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A B S T R A C T

The increasing importance of skeleton information in surveillance big data feature analysis demands significant
storage space. The development of an effective and efficient solution for storage is still a challenging task. In
this paper, we propose a new framework for the lossless compression of skeleton sequences by exploiting
both spatial and temporal prediction and coding redundancies. Firstly, we propose a set of skeleton prediction
modes, namely, spatial differential-based, motion vector-based, relative motion vector-based, and trajectory-
based skeleton prediction mode. These modes can effectively handle both spatial and temporal redundancies
present in the skeleton sequences. Secondly, we further enhance performance by introducing a novel approach
to handle coding redundancy. Our proposed scheme is able to significantly reduce the size of skeleton
data while maintaining exactly the same skeleton quality due to lossless compression approach. Experiments
are conducted on standard surveillance and Posetrack action datasets containing challenging test skeleton
sequences. Our method obviously outperforms the traditional direct coding methods by providing an average
of 73% and 66% bit-savings on the two datasets.

1. Introduction

The skeleton information plays an important role in various human
action recognition (e.g., activity recognition [1,2] and gait recogni-
tion [3]), human counting (count the number of people in the scene),
abnormal event detection (detect abnormal events such as fighting in
the scene), surveillance feature analysis, ROI-based video transcoding
(view human skeleton regions as ROI regions and allocate more bits
during transcoding) and health-care monitoring applications. This in-
formation is very critical for improved performance and accuracy. For
example, the skeleton-based video modeling methods in [4–12] have
intensively used skeleton information for various action recognition
tasks. In order to save computation complexity at the receiver side,
many emerging edge-computing applications tend to extract skeleton
data at the sensor or transmitter side and directly transmit the extracted
skeleton data together with the original video data to the receiver side.
Thus, it becomes a new but non-trivial problem to encode skeleton data
efficiently.

Basically, skeleton sequences are represented by a sequence of
skeletons, as shown in Figs. 1(a) and 1(c). Each skeleton typically
consists of 15 body joints. Nowadays, with the significant advancement
and development in the image and video compression techniques such
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as H.264 [13–16] and HEVC [17–19], the image, and video data can be
greatly reduced. Comparatively, the compression problem of semantic
data in videos, such as skeleton sequence data studied in this paper, is
mostly neglected. In practice, since many videos include a large number
of people and have rich skeleton information, if we only compress
video data while not compressing this rich skeleton information, it
will occupy a non-negligible large portion in the final encoded bit-
stream. For example, in Fig. 1, we have two skeleton sequences, each
containing 4 and 35 people respectively. If we only compress the video
data while not compressing these skeleton sequences, the skeleton data
will take about 10% and 50% in the final bit-stream respectively (left
bins in Figs. 1(b) and 1(d)). However, if we compress the skeleton
information in a lossless manner by our approach, the bit-requirement
can be successfully reduced by about 80% (right bins in Figs. 1(b) and
1(d)). Therefore, it is of utmost importance to develop novel encoding
methods to handle the huge amount of skeleton data,

To address these problems, we propose a novel lossless compression
scheme for video skeleton sequences, which is able to efficiently com-
press skeleton data while maintaining exactly the same skeleton quality
as the original ones at the decoder side.

Intuitively, a skeleton sequence contains a considerable amount of
spatial, temporal, and coding redundancies. For example, the relative
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Fig. 1. (a) Illustration of typical Posetrack skeleton sequence, (b) bit-rate for video and skeleton content in Posetrack, (c) typical surveillance skeleton sequence, (d) bit-rate for
video and skeleton content in surveillance. The skeleton sequences are compressed by the traditional fixed-length direct coding approach (left bins) and our proposed skeleton
coding approach (right bins).

position between a skeleton’s body joints offers spatial redundancy. A
person’s skeletons between consecutive frames offer significant simi-
larities and result in temporal redundancy. Moreover, the prediction
residuals tend to repeat and hence possess the coding redundancy.
In some cases where residuals do not repeat, they mostly tend to be
closer to the previously occurred residual values. If we can properly
model and exploit these redundancies, the size of skeleton data can be
obviously reduced.

Although the traditional video coding methods also exploit redun-
dancies in video data, the redundancy models and algorithms in video
coding cannot be directly applied to skeleton sequences due to the large
characteristic difference between the two data types. For example, in
video coding, the coding blocks are ordered while the context of each
block has an arbitrary manner. By contrast, the skeletons are located at
random positions, but the body points in a skeleton have constrained
structure. Moreover, skeleton data also include some additional prob-
lems such as the movement of each body joint in different directions,
occlusion of some of the body joints and the complex movements of
skeleton sequences. Therefore, new approaches need to be developed
to model and address the redundancy of skeleton data. In this paper,
we focus on exploiting and removing redundancies in two parts: (1)
spatial and temporal prediction models and (2) entropy coding model.
The contributions of our work can be summarized as:

1. We propose a novel framework which can losslessly compress
the skeleton sequences by exploiting the spatial, temporal, and
coding redundancies. To the best of our knowledge, this is the
first attempt to address the problem of compressing skeleton
sequence data.

2. Under the framework, we introduce a set of prediction modes
for skeleton prediction to exploit the spatial and temporal re-
dundancies inherent in the skeleton sequences. Furthermore,
a multimodal method that dynamically integrates these modes
is presented to achieve robust coding performance on skeleton
sequences.

3. We also introduce mode-based entropy coding mechanism to
further exploit residual coding redundancy. To this end, we
developed two different entropy-coding methods based on resid-
ual statistics. Lastly, we integrate both prediction modes and
mode-based entropy coding scheme for lossless compression of
skeleton sequences.

It is worth mentioning that our method can be applied to any
skeleton sequences as long as we define a metric to determine the
center skeleton point and the reference relation among skeleton points.
For example, our method can be applied to face key point sequences,
animal skeleton sequences, or vehicle key point sequences.

The rest of the paper is organized as follows. Section 2 discusses
related work and our framework. Section 3 provides the skeleton
representation. The detailed description of proposed prediction modes
and our entropy coding method is presented in Sections 4 and 5,
respectively. Section 6 presents experimental settings and performance
results for the proposed study. Section 7 concludes the paper.

2. Related work and our framework

Traditional image and video coding methods have extensively ex-
ploited the spatial, temporal, and spectral redundancies [20–26]. The
image compression schemes employed various intra predictors to ex-
ploit the inherent spatial redundancies [27]. Whereas, the temporal
predictive block matching scheme for motion estimation is widely
used in the video compression schemes [28]. These techniques use
intra-prediction for spatial redundancy [29] and inter-prediction for
temporal redundancy [22,30,31]. Moreover, arithmetic coding tech-
niques are widely used to handle coding redundancy in image and
video compression methods [32–34]. However, since skeleton data has
totally different characteristics from video data, the redundancy models
and coding methods cannot be directly applied to the compression of
skeleton sequences.

Besides video coding methods, there are some limited methods
designed to encode some specific semantic data type in images or
videos, such as object boundary [35,36] and shape [37,38]. However,
since the targeted data types are different from the skeleton data in
our approach, they cannot be directly applied for handling skeleton
sequences [39–41]. Motion capture (MoCap) data were frequently used
for movement synthesis applications in the literature [42]. The mocap
data are obtained by recording the temporal trajectories of position
sensors, where the temporal trajectory of each position is represented
in marker positions and joint rotations. There are many effective com-
pression schemes to accommodate a larger mocap data collection for
higher quality motion synthesis, including compression methods based
on transforms like principal component analysis (PCA) [43,44], dis-
crete wavelet transform (DWT) [45,46] and discrete cosine transform
(DCT) [39], hybrid methods [47,48], motion-based prediction and
post-processing [49,50] and resource-constrained applications [51].
Although the MoCap data compression schemes are well established
for lossy coding, their performance would be degraded for lossless
coding due to their design and framework. Moreover, MoCap data
compression methods commonly suffer from substantial computational
complexity, as automatic motion clustering is difficult and computa-
tionally demanding. For example, PCA based clustering demands a
significant amount of similar mocap data for training. On the contrary,
this paper develops a novel adaptive lossless compression framework
for skeleton sequences. The well-designed framework exploits specific
spatial and temporal motion characteristics of the skeleton data to
improve the efficiency for lossless compression. The most related work
to ours is the method to compress region-of-interest (RoI) location
sequences [52]. However, since RoI location sequences are much sim-
pler than the skeleton sequences, only part of the redundancies are
considered in [52]. Thus, it will still have unsatisfactory performances
when directly applied to compress skeleton data.

Framework of Proposed Coding Scheme. The overview of pro-
posed skeleton coding method is shown in Fig. 2, where each individual
frame of the skeleton sequence is processed sequentially. For each
skeleton in a frame, it mainly contains two types of information: (1)
body joint information which indicates the location of each joint, and
(2) skeleton side information such as ID and occlusion flag infor-
mation. In our work, we independently encode this information and
concatenate them together to yield the final output bit-stream.
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Fig. 2. Overview of proposed skeleton coding method.

Since the skeleton body joint contains the bulk of the proportion
in final bit-stream, our work is mainly focused on the compression of
this information. To this end, each body joint is first fed into the skele-
ton prediction module to reduce its spatial and temporal redundancy.
Specifically, four prediction modes will be checked in this module and
the best mode will be used to perform encoding. In order to avoid
transmitting the bits of coding prediction modes, we further propose
an adaptive multimodal coding scheme which uses the previously
encoded skeletons in the previous frames to automatically decide the
prediction mode of the body joint in the current frame. After the
skeleton prediction module, the residual data of the skeleton will go
through the skeleton entropy coding module to further reduce the coding
redundancies through the adaptive center selection and dynamic indexing
mechanisms. At the same time, the skeleton side information will
also be encoded by the skeleton ID encoding and occlusion information
encoding mechanisms, yielding the final compressed bit-stream.

3. Representation

In this section, we describe the representation of the skeleton se-
quences. The study on human skeleton sequence is generally associated
with the study of movements of the fixed number of body joints present
in the skeleton.

Human skeleton. We represent the 2D human skeleton as a set of
𝑁𝐽 joints.

𝐽 =
{

𝑗1, 𝑗2, 𝑗3,… .., 𝑗𝑁𝐽

}

(1)

where 𝑗𝑖 = (𝑥𝑖, 𝑦𝑖) represents the horizontal and vertical coordinates
of the body joint 𝑗𝑖. In our study, we consider total fifteen ordered
body joints (𝑁𝐽 = 15); namely: neck, nose, head-top, left-shoulder,
left-elbow, left-wrist, right-shoulder, right-elbow, right-wrist, left-hip,
left-knee, left-ankle, right-hip, right-knee, and right-ankle. The illustra-
tion of typical skeleton body joints is shown in Fig. 2. Note that our
method is general. Besides this skeleton structure, our method can also
be applied to the three-dimensional (3D) skeletons, bounding boxes,
circular shapes, and arbitrary shapes like animal skeletons.

Occlusion flag. It should be noted that sometimes the skeleton
might go under occlusion resulting in the reduced body joint informa-
tion. The illustration of the occluded person is shown in Fig. 2. It can be
observed that in the last frame of video skeleton data, some of the body
joints of the rightmost two skeletons are occluded. The occlusion may
happen due to the movement of different persons or objects in the video

frame or when the person is moving outside or inside the camera frame.
For better analysis, the occlusion information of the body joints in the
skeleton is also stored. Traditionally, a one-bit occlusion flag is used
to represent if the body joint is occluded or not. The typical occlusion
information contains (𝑁𝐽 = 15) bits such that:

𝑂 =
{

𝑜1𝑜2𝑜3.....𝑜𝑁𝐽

}

(2)

where 𝑜𝑖 = 1 represents the body joint 𝑗𝑖 is occluded, whereas 𝑜𝑖 = 0
represents the body joint 𝑗𝑖 is not occluded.

Skeleton ID. Now, the skeleton side information associated with 𝑠th
skeleton in the 𝑡th video frame can be represented as:

𝑆𝑡
𝑠 =

{

𝑆𝐼𝐷𝑡
𝑠, 𝑂

𝑡
𝑠, 𝐽

𝑡
𝑠
}

(3)

where 𝑆𝐼𝐷𝑡
𝑠 is the skeleton ID of the 𝑠th skeleton in the 𝑡th frame.

Whereas, 𝑂𝑡
𝑠 and 𝐽 𝑡

𝑠 represents the corresponding occlusion information
and body joint coordinate information, respectively. The skeleton ID is
assigned to each person based on its first appearance in the video. It
should be noted that a unique skeleton ID is assigned to each person
over the entire length of the video. That means a person reappearing
after few frames would not be assigned new ID, rather, the previous ID
is retained for further processing.

Complete Skeleton Information. Hence, the complete skeleton
information in a single video frame can be represented as:

𝐹 𝑡 =
{

𝑁 𝑡
𝑆 , 𝑆

𝑡
1, 𝑆

𝑡
2, 𝑆

𝑡
3,… .., 𝑆𝑡

𝑁 𝑡
𝑆

}

(4)

where 𝑁 𝑡
𝑆 represents the number of skeletons present in the 𝑡th frame.

An illustration shown in Fig. 3 consists of three skeletons and the
corresponding skeleton side information includes number of skeletons,
skeleton ID, and occlusion flag bits information. It can be observed that
all the body joints are visible or not-occluded for the first skeleton,
whereas few body joints are occluded for remaining two skeletons. This
information needs to be transmitted as occlusion flag bits. The overall
skeleton data structure is also highlighted in Fig. 3.

It should be noted that the framework of our skeleton compression
approach is general. In practice, besides the representation in Eq. (4),
our approach can also flexibly handle other data formats, such as 3D
skeleton sequences [53–55] or non-skeleton 3D bounding boxes [56].

4. Skeleton prediction modes

To exploit the redundancies present in the video skeleton sequence,
novel skeleton prediction modes are introduced in this paper. To exploit
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Fig. 3. Example of skeleton representation in a frame.

Fig. 4. Illustration of spatial differential skeleton coding method. (The direction arrow
indicates the parent–child relationship).

the spatial and temporal correlation between skeletons we propose
four prediction modes and then provide our adaptive mode switching
scheme.

4.1. Spatial differential coding

To exploit the spatial correlations between skeleton body joints,
we have developed a spatial differential coding scheme. To this end,
the spatial difference between adjacent body joints is computed. The
illustration of spatial differential coding is shown in Fig. 4. The arrow
direction in Fig. 4 indicates parent–child relation between body joints.
The spatial difference for each parent–child relation in the skeleton is
computed as:

𝐷𝑖𝑓𝑓𝑗𝑖 = 𝑗𝑖 − 𝑗𝑝𝑖 (5)

where 𝑗𝑝𝑖 and 𝑗𝑖 form a parent–child relation for spatial encoding. The
spatial parent–child relation for body joint in our study is: {0-𝑗1, 𝑗1-𝑗2,
𝑗2-𝑗3, 𝑗1-𝑗4, 𝑗4-𝑗5, 𝑗5-𝑗6, 𝑗1-𝑗7, 𝑗7-𝑗8, 𝑗8-𝑗9, 𝑗1-𝑗10, 𝑗10-𝑗11, 𝑗11-𝑗12, 𝑗10-𝑗13,
𝑗13-𝑗14, 𝑗14-𝑗15}. It should be noted that body joint 𝑗1 do not have any
spatial parent, hence it is directly encoded. For better efficiency, the
body joints are encoded in numeric order.

4.2. MV-based prediction mode

The assumption that skeletons of the same person in the consecutive
frames are highly correlated. This has motivated us to exploit temporal

redundancy by computing the motion vector (MV) between skeleton
in the consecutive frames. The straightforward way to compute MV
could be to consider average motion of all body joint and transmit the
obtained MV. However, this process suffers from two problems: (1) the
average MV could be non-integer value and may require more number
of bits for encoding MV, and (2) the average MV could not correctly
indicate person motion since the large motion in any of the body parts
for a stationary human would also raise motion flag. To counter this,
we select human neck (joint 𝑗1) as skeleton center. This would not only
greatly improve the MV accuracy, but also limit number of symbols to
be encoded. With this understanding, the MV-based prediction for 𝑠th
skeleton in the 𝑡th frame is carried out by first computing MV using:

𝑀𝑉 (𝑆𝑡
𝑠) = 𝑗𝑆

𝑡
𝑠

1 − 𝑗𝑆
𝑡−1
𝑠

1 =
(

𝑥𝑆
𝑡
𝑠

1 − 𝑥𝑆
𝑡−1
𝑠

1 , 𝑦𝑆
𝑡
𝑠

1 − 𝑦𝑆
𝑡−1
𝑠

1

)

(6)

where (𝑡 − 1)th frame is considered as reference frame. An illustration
for typical MV-based skeleton prediction mode is shown in Fig. 5. Later,
both the skeletons are aligned to each-other using the obtained MV as
shown in Fig. 5(c). The MV-based skeleton prediction (SP) is obtained
as:

𝑆𝑃 𝑆𝑡
𝑠

𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 = 𝑗𝑆
𝑡
𝑠

𝑖 +𝑀𝑉 (𝑆𝑡
𝑠), 𝑖 = 2, 3,… , 𝑁𝐽 (7)

Finally, the skeleton prediction error (SPE) is computed as:

𝑆𝑃𝐸𝑆𝑡
𝑠

𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 = 𝑆𝑡
𝑠 − 𝑆𝑃 𝑆𝑡

𝑠
𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 (8)

4.3. Relative MV-based prediction mode

Although the MV-based skeleton prediction provided significant
coding gain over direct coding method (i.e., coding each body joint
with fixed length bits), we can still exploit the spatiotemporal relation
between skeletons. The anatomy of the human skeleton provides us
additional knowledge about skeleton motion. It is observed that the
motion in child body joint is proportional to its parent body joint.
It means that there are high chances that the child will move in the
same direction and sometimes by the same amount as the parent joint.
To exploit these characteristics, we present a relative motion vector
(RMV)-based skeleton prediction method. The skeleton prediction er-
ror obtained at parent body joint is used to fine-tune the skeleton
prediction for child body joint. The RMV-based skeleton prediction is
obtained as:

𝑆𝑃 𝑆𝑡
𝑠

𝑅𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 = 𝑆𝑃 𝑆𝑡
𝑠

𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 (𝑗𝑖) + 𝑆𝑃𝐸𝑆𝑡
𝑠

𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 (𝑗
𝑝
𝑖 ) (9)

where 𝑗𝑝𝑖 and 𝑗𝑖 form a spatial parent–child relation. An illustration for
typical RMV-based skeleton prediction mode is shown in Fig. 6. Finally,
the skeleton prediction error (SPE) is computed as:

𝑆𝑃𝐸𝑆𝑡
𝑠

𝑅𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 = 𝑆𝑡
𝑠 − 𝑆𝑃 𝑆𝑡

𝑠
𝑅𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 (10)

4.4. Trajectory-based prediction mode

The motion vector based skeleton prediction methods are optimal
when we only deal with translation motions. However, the human
skeleton is not rigid and the body part can move differently. This be-
havioral change demands method to incorporate these motion changes
for more accurate skeleton prediction. To this end, we use the trajectory
prediction method based on previous skeleton frames. We consider the
human skeletons with complex motions in our study, and hence we use
only two previous frames for better trajectory prediction. It means that
for 𝑆𝑡

𝑠 skeleton prediction in the 𝑡th frame, the corresponding skeletons
𝑆𝑡−1
𝑠 and 𝑆𝑡−2

𝑠 in (𝑡 − 1)th and (𝑡 − 2)th frame are used such that:

𝑆𝑃 𝑆𝑡
𝑠

𝑇−𝑏𝑎𝑠𝑒𝑑 = 2 × 𝑆𝑡−1
𝑠 − 𝑆𝑡−2

𝑠 (11)

Every body joint is predicted individually using the trajectory pre-
diction method. An illustration for typical trajectory-based skeleton
prediction mode is shown in Fig. 7. Note that in this paper, we only use
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Fig. 5. Illustration of MV-based skeleton coding method: (a) skeletons in the (𝑡 − 1)th reference frame and current (𝑡th) frame, (b) demonstration of MV computation, and (c)
demonstration of skeleton alignment and MV-based skeleton prediction. (Best viewed in color).

Fig. 6. Illustration of Relative MV (RMV)-based skeleton coding method: (a) MV-based
skeleton prediction method, (b) RMV-based skeleton encoding for body joint 12 (right-
ankle), the comparison of prediction MV-based and RMV-based prediction error is
highlighted in circle. (Best viewed in color).

two previous frames to have a simple but effective trajectory prediction.
In practice, we can also use more sophisticated trajectory prediction
methods [57–60] to obtain more accurate prediction results. For ex-
ample, we can apply bi-direction trajectory prediction with adaptive
importance to each frame, thus can work in synchronization with the
state-of-the-art bi-directional video coding schemes [61–63].

Finally the skeleton prediction error (SPE) is computed as:

𝑆𝑃𝐸𝑆𝑡
𝑠

𝑇−𝑏𝑎𝑠𝑒𝑑 = 𝑆𝑡
𝑠 − 𝑆𝑃 𝑆𝑡

𝑠
𝑇−𝑏𝑎𝑠𝑒𝑑 (12)

4.5. Adaptive multimodal coding scheme

The proposed four prediction modes provide varying performance
due to their inherent prediction structures. The spatial difference-based
method performs well for the skeletons where no temporal correlation
exists. On the other hand, the remaining three modes could exploit
temporal correlations. The MV-based method could perform well for
rigid and small motion cases, whereas RMV-based method performs
better at child body joint movements. The trajectory prediction could
be useful in the cases where skeleton size is large and different body
parts are performing the different or complex motion. Thus, the
prediction model should be chosen to provide lower prediction error for
better compression. The use of most suitable prediction mode is desired
for optimizing skeleton coding efficiency. The simplest switching way
could be to use the best mode at any given body joint for best skeleton
body joint coding efficiency. However, it should be noted that we also
need to encode the selected mode information as an overhead. This
process involves additional two-bit overhead for encoding, and most of
the times it will hamper the coding efficiency.

To avoid this overhead, we propose an adaptive multimodal skele-
ton coding method to dynamically switch the prediction modes based
on the already encoded causal skeleton data. To this end, we use the
prediction mode information of the already encoded causal skeleton
data in the current and reference frames to estimate the best prediction

mode of the current body joint. It should be explicitly noted that our
proposed mode estimation is highly accurate, although the estimated
prediction mode might be different from the actual prediction mode.
The mode estimation for the current body joint is computed based on
prediction mode information of its spatial and temporal parents. In
this way, we can skip the bits overhead bits for prediction mode, thus
enables each body joint to flexibly choose its own prediction mode.

More specifically, we use the bit-information for already encoded
spatial parent (𝑗𝑝𝑖 ) and collocated temporal body joints of previous
frames to estimate the bit-requirement for current body joint in the
selected prediction mode.

�̂�𝑡𝑚𝑜𝑑𝑒(𝑗𝑖) = 𝑤𝑗𝑝𝑖
× 𝑏𝑡𝑚𝑜𝑑𝑒(𝑗

𝑝
𝑖 ) +

𝑁𝑓
∑

𝑓=1
𝑤𝑓 × 𝑏𝑡−𝑓𝑚𝑜𝑑𝑒(𝑗𝑖) (13)

where 𝑤𝑗𝑝𝑖
is weight corresponding to the 𝑗𝑖’s parent body joint 𝑗𝑝𝑖

(which has already been coded before 𝑗𝑖), 𝑤𝑓 is the weight correspond-
ing to the (𝑡 − 𝑓 )th reference frame, and 𝑁𝑓 is the number temporal
frames used for bit-requirement estimation. The weights are chosen
based on the spatial or temporal distance between current body joint
and reference body joint. As expected, it was observed that the effect
of reference body joint on current body joint reduces, when their
distance increases. Thus, we used proportional weight selection criteria
to parameterize this idea in our experiments. For example, when the
weight for spatial parent is set to 1, the weights for collocated temporal
body joints of previous frames are chosen as 1∕𝑓 . Note that the weights
are further normalized to unit sum. However, different combinations
of optimal weights could be found with additional computational com-
plexity. The bit-requirement for body joint 𝑗𝑖 is estimated using each
of the prediction modes, resulting into three different estimates. The
prediction mode with lowest estimated bits is chosen as estimated
prediction mode for current body joint 𝑗𝑖. The mode selection is done
as:

min
(

�̂�𝑡𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 (𝑗𝑖), �̂�
𝑡
𝑅𝑀𝑉 −𝑏𝑎𝑠𝑒𝑑 (𝑗𝑖), �̂�

𝑡
𝑇−𝑏𝑎𝑠𝑒𝑑 (𝑗𝑖)

)

(14)

The selected mode is used to predict the location of the current body
joint. The typical illustration of mode selection is shown in Fig. 8. It
should be noted that the mode selection uses only the previous two
reference frames for illustration purpose only, whereas, in reality, the
mode selection can use any number of reference frames.

Overall, the adaptive multimodal coding method follows the below
rules:

1. The spatial differential coding method is used for the newly
appeared skeleton or skeleton body joint in the current frame.
Besides, the first frame in the sequence also uses spatial dif-
ferential coding method. For example, as shown in Fig. 8, the
left-ankle body joint 𝑗15 in the skeleton uses spatial mode since
the left-ankle body joint has appeared for the first time in the
current frame.

5
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Fig. 7. Illustration of Trajectory-based skeleton coding method: (a) skeletons in the (𝑡 − 2)th, (𝑡 − 1)th reference frames, and current (𝑡th) frame, (b) trajectory difference between
two reference frames highlighted in red arrow, and (c) skeleton trajectory prediction highlighted in red arrow and skeleton prediction error highlighted by yellow arrow. (Best
viewed in color).

Fig. 8. Adaptive prediction mode selection based on the causal skeleton body joint mode information. (Best viewed in color).

Fig. 9. (a) Illustration of prediction residual computation for the current frame and the reference frame, (b) Illustration of difference vector computation. (Best viewed in color).

2. One of the MV-based and RMV-based skeleton coding method is
chosen if skeleton in the current (𝑡th) frame exists in the (𝑡−1)th
frame but does not exists in the (𝑡 − 2)th frame. For example,
as shown in Fig. 8, the right-ankle body joint 𝑗12 in the skeleton
uses one of the MV-based and RMV-based modes since the right-
ankle body joint exists only in the current and adjacent previous
frame.

3. One of the MV-based, RMV-based, and trajectory-based skeleton
coding method is chosen if skeleton in the current (𝑡th) frame
exists in the both (𝑡−1)th frame and (𝑡−2)th frame. For example,
as shown in Fig. 8, all the body joints except left-ankle and right-
ankle can use any one of the existing modes since all these joints
exist in the current and both previous frames.

5. Entropy coding

The adaptive prediction mode mechanism for skeleton prediction
has considerably exploited the spatiotemporal correlations existing in
the skeleton sequences. However, the skeleton prediction residuals are
observed to follow some peculiar statistics. We can use these special
statistics that still present in the prediction residuals for better entropy
coding. In traditional entropy coding methods, the prediction residuals
are directly encoded using variable-length encoding techniques. How-
ever, it is empirically observed that the prediction residuals obtained
after skeleton prediction still contain notable redundancies. Conse-
quently, our entropy coding method exploited these redundancies to
further improve compression efficiency, where the resulting residuals

6
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Fig. 10. Illustration of adaptive center selection based on the length of current error
vector and difference error vector: (a) (𝑟𝑥 , 𝑟𝑦) is considered as adaptive center, and (b)
(0, 0) is considered as adaptive center. The adaptive center is shown in yellow circle.

are encoded using specifically designed variable-length encoding tech-
niques. Hence, our approach is expected to provide better performance
than the traditional entropy coding methods.

To this end, we propose two methods: (1) adaptive center selection,
and (2) dynamic indexing.

5.1. Adaptive center selection (ACS)

We first observe that the prediction residuals in the consecutive
frames tend to be similar. To exploit this behavior, we consider the
prediction residual obtained in the reference frame as a reference
error as shown in Fig. 9. Then the difference vector between current
prediction residual is computed such that:

(𝑑𝑥, 𝑑𝑦) = (𝑐𝑥, 𝑐𝑦) − (𝑟𝑥, 𝑟𝑦) (15)

where (𝑐𝑥, 𝑐𝑦), (𝑟𝑥, 𝑟𝑦), and (𝑑𝑥, 𝑑𝑦) represents the current prediction
residual, reference prediction residual, and the difference vector, re-
spectively. In cases where collocated prediction errors tend to be sim-
ilar, the difference vector will tend to be close to zero. Hence, this
scheme has the ability to encode larger error values into a very small
number of bits due to reference center selection.

However, this mechanism might be counterproductive in some cases
where our assumption on the similarity between collocated residuals
fail. In Fig. 10(b) the difference vector has larger magnitude than the
current residual vector. This eventually will result in incorrect center
selection. To address this problem, we propose to select the encoding
center among (1) traditional center (0, 0), and (2) reference frame
prediction residual (𝑟𝑥, 𝑟𝑦). The selection is based on a number of bits re-
quired for encoding (𝑑𝑥, 𝑑𝑦) and (𝑟𝑥, 𝑟𝑦). The one with lower magnitude
is considered for encoding. However, this mechanism comes at the cost
of one-bit overhead. In order to reduce the bits of coding the overhead,
we employ block-based encoding where all body joints for the same
skeleton-part is represented by one overhead bit. This mechanism can
properly balance the overhead and coding performance.

5.2. Dynamic indexing (DI)

We also observe that the prediction residuals in the consecutive
frames of the typical skeleton sequences tend to be similar. This means
the prediction residuals exhibit considerable repetitiveness. To exploit
this behavior, we propose to use a frequency lookup table of causal pre-
diction residuals. The terms residual and symbol are interchangeably
used in the further discussion. Like variable length encoding, the more
frequently occurring symbols would be assigned a lower number of bits
as compared to the rarely occurring symbols. This idea can properly
reduce the bit requirements.

To this end, we create a new frequency lookup table for each
skeleton. Initially, the frequency table is empty and it is updated with
obtained prediction residuals. The frequency lookup table can be seen
as a list of expected residuals with a different number of previous occur-
rences. The illustration of lookup table creation and dynamic indexing
is shown in Fig. 11. The current prediction residuals are matched to the
symbols present in the lookup table. Then, for encoding current body
joint in a particular skeleton, we use the frequency table corresponding
to the particular skeleton and check whether the current prediction
residual is present in the frequency lookup table. If all the prediction
residuals of a particular skeleton exist in the frequency lookup table,
then the indexes corresponding to the respective residual are encoded
in the bit-stream. Otherwise, the residuals are directly encoded by a
variable length coding method [64,65]. Similar to the Adaptive Center
Selection scheme, a flag is transmitted for each skeleton to indicate
whether the Dynamic Indexing scheme is applied or not.

Fig. 11. (a) Illustration of prediction residual in reference frames, (b) symbol frequency lookup table creation based on prediction residual in reference frames, (c) illustration of
prediction residual in current frame, (d) mapping current prediction residual to the lookup table, and (d) generating index stream for current frame prediction residual symbols.
A more frequent residual value is assigned with a smaller index number. (Best viewed in color).
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Fig. 12. Entropy switching scheme.

The switching mechanism for this method is shown in Fig. 12.
There are four possible switching combinations of the proposed entropy
coding scheme. First, both the ACS and DI can be skipped and the
prediction residual could be directly encoded using a variable length
coding method. Second, only ACS is employed, third, only DI is em-
ployed, and fourth, both ACS and DI schemes are employed in tandem
to exploit the coding redundancies. We use exponential Golomb codes
(EGC) [65] to encode the final residual information and concatenate
the obtained EGC code in the output bit-stream.

5.3. Skeleton side information coding

In addition to skeleton body joint data, the skeleton sequence
in a frame contains three types of side information: (1) number of
skeletons in the frame (𝑁 𝑡

𝑆 ), (2) skeleton ID information (𝑆𝐼𝐷𝑡
𝑠), and

(3) occlusion information (𝑂𝑡
𝑠) for each skeleton in the 𝑡th frame. This

side information may affect overall coding performance if not properly
encoded. We address all three skeleton side information independently
for better performance.

5.3.1. Number of skeletons in the frame
The number of skeletons in the frame usually remain constant. 𝑁 𝑡

𝑆
changes only when some of the skeletons appear or disappear from
the frame. Since this value changes slowly and smoothly, we encode
the difference between the values corresponding to the consecutive
frames. The difference is mostly zero and requires very limited bits for
representation.

5.3.2. Skeleton ID
The skeleton ID’s are assigned in arithmetic sequence. This is helpful

in computing difference between two skeleton IDs. For better coding
performance we always encode IDs in ascending order. The skeleton
ID difference is computed as:

𝑑𝑖𝑓𝑓𝑆𝐼𝐷𝑡
𝑠
= 𝑆𝐼𝐷𝑡

𝑠 − (𝑆𝐼𝐷𝑡
𝑠−1 + 1) (16)

For ordered continuous skeleton ID sequence the difference is always
zero, and hence need very limited bits for skeleton ID encoding.

5.3.3. Occlusion flag
The occlusion flag information for each skeleton indicates the visi-

bility of particular body joints in the skeleton. The occlusion can occur
in two cases: (1) when a body joint in the skeleton go behind another
skeleton or object in the field of view, and (2) when skeletons are
located at frame boundary and move outside or inside the field of
view of the camera. These cases do occur on complex motion video
skeleton sequence and sparingly occur in slow motion surveillance
sequences. To this end, we perform temporal block-coding on the
occlusion information belonging to the skeleton of the same person
in the consecutive frames. We represent a one-bit flag to indicate
if the occlusion information in the consecutive frames is exactly the
same or not. This simple block-coding method resulted in a reduc-
tion of fourteen (93.33%) occlusion bits when occlusion information
matches temporally. On the other hand, we have one (6.67%) extra
bits, when occlusion information does not match temporally. On aver-
age, the block coding has provided significant improvement in coding
performance.

6. Experiments

In this section, we first provide a description of datasets, exper-
imental parameter settings and various evaluation metrics used for
comparative analysis. Then, we demonstrate the effectiveness of the
proposed approach against traditional coding approaches and finally
conduct an ablation study on different components of the proposed
method.

6.1. Datasets

We evaluate the proposed method on two datasets: (1) Posetrack
dataset [66], and (2) Surveillance dataset created by ourselves. The
details of the test skeleton sequences used in our study are given in
Table 1.

6.1.1. Posetrack dataset
The Posetrack dataset [66] contains large number of test sequences.

To demonstrate the effectiveness of our method, we choose 15 chal-
lenging test skeleton sequences from Posetrack dataset. The Posetrack
sequences contain fast and complex motion cases with different occlu-
sion scenarios. The skeleton size tends to vary from large to very large
in the given frame. Some example skeleton sequences are shown in
Figs. 13(a) and 13(b).

6.1.2. Surveillance dataset
The surveillance sequences mostly contain a large number of skele-

tons in the video sequence. To demonstrate the effectiveness of our
method on these sequences, we use 15 surveillance test skeleton se-
quences. The surveillance sequences are collected and labeled by our-
selves. In the surveillance sequences, the skeleton sizes tend to com-
paratively small compared to the frame size. Some example skeleton
sequences are shown in Figs. 13(c) and 13(d).

6.2. Experimental settings

In this work, the MV-based and RMV-based prediction modes use
only one previous frame as the reference, whereas for T-based predic-
tion mode uses previous two frames as the reference. In the multimodal
prediction mode switching scheme, the previous 𝑁𝑓 frames are used for
mode selection as illustrated in Eq. (13). We have empirically found
that 𝑁𝑓 = 5 provided better results. In a dynamic indexing entropy
coding scheme, the symbols in the current frame tend to be similar
to the symbols of the nearby frames. Moreover, the dictionary size
could increase dramatically with the increase in the number of previous
frames. Hence, we have empirically found that using only 5 previous
frames for dictionary generation would suffice.

6.3. Evaluation metrics

Since our method performs skeleton data compression in a lossless
manner, we can recover exactly the same skeleton sequence as the
original input. Therefore, we only need to evaluate the bit rate perfor-
mances while no need to evaluate the quality of the decoded skeleton
sequences.

Here, we illustrate two bit-rate metrics: (1) bits required per skele-
ton joint, and (2) bit-savings compared with a direct coding method:

The average bits per skeleton joint is the ratio between total number
of bits required to encode all skeleton information and the total number
of skeleton joints present in a frame. It can be computed as:

𝑏𝑡𝑗𝑜int = 𝑏𝑡𝑡𝑜𝑡𝑎𝑙

/𝑁 𝑡
𝑆

∑

𝑠=1

𝑁𝐽
∑

𝑖=1
(1 − 𝑂𝑡

𝑠,𝑖) (17)

where 𝑂𝑡
𝑠,𝑖 is the occlusion flag corresponding to the 𝑖th body joint of

the 𝑠th skeleton in the 𝑡th frame.
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Table 1
Test skeleton sequences.

Sequence Frame Total Skeletons Occlusion Description DatasetName resolution frames per frame (Yes/No)

Indoor 1920 × 1080 31 11–11 Y Indoor dance practice

Posetrack [66]

Ice stick 1280 × 720 31 11–12 Y Ice stick ball
Karate 1280 × 720 31 5–6 Y Karate training
Workers 1280 × 720 31 7–7 Y Workers repairing road
Street 1920 × 1080 31 6–8 Y Street view from camera
Action 1280 × 720 31 5–6 Y Medium motion action sequence
Basketball 1280 × 720 31 10–10 Y Basketball match
Hurdle-race 1920 × 1080 31 7–9 Y Persons running hurdle-race
Football 1440 × 1080 31 5–7 Y Boys playing football
Football2 1440 × 1080 31 8–10 Y Persons playing football (side-view)
Rugby 1280 × 720 31 3–6 Y Persons playing rugby
Musical 1280 × 720 31 8–9 Y Musical dance performance
Womens 1280 × 720 31 4–4 Y Womens dancing
Ice skating 1280 × 720 31 6–9 Y People enjoying ice skating
Volleyball 640 × 480 31 7–10 Y Volleyball match

Hotel 1920 × 1080 31 17–21 Y People eating at hotel

Surveillance

Childrens 1280 × 720 31 12–13 Y Childrens running (side-view)
Beach 1280 × 720 31 5–6 Y Beach running
Stadium 1280 × 720 31 15–18 Y People entering stadium
Police 654 × 480 31 4–5 Y Police captures criminal
Baby 1920 × 1080 31 12–13 Y Parents enjoying babysitting
Workshop 1280 × 720 31 5–6 Y Persons working in workshop
Restaurant 1920 × 1080 31 13–18 Y People eating in restaurant
Piano 1280 × 720 31 9–12 Y Childrens playing piano
Footpath 1008 × 672 50 8–10 N People walking on footpath (top-view)
Road 800 × 608 46 18–22 N People walking on the road
Luggage 800 × 608 40 18–19 N People walking with luggage
Square 1280 × 720 40 28–33 N People walking on the square
Crossing 1280 × 720 40 23–29 N People crossing the road
Night 1920 × 1080 45 34–35 N People walking at night

Fig. 13. Example skeleton sequences: (a) Posetrack sequence — Ice skating, (b) Posetrack sequence — Volleyball, (c) Surveillance sequence — Night, and (d) Surveillance sequence
— Footpath.

The bits-saving metric is computed by evaluating the bit reductions
compared with a traditional direct coding method (i.e., using fixed bit
length for each body joint):

𝑏𝑖𝑡𝑠 𝑠𝑎𝑣𝑖𝑛𝑔 =
𝑏𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑗𝑜int − 𝑏𝐷𝑖𝑟𝑒𝑐𝑡

𝑗𝑜int

𝑏𝐷𝑖𝑟𝑒𝑐𝑡
𝑗𝑜int

× 100% (18)

6.4. Methods used for comparisons

Since skeleton data compression is newly studied in this paper,
there are few existing methods that can directly be applied to perform
skeleton compression. Therefore, we choose to select two most relevant

methods to compare with our approach: the direct coding method and
the temporal differential coding method [52].

6.4.1. Direct coding
The direct coding method aims to use a fixed bit length to code

all skeleton information [52]. In this paper, we employ the direct
coding method on each component of skeleton information mentioned
in Eq. (4). Firstly, a fixed number of bits are assigned to encode 𝑁 𝑡

𝑆 .
The number of bits is directly dependent on the maximum number of
skeletons in any given frame.

𝑏𝑡
𝑁 𝑡

𝑆
=
⌈

log2(max
∀𝑡

𝑁 𝑡
𝑆 )
⌉

(19)
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Table 2
Bits per skeleton points and Bit-savings for different prediction modes (EGC is used to encode all residuals and the bits for coding side information are excluded).

Sequence Direct Temporal Spatial MV-based RMV-based T-based Multimodal
Name coding differential coding differential coding coding coding coding coding

Posetrack [66]

Indoor 22.00 7.72 (−64.91%) 24.28 (10.36%) 8.56 (−61.10%) 8.00 (−63.65%) 6.62 (−69.92%) 6.73 (−69.39%)
Ice stick 21.00 9.15 (−56.44%) 18.75 (−10.69%) 6.88 (−67.25%) 6.62 (−68.47%) 5.76 (−72.56%) 5.74 (−72.66%)
Karate 21.00 7.41 (−64.73%) 20.68 (−1.55%) 6.75 (−67.85%) 6.73 (−67.94%) 5.86 (−72.11%) 5.87 (−72.05%)
Workers 21.00 6.21 (−70.42%) 23.13 (10.14%) 6.12 (−70.88%) 5.34 (−74.57%) 4.29 (−79.55%) 4.34 (−79.33%)
Street 22.00 11.24 (−48.93%) 22.74 (3.36%) 8.70 (−60.43%) 8.19 (−62.78%) 6.13 (−72.12%) 6.36 (−71.07%)
Action 21.00 13.15 (−37.39%) 20.96 (−0.21%) 7.30 (−65.22%) 6.81 (−67.59%) 6.30 (−69.98%) 6.15 (−70.73%)
Basketball 21.00 11.27 (−46.31%) 18.98 (−9.63%) 8.99 (−57.20%) 8.61 (−59.01%) 7.63 (−63.67%) 7.51 (−64.23%)
Hurdle-race 22.00 13.46 (−38.84%) 20.71 (−5.85%) 12.48 (−43.26%) 11.99 (−45.48%) 11.44 (−48.01%) 11.26 (−48.81%)
Football 22.00 14.41 (−34.49%) 21.25 (−3.40%) 10.97 (−50.16%) 10.70 (−51.37%) 11.59 (−47.32%) 10.06 (−54.27%)
Football2 22.00 11.69 (−46.87%) 21.16 (−3.80%) 10.75 (−51.14%) 10.13 (−53.97%) 10.37 (−52.85%) 9.65 (−56.15%)
Rugby 21.00 13.42 (−36.11%) 20.47 (−2.52%) 10.83 (−48.44%) 10.43 (−50.34%) 10.91 (−48.03%) 10.21 (−51.39%)
Musical 21.00 12.13 (−42.26%) 22.81 (8.61%) 9.74 (−53.60%) 9.76 (−53.53%) 9.24 (−56.00%) 8.88 (−57.70%)
Womens 21.00 7.26 (−65.44%) 21.02 (0.10%) 7.08 (−66.28%) 6.79 (−67.68%) 5.82 (−72.29%) 5.66 (−73.05%)
Ice skating 21.00 14.52 (−30.88%) 20.09 (−4.35%) 10.48 (−50.10%) 10.02 (−52.28%) 9.56 (−54.47%) 8.93 (−57.49%)
Volleyball 19.00 12.47 (−34.38%) 18.38 (−3.26%) 9.48 (−50.12%) 9.10 (−52.08%) 9.98 (−47.49%) 8.87 (−53.32%)

Average 21.20 11.03 (−47.96%) 21.03 (−0.82%) 9.01 (−57.51%) 8.61 (−59.37%) 8.10 (−61.79%) 7.75 (−63.45%)

Surveillance

Hotel 22.00 12.44 (−43.45%) 24.35 (10.67%) 9.41 (−57.21%) 9.27 (−57.88%) 8.44 (−61.64%) 8.03 (−63.52%)
Childrens 21.00 8.59 (−59.11%) 20.02 (−4.68%) 7.87 (−62.51%) 7.65 (−63.56%) 6.69 (−68.15%) 6.78 (−67.72%)
Beach 21.00 10.63 (−49.40%) 21.80 (3.81%) 8.71 (−58.50%) 8.54 (−59.32%) 7.60 (−63.81%) 7.50 (−64.30%)
Stadium 21.00 8.42 (−59.90%) 24.02 (14.38%) 8.44 (−59.80%) 8.21 (−60.89%) 7.30 (−65.25%) 7.20 (−65.71%)
Police 19.00 11.31 (−40.47%) 23.04 (21.28%) 9.34 (−50.86%) 9.06 (−52.29%) 7.84 (−58.74%) 7.87 (−58.58%)
Baby 22.00 11.60 (−47.28%) 24.99 (13.60%) 9.07 (−58.76%) 9.22 (−58.10%) 7.82 (−64.44%) 7.85 (−64.33%)
Workshop 21.00 11.49 (−45.29%) 24.57 (17.00%) 10.15 (−51.68%) 9.76 (−53.51%) 7.48 (−64.40%) 7.62 (−63.70%)
Restaurant 22.00 15.53 (−29.39%) 27.07 (23.07%) 10.09 (−54.12%) 10.12 (−54.02%) 7.66 (−65.20%) 7.90 (−64.11%)
Piano 21.00 9.17 (−56.33%) 24.50 (16.68%) 9.03 (−57.00%) 8.54 (−59.35%) 6.71 (−68.04%) 6.72 (−67.98%)
Footpath 20.00 11.95 (−40.26%) 17.16 (−14.18%) 6.64 (−66.82%) 6.43 (−67.84%) 11.41 (−42.95%) 6.41 (−67.96%)
Road 20.00 8.47 (−57.65%) 15.09 (−24.57%) 4.87 (−75.65%) 4.76 (−76.22%) 8.95 (−55.25%) 4.78 (−76.10%)
Luggage 20.00 8.93 (−55.36%) 15.62 (−21.90%) 4.70 (−76.52%) 4.68 (−76.59%) 9.58 (−52.11%) 4.69 (−76.53%)
Square 21.00 7.89 (−62.42%) 15.40 (−26.68%) 3.61 (−82.79%) 3.57 (−83.00%) 8.86 (−57.80%) 3.62 (−82.78%)
Crossing 21.00 8.09 (−61.47%) 15.71 (−25.19%) 3.37 (−83.96%) 3.36 (−84.00%) 8.95 (−57.36%) 3.39 (−83.88%)
Night 22.00 4.04 (−81.63%) 17.42 (−20.81%) 1.77 (−91.95%) 1.78 (−91.92%) 4.49 (−79.61%) 1.91 (−91.31%)

Average 20.93 9.90 (−52.69%) 20.72 (−1.03%) 7.14 (−65.90%) 7.00 (−66.58%) 7.98 (−61.86%) 6.15 (−70.62%)

Secondly, the skeleton ID (𝑆𝐼𝐷𝑡
𝑠) is encoded into 𝑏𝑡

𝑆𝐼𝐷𝑡
𝑠

bits using
(19). Thirdly, 𝑏𝑡

𝑂𝑡
𝑠
= 15 bits are used to encode the occlusion informa-

tion corresponding to the 𝑠th skeleton in the 𝑡th frame. Lastly, the body
joint information is encoded based on the frame resolution of the video.

𝑏𝑡𝑗𝑖 = ⌈log2(𝐻)⌉ + ⌈log2(𝑊 )⌉ (20)

where H is height and W is width of the video frame. Hence, to-
tal number of bits required to encode complete skeleton information
corresponding to the 𝑡th frame is:

𝑏𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑏𝑡
𝑁 𝑡

𝑆
+ 𝑏𝑡

𝑁 𝑡
𝑆
×
(

𝑏𝑡
𝑆𝐼𝐷𝑡

𝑠
+ 𝑏𝑡

𝑂𝑡
𝑠
+𝑁𝐽 × 𝑏𝑡𝑗𝑖

)

(21)

6.4.2. Temporal differential coding
The temporal differential coding method aims to use the direct tem-

poral difference between corresponding skeleton body joints for data
compression [52]. To this end, the location movement for each body
joint is computed against the collocated body joints in the reference
frame. It should be noted that for the body joint appearing for the first
time does not have any temporal reference, and hence it is encoded
using the same way as our approach for a fair comparison.

6.5. Results for the proposed prediction modes

In this section, we compare the performance of our prediction
modes (i.e., the four prediction modes of ’Spatial differential cod-
ing’, MV-based coding’, ’RMV-based coding’, ’T-based coding’ and the
combined ’Multimodal coding’ mode) against the direct coding and
temporal differential coding methods [52]. In order to exclude the
effect of entropy coding and skeleton side information, we simply
use exponential Golomb codes (EGC) to encode all residuals and also
exclude the bits for coding side information. The performances of
average bits per skeleton joint and bit-savings against direct coding

method are shown in Table 2. From Table 2 we can have the following
observations:

1. The spatial differential coding method has overall similar perfor-
mances to the direct coding method. If taking a more detailed
look on its performance, we can see that it performs obvi-
ously better than the direct coding method for some sequences
(e.g., Ice stick and Square), but also performs worse for some
other sequences (e.g., Indoor and Restaurant). This suggests
that spatial differential coding is mainly helpful in cases where
skeleton size is small, i.e., when the residual between adjacent
body joints are smaller than the cost of direct coding. This also
indicates the importance of our combined multimodal scheme,
which is able to adaptively decide the proper time of selecting
the spatial differential coding mode.

2. The MV-based coding method, RMV-based method, and the tem-
poral differential coding method are all aimed at reducing the
temporal redundancy of skeleton data. However, our proposed
MV-based coding and RMV-based methods obviously outperform
the temporal differential coding method. This indicates that our
proposed temporal prediction methods can model and reduce the
temporal redundancy more properly.

3. The trajectory-based method (T-based coding in Table 2 can
also achieve obvious bit reductions. Comparatively, it performs
extremely well on sequences with a large number of easily pre-
dictable skeleton motions (e.g., workers and piano). At the same
time, its improvements will be comparatively smaller on se-
quences with less predictable motions. More importantly, the im-
provements from the trajectory-based method are complemen-
tary to the MV-based coding and RMV-based methods (i.e., the
trajectory-based method often has good performance when the
MV-based coding and RMV-based methods do not). This allows
us to combine them to have a better compression approach.
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Table 3
Statistics of bits per body joint and bit-savings for different entropy coding schemes (the adaptive multimodal prediction method is used as the
prediction mode).

Seq. Name EGC EGC+ACS EGC+DI EGC+ACS+DI

Posetrack [66]

Indoor 6.73 (−69.39%) 6.08 (−72.38%) 6.58 (−70.10%) 6.04 (−72.54%)
Ice stick 5.74 (−72.66%) 5.21 (−75.21%) 5.64 (−73.15%) 5.15 (−75.45%)
Karate 5.87 (−72.05%) 5.40 (−74.27%) 5.76 (−72.57%) 5.34 (−74.55%)
Workers 4.34 (−79.33%) 4.36 (−79.25%) 4.33 (−79.40%) 4.29 (−79.59%)
Street 6.36 (−71.07%) 6.06 (−72.46%) 6.12 (−72.16%) 5.89 (−73.25%)
Action 6.15 (−70.73%) 5.54 (−73.61%) 6.11 (−70.88%) 5.48 (−73.88%)
Basketball 7.51 (−64.23%) 6.87 (−67.28%) 7.47 (−64.45%) 6.83 (−67.46%)
Hurdle-race 11.26 (−48.81%) 10.25 (−53.41%) 11.05 (−49.76%) 10.20 (−53.63%)
Football 10.06 (−54.27%) 9.34 (−57.54%) 9.86 (−55.20%) 9.27 (−57.88%)
Football2 9.65 (−56.15%) 8.96 (−59.25%) 9.49 (−56.84%) 8.90 (−59.54%)
Rugby 10.21 (−51.39%) 9.45 (−55.02%) 10.01 (−52.32%) 9.40 (−55.25%)
Musical 8.88 (−57.70%) 8.31 (−60.44%) 8.73 (−58.45%) 8.24 (−60.75%)
Womens 5.66 (−73.05%) 5.27 (−74.89%) 5.58 (−73.42%) 5.20 (−75.26%)
Ice skating 8.93 (−57.49%) 8.31 (−60.43%) 8.90 (−57.62%) 8.25 (−60.75%)
Volleyball 8.87 (−53.32%) 8.25 (−56.59%) 8.64 (−54.52%) 8.14 (−57.14%)

Average 7.75 (−63.45%) 7.18 (−66.14%) 7.62 (−64.07%) 7.11 (−66.47%)

Surveillance

Hotel 8.03 (−63.52%) 7.23 (−67.16%) 7.99 (−63.69%) 7.18 (−67.36%)
Childrens 6.78 (−67.72%) 6.04 (−71.24%) 6.63 (−68.45%) 6.00 (−71.42%)
Beach 7.50 (−64.30%) 6.85 (−67.38%) 7.45 (−64.55%) 6.79 (−67.66%)
Stadium 7.20 (−65.71%) 6.53 (−68.92%) 7.08 (−66.29%) 6.47 (−69.21%)
Police 7.87 (−58.58%) 7.27 (−61.73%) 7.61 (−59.92%) 7.13 (−62.49%)
Baby 7.85 (−64.33%) 7.09 (−67.79%) 7.73 (−64.84%) 7.05 (−67.96%)
Workshop 7.62 (−63.70%) 7.24 (−65.53%) 7.45 (−64.53%) 7.12 (−66.11%)
Restaurant 7.90 (−64.11%) 7.33 (−66.68%) 7.65 (−65.22%) 7.19 (−67.31%)
Piano 6.72 (−67.98%) 6.13 (−70.81%) 6.58 (−68.69%) 6.07 (−71.11%)
Footpath 6.41 (−67.96%) 6.12 (−69.41%) 6.32 (−68.38%) 6.09 (−69.56%)
Road 4.78 (−76.10%) 4.75 (−76.23%) 4.74 (−76.32%) 4.72 (−76.39%)
Luggage 4.69 (−76.53%) 4.68 (−76.62%) 4.64 (−76.82%) 4.64 (−76.79%)
Square 3.62 (−82.78%) 3.75 (−82.13%) 3.59 (−82.88%) 3.72 (−82.28%)
Crossing 3.39 (−83.88%) 3.61 (−82.79%) 3.38 (−83.91%) 3.58 (−82.94%)
Night 1.91 (−91.31%) 2.11 (−90.42%) 1.91 (−91.33%) 2.09 (−90.52%)

Average 6.15 (−70.62%) 5.78 (−72.38%) 6.05 (−71.10%) 5.72 (−72.66%)

Table 4
Bits per skeleton points and Bit-savings for different prediction modes and different entropy coding schemes. (The bits for coding side information
are excluded).

Entropy coding Dataset MV-based coding RMV-based coding T-based coding Multimodal coding

EGC Posetrack [66] 9.01 (−57.51%) 8.61 (−59.37%) 8.10 (−61.79%) 7.75 (−63.45%)
Surveillance 7.14 (−65.90%) 7.00 (−66.58%) 7.98 (−61.86%) 6.15 (−70.62%)

EGC+ACS Posetrack [66] 8.56 (−59.62%) 8.33 (−60.69%) 8.32 (−60.78%) 7.18 (−66.14%)
Surveillance 6.86 (−67.21%) 6.95 (−66.80%) 7.83 (−62.61%) 5.78 (−72.38%)

EGC+DI Posetrack [66] 8.98 (−57.64%) 8.59 (−59.47%) 8.07 (−61.94%) 7.62 (−64.07%)
Surveillance 7.07 (−66.21%) 6.94 (−66.86%) 7.95 (−62.02%) 6.05 (−71.10%)

EGC+ACS+DI Posetrack [66] 8.53 (−59.78%) 8.29 (−60.92%) 8.26 (−61.04%) 7.11 (−66.47%)
Surveillance 6.80 (−67.53%) 6.85 (−67.29%) 7.78 (−62.86%) 5.72 (−72.66%)

4. Our multimodal-based method, which adaptively combines the
four prediction modes, obtains the best overall performance
by properly combine the advantages of all prediction modes.
Even when the multimodal-based method does not achieve the
best performance for some sequences (e.g., piano) due to the
imperfect selection of the best modes (cf. Eqs. (13)–(14)), its
performance is still very close to the best-performed mode. This
also demonstrates that our adaptive multimodal coding scheme
can reliably select proper modes to guarantee the performance
of the combined result.

6.6. Results for proposed entropy coding schemes

In this section, we evaluate the performance improvement provided
by our mode-based entropy coding schemes. We consider, four different
cases for better analysis: (1) Do not use our proposed entropy coding
schemes and only use exponential Golomb codes (EGC) to encode the
prediction residuals (‘EGC’ in Tables 3 and 4); (2) Use our adaptive
center selection (ACS) scheme together with EGC to encode prediction
residuals (‘EGC+ACS’ in Tables 3 and 4); (3) Use our dynamic indexing
(DI) scheme together with EGC (‘EGC+DI’ in Tables 3 and 4); (4) Use

both ACS and DI schemes together with EGC to do entropy encoding
(‘EGC+ACS+DI’ in Tables 3 and 4).

Table 3 shows the performance of different entropy coding meth-
ods when using the multimodal prediction method to create predic-
tion residuals. Table 4 further shows the average performances of the
entropy coding methods under different prediction modes.

Tables 3 and 4 provide following observations:

1. In Table 3, both the EGC+ACS and EGC+DI methods can obtain
improved performance over the EGC method. This indicates the
usefulness of our proposed ACS and DI strategy. Moreover, the
EGC+ACS+DI method can obtain further improved results by
properly combine the strategies of ACS and DI.

2. The improvements from the entropy coding method in Tables 3
and 4 are smaller than the prediction methods in Table 2. This
is mainly because of the fact that most of the redundancy has al-
ready been reduced by our prediction modes. From this point of
view, it is still valuable for our proposed entropy coding schemes
to obtain further improved performances from the already highly
compressed residual.
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Table 5
Skeleton side information coding performance comparison for different methods (in bits per skeleton joint and bit savings).

Method Direct coding Proposed coding

Dataset 𝑁 𝑡
𝑆 𝑆𝐼𝐷𝑡

𝑠 𝑂𝑡
𝑠 Total 𝑁 𝑡

𝑆 𝑆𝐼𝐷𝑡
𝑠 𝑂𝑡

𝑠 Total

Posetrack [66] 0.055 0.285 1.178 1.518 0.014 0.128 0.264 0.406 (73.26%)
Surveillance 0.047 0.449 1.516 2.012 0.013 0.146 0.283 0.442 (78.03%)

Table 6
Statistics of bits per joint & bit-savings for different frame skip scenarios on Posetrack (PT) [66] & Surveillance (SV).

Dataset Frame Direct Temporal Spatial MV-based RMV-based T-based Multimodal
skip coding differential coding differential coding coding coding coding coding

PT
0 22.72 12.55 (−44.76%) 22.55 (−0.75%) 8.94 (−60.65%) 8.70 (−61.71%) 8.67 (−61.84%) 7.52 (−66.90%)
1 22.72 15.64 (−31.16%) 22.55 (−0.75%) 11.30 (−50.26%) 11.05 (−51.36%) 11.96 (−47.36%) 10.08 (−55.63%)
2 22.72 17.47 (−23.11%) 22.54 (−0.79%) 12.96 (−42.96%) 12.58 (−44.63%) 14.27 (−37.19%) 11.73 (−48.37%)

SV
0 22.94 11.91 (−48.08%) 22.73 (−0.92%) 7.24 (−68.44%) 7.29 (−68.22%) 8.22 (−64.17%) 6.16 (−73.15%)
1 22.94 14.88 (−35.14%) 22.72 (−0.96%) 9.49 (−58.63%) 9.52 (−58.50%) 11.02 (−51.96%) 8.48 (−63.03%)
2 22.94 16.82 (−26.68%) 22.73 (−0.92%) 11.04 (−51.87%) 11.01 (−52.01%) 12.87 (−43.90%) 10.10 (−55.97%)

Fig. 14. Comparison between the overall version of our approach and the direct coding
& temporal differential coding methods. Our approach includes all of the prediction,
entropy coding, and side information coding schemes proposed in this paper. The direct
coding method use direct coding to code side information. The temporal differential
coding method use EGC to encode prediction residuals and temporal differential coding
to encode side information.

3. According to Table 4, our ACS and DI entropy coding schemes
provide the improvements on all the prediction modes. Even
when our entropy coding scheme is applied on multimodal
prediction method, it outperforms individual prediction modes
since it can intelligently switch between prediction modes.

6.7. Results for skeleton side information coding & overall performance

We also show the results for skeleton side information coding. The
skeleton side information consists of three parameters: the number of
skeletons in the frame denoted by 𝑁 𝑡

𝑆 , skeleton ID information for each
skeleton denoted by 𝑆𝐼𝐷𝑡

𝑠, and occlusion information for each skeleton
denoted by 𝑂𝑡

𝑠. The comparison for direct and proposed coding method
is illustrated in Table 5. Our skeleton side information coding method
achieves 73.26% and 78.03% bit-savings on an average over direct
coding method for Posetrack, and surveillance test sequences, respec-
tively. Moreover, Fig. 14 further shows the overall performances of our
approach, which combines all the prediction, entropy coding, and side
information coding schemes. According to Fig. 14, our approach can
obtain an average of 66% and 44% bit savings from the existing direct
coding and temporal differential coding methods on Posetrack dataset,
and an average of 73% and 48% bit savings on Surveillance dataset. This
shows the obvious advantage of our approach on both the datasets.

Fig. 15. Example wild skeleton sequences: (a) Ice skating, (b) Volleyball.

6.8. Results for the proposed method under different scenarios

Finally, in order to further evaluate the capability of our approach in
handling different scenarios, we perform experiments in the following
three situations:

• Results on different frame rates. To investigate the response
of the proposed method under different frame rates or motion
degrees, we down-sample the original skeleton sequences at dif-
ferent rates with frameskip = {0, 1, 2}. The results for different
frame skip sizes are illustrated in Table 6. From Table 6, the
coding efficiency of most methods decreases when the frame
skip sizes increases. This is mainly because the residual between
consecutive frames become enlarged under larger skip sizes. How-
ever, even at a large skip size (e.g., frameskip = 2 meaning the
video is downsampled to 1/3 of the original size), our approach
can still reduce about 50% of the skeleton data.

• Results on real-time estimated skeleton data. We also eval-
uate the performance of our proposed method by creating a
set of ‘wild’ skeleton sequences. Note that these ‘wild’ skeleton
sequences are obtained from the same video sequences as the
ones in Table 1. However, different from the ground-truth labeled
sequences in Table 1, these wild skeleton sequences are extracted
using a state-of-the-art real-time skeleton estimation and tracking
algorithm [67]. Due to the complex nature of the videos we
selected, the wild skeleton sequences include a large number of
estimation biases and tracking errors, which leads to a decreased
redundancy space for the wild data (cf. Fig. 15).
The compression results for the wild skeleton sequences are
shown in Table 7. According to Table 7, our proposed approach
can still obtain about 50% compression ratio even when the
available redundancy space shrinks for the wild skeleton se-
quences. Moreover, since the wild skeleton sequences become
less predictable, the effectiveness of the trajectory-based method
(T-based coding) decreases more obviously as we only use a
very simple method for trajectory prediction (cf. Eq. (11)). This
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Table 7
Statistics of bits per joint & bit-savings for skeletons estimated by [67] on Posetrack (PT) [66] & Surveillance (SV).

Dataset Skeleton Direct Temporal Spatial MV-based RMV-based T-based Multimodal
source coding differential coding differential coding coding coding coding coding

PT GT 22.72 12.55 (−44.76%) 22.55 (−0.75%) 8.94 (−60.65%) 8.70 (−61.71%) 8.67 (−61.84%) 7.52 (−66.90%)
ES [67] 22.72 13.80 (−39.26%) 20.22 (−11.00%) 11.18 (−50.79%) 11.15 (−50.92%) 12.22 (−46.21%) 10.08 (−55.63%)

SV GT 22.94 11.91 (−48.08%) 22.73 (−0.92%) 7.24 (−68.44%) 7.29 (−68.22%) 8.22 (−64.17%) 6.16 (−73.15%)
ES [67] 22.94 13.55 (−40.93%) 21.70 (−5.41%) 9.73 (−57.59%) 10.07 (−56.10%) 11.42 (−50.22%) 9.04 (−60.59%)

Table 8
Statistics of bits per joint & bit-savings for different Gaussian noise levels on Posetrack (PT) [66] & Surveillance (SV).

Dataset Noise Direct Temporal Spatial MV-based RMV-based T-based Multimodal
level (𝜎) coding differential coding differential coding coding coding coding coding

PT
0 22.72 12.55 (−44.76%) 22.55 (−0.75%) 8.94 (−60.65%) 8.70 (−61.71%) 8.67 (−61.84%) 7.52 (−66.90%)
0.2 22.72 12.56 (−44.72%) 22.55 (−0.75%) 8.99 (−60.43%) 8.77 (−61.40%) 8.74 (−61.53%) 7.58 (−66.64%)
0.5 22.72 12.86 (−43.40%) 22.55 (−0.75%) 9.90 (−56.43%) 9.86 (−56.60%) 9.74 (−57.13%) 8.55 (−62.37%)

SV
0 22.94 11.91 (−48.08%) 22.73 (−0.92%) 7.24 (−68.44%) 7.29 (−68.22%) 8.22 (−64.17%) 6.16 (−73.15%)
0.2 22.94 11.93 (−47.99%) 22.73 (−0.92%) 7.40 (−67.74%) 7.47 (−67.44%) 8.34 (−63.64%) 6.30 (−72.54%)
0.5 22.94 12.36 (−46.12%) 22.76 (−0.78%) 9.02 (−60.68%) 9.10 (−60.33%) 9.43 (−58.89%) 7.80 (−66.00%)

makes it less able to complement with the other prediction
methods (MV-based and RMV-based) for improving the combined
multimodal coding method. In practice, we can utilize more
sophisticated trajectory prediction methods [57,58,68,69] to im-
plement our trajectory-based method, so as to obtain a further
improved compression performance for wild skeleton data.

• Gaussian noise. Similar to the previous experiment, we also
introduce zero-mean Gaussian noise with variance 𝜎={0.2, 0.5}
on the ground truth skeleton sequences to analyze the capability
of our approach when the input skeleton sequences are interfered
or become less predictable. According to the results in Table 8,
the performances of most compared methods are decreased due
to the shrunk redundancy space in the noisy skeleton sequences.
However, our approach can still effectively compress more than
half of the skeleton data sizes. This further demonstrates the
effectiveness of our approach.

7. Conclusion

This paper presents a novel lossless compression scheme for encod-
ing skeleton sequences. For this, we introduce a multimodal prediction
scheme which switches between a set of prediction modes to effectively
exploit spatial and temporal correlations present in the skeleton se-
quences. Next, we introduce two entropy coding schemes to further
exploit the coding redundancy available in the prediction residuals.
Our method is lossless in nature and both encoder and decoder work
in a symmetric manner. Experimental results show that our adap-
tive method significantly outperforms the direct coding scheme. In
future work, we would like to extend this work for the lossy compres-
sion by introducing some quantization parameters and investigate the
performance for various action recognition tasks.
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