery-powered edge camera, we only tested lightweight object
detectors to benchmark. In particular, MobileNetv1 [17] and Mo-
bileNetv2 [31] are widely used image classification models that
also serve as backbones for object detector models such as Single
Shot Detection (SSD) [26]. This paper benchmarks performance
for both SSD-MobileNet-v1 and SSD-MobileNet-v2 models on the
detection dataset. We used ImageNet pre-trained backbones for the
MobileNet-SSD models. We also benchmarked other efficient object
detectors TinyDSOD [23] and YOLOv3 [29], in which TinyDSOD is
trained from scratch on the training set, while YOLOv3 pre-trains
its backbone DarkNet on ImageNet and then strictly followed the
official training process.

Figure 11 shows the Precision-Recall curve under different IOU
thresholds. Note 300 × 300 is the default resolution, and we expect
that higher resolutions may provide better results. Based on these
results, Tiny-DSOD performs best across all metrics. This may be
due to the fact that training from scratch helps the model avoid
learning bias or domain difference to better fit our ATRW dataset.

Tiger Pose Estimation. For the pose estimation, we adopt OpenPose
[4], AlphaPose [9] and HRNet [34] as they are open-sourced with
state of the art results. Tigers have a very different skeleton def-
inition from humans so we have to modify the original code for
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Figure 11: Precision-Recall curve under different IOU thresholds.
Table 7: Performance of detectors. mAP is averaged among
IOU=0.50:0.05:0.95.

Detector mAP FLOPs parameters PPF
SSD-MobileNetv1 0.446 1.2B 6.8M 0.0133
SSD-MobileNetv2 0.473 1.25B 14.8M 0.0344
Tiny-DSOD 0.511 1.1B 0.95M 0.0736
YOLOv3 0.464 18.7B 41.3M 0.0008

human pose accordingly to fit the skeleton definition of tigers. The
modification of OpenPose code failed, yielding a non-convergent
training procedure. Fortunately, we successively modified the code
of AlphaPose andHRNet, and fine-tuned those pose estimators from
provided checkpoint to accommodate the tiger pose configuration.
Table 8 lists the quantitative results by AlphaPose and HRNet, and
Figure 13 shows the Average-Precision (AP) and Average-Recall
(AR) curve w.r.t different OKS thresholds. This benchmark reveals
that state-of-the-art pose estimator by HRNet can provide fairly
accurate (86.9% for tiger pose versus 77.0% for human pose [34])
pose results for the wild re-ID purpose. The results can be further
improved with more training data.

Table 8: Quantitative result of pose estimators, OKS=0.5.

Method AP(%) AR(%)
OpenPose Fail Fail
AlphaPose 0.574 0.671
HRNet 0.869 0.905
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Figure 12: CMC curves for plain and wild tiger re-ID.
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Figure 13: Curve of AP, AR w.r.t different OKS thresholds.

Plain and Wild Re-ID. We evaluated both wild case and plain case
of tiger re-ID on baseline methods as described in section 4. In
this study, we use ResNet-50 [13] pre-trained on ImageNet as the
backbone network. For the plain case, tigers are normalized to
256 × 128 with manual annotated bounding-box, while for the
wild case, tigers are normalized from automatic bounding-box and
pose keypoints. Note that as the final detection result is not high
enough, we adopt the trick proposed in [45], which utilizes the
top-K (K = 10 at most) scored anchor boxes in the analysis.

Table 9 lists the mAP and top-k (k = 1, 5) results for all the com-
pared baseline methods. For the wild case, we evaluate PPbM with
bounding boxes provided by SSD-MobileNet-v2, and pose provided
by the HRNet. Figure 12 further illustrates the recognition rate vs
rank through the Cumulative Match Curve (CMC). Figure 12 fur-
ther illustrates the recognition rate vs rank through the Cumulative
Match Curve (CMC).
Table 9: Benchmark results of baseline re-ID methods on plain and
wild re-ID tracks.

Setting Method Single-Cam Cross-Cam
mAP top-1 top-5 mAP top-1 top-5

Plain

CE 59.1 78.6 92.7 38.1 69.7 87.8
Triplet loss 71.3 86.6 96.0 47.2 77.6 90.6
Aligned-reID 64.8 81.2 92.4 44.2 73.8 90.5
PPbM-a (ours) 74.1 88.2 96.4 51.7 76.8 91.0
PPbM-b (ours) 72.8 89.4 95.6 47.8 77.1 90.7

Wild

CE 58.8 78.7 92.5 34.5 68.5 86.8
Triplet loss 70.7 86.5 95.1 45.2 77.6 90.5
Aligned-reID 58.7 74.8 90.7 41.0 70.1 87.2
PPbM-a (ours) 71.0 87.4 96.6 50.3 77.2 90.7
PPbM-b (ours) 69.2 88.9 95.3 46.2 76.6 91.2

We have several observations from the results. First, each method
clearly performs much better in the plain case than in the wild case,
especially on the cross-camera scenario. This indicates that there
is still large improving space for detection and pose estimation
modules. Second, PPbM model clearly outperforms other baseline
models on both the plain case and the wild case. This indicates
that precise pose modeling is important to target with large pose
variations like tigers. Third, PPbM-a performs better than PPbM-b
in terms of the mAP metric, but performs worse on the top-1 metric
mostly. And more interestingly, PPbM-b outperforms PPbM-a on
the CMC curve when rank > 5 for the cross-camera case (Figure 12).
We believe that PPbM-b is still powerful and may have potential
improving space. Forth, PPbM-a drops 1.4% in mAP from plain case
to wild case, while the Triplet loss baseline drops more than 2.0%.
This verifies the generalization power for PPbM to some extend.
Fifth, there is large improved space for the cross-camera setting,
which ensures great value of our ATRW dataset for re-ID research.

6 CONCLUSION
We present a new large-scale wildlife re-ID dataset named ATRW,
which contains bounding box, pose keypoint and ID annotations of
Amur tigers from multiple wild zoos. Compared to person or vehi-
cle re-ID datasets, wildlife re-ID has a number of novel challenges
for re-ID, such as varied pose, lighting, and background environ-
ments. In particular, large pose variations due to non-rigid motion
require precise target modeling, which are less studied in current
re-ID datasets and research. Through systematic benchmarking,
we demonstrate that state-of-the-art algorithms are challenged by
this dataset, compared to performance on pedestrian or vehicle
datasets, and introduce a novel pose part-based model (PPbM) that
has significant accuracy gains. The dataset also expands both the
application area and the research challenges for computer vision
techniques like re-ID into the important application domain of
wildlife conservation.
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