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Abstract. Most current pipelines for spatio-temporal action localiza-
tion connect frame-wise or clip-wise detection results to generate action
proposals, where only local information is exploited and the efficiency
is hindered by dense per-frame localization. In this paper, we propose
Coarse-to-Fine Action Detector (CFAD), an original end-to-end train-
able framework for efficient spatio-temporal action localization. The
CFAD introduces a new paradigm that first estimates coarse spatio-
temporal action tubes from video streams, and then refines the tubes’
location based on key timestamps. This concept is implemented by two
key components, the Coarse and Refine Modules in our framework. The
parameterized modeling of long temporal information in the Coarse Mod-
ule helps obtain accurate initial tube estimation, while the Refine Mod-
ule selectively adjusts the tube location under the guidance of key times-
tamps. Against other methods, the proposed CFAD achieves competitive
results on action detection benchmarks of UCF101-24, UCFSports and
JHMDB-21 with inference speed that is 3.3× faster than the nearest
competitor.

Keywords: Spatiotemporal action detection · Coarse-to-fine
paradigm · Parameterized modeling

1 Introduction

Spatial-temporal action detection is the task of recognizing actions from input
videos and localizing them in space and time. In contrast to action recognition
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Fig. 1. The comparison between pipelines of detection and linking and our coarse-to-
fine framework. (a) workflow of detection and linking method in previous works. (b)
Our coarse-to-fine method to detect action tubes. (Best viewed in color.) (Color figure
online)

or temporal localization, this task is far more complex, requiring both temporal
detection along the time span and spatial detection at each frame when the
actions occur.

Most existing methods for spatiotemporal action detection [6,9,19,25,26,29,
38,39] are implemented in two stages (illustrated in Fig. 1(a)). First, a spatial
detector is applied to generate dense action box proposals on each frame. Then,
these frame-level detections are linked together by a certain heuristic algorithm
to generate final output, which is a series of boxes or an action tube. Nevertheless,
since these approaches take a single or stack of frames as input, the information
utilized by the detectors is limited within a fixed time interval, hence limiting
the representative capacity of the learned features for classification. The similar
problem is encountered in the aspect of localization. During training phase,
models could be supervised by only a temporal fragment of the tubes, which can
output accurate local proposals but may fail to locate entire tubes in a consistent
manner. Additionally, IOU-based linking algorithms may result in accumulative
localization error when noisy bounding box proposals are produced. Since the
transition within action tubes is usually smooth and gradual, we hypothesize
that using lesser number of boxes could be adequate to depict the action tube
shape. Current pipelines, in their present state, relies heavily on dense per-frame
predictions, which are redundant and a hindrance to efficient action detection.

With these considerations, we depart from classic detect-and-link strategies
by proposing a new coarse-to-fine action detector (CFAD) that can generate
more accurate action tubes with higher efficiency. Unlike previous approaches
that detect dense boxes at first, the CFAD (as illustrated in Fig. 1(b)) goes on
a progressive approach of estimating at a rougher level before ironing out the
details. This strategy first estimates coarser action tubes, and then selectively
refine these tubes at key timestamps. The action tubes are generated via two
important components in our pipeline: Coarse Module and Refine Module.

The Coarse Module is designed to address the lack of global information
and low efficiency in previous detect-and-link paradigm. In a global sense, it
supervises the tube regression with the full tube shape information. In addition,
within this module, a parameterized modeling scheme is introduced to depict
action tubes. Instead of predicting large amount of box location at each frame,
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Coarse Module only predict a few trajectory parameters to describe the tube of
various endurance. As a result, this module learns a robust representation that
accurately and efficiently characterizes action tube changes.

The Refine Module delves into the local context of each tube, to find precise
temporal locations that are essential to further improve the estimated action
tubes, which in turn, improves overall detection performance and efficiency. To
properly refine the action tubes, a labelling algorithm is designed to generate
labels that guide the learning of key timestamps selection. By a search scheme,
the original coarse boxes are replaced by the largest scoring box proposals at
these temporal locations, which then interpolate the final tube.

In summary, our contributions are three folds. (1) We propose a novel coarse-
to-fine framework for the task of spatial-temporal action detection, which differs
from the conventional paradigm of detect-and-link. Our new pipeline achieves
state-of-the-art results on standard benchmarks with inference speed of 3.3×
faster than the nearest competitor. (2) Under this framework, we design a novel
action tube estimation method based on parametric modeling to fully exploit
global supervision signal and handle time variant box coordinates by predicting
limited amount of parameters. (3) We also propose a simple yet effective method
of predicting an importance score for each sampled frame which is used to select
key timestamps for the refinement of output action tubes.

2 Related Works

2.1 Action Recognition

Deep learning techniques have shown to be effective and powerful in the clas-
sification of still images [8,11,28], and some existing works have extended such
schemes to the task of human action recognition in video. Direct extensions
attempt to model sequential data with serial or parallel networks. [18,33] com-
bined 2D CNN with a RNN structure to model spatial and temporal relations
separately. In [27], the authors found that the involvement of optical flow is
beneficial for temporal modeling of actions and thus, proposed a two-stream
framework that extracts features from RGB and optical flow data using separate
parallel networks; the inference result being the combination of both modalities.
In [34], the authors designed a 3D convolution architecture to automatically
extract a high dimensional representation for input video. The I3D network [3]
further improved the 3D convolution technique by inflating convolution kernels
of networks pre-trained on ImageNet (2D) [4] into an efficient 3D form for action
recognition. Although these methods achieved good results on video classifica-
tion benchmarks, they can only make video level predictions and are unable to
ascertain the position of actors and the duration of action instances.

2.2 Spatio-Temporal Action Detection

The task of spatio-temporal action detection is more complex than direct classifi-
cation of videos. It requires both correct categorization and accurate localization
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Fig. 2. Overview of the proposed CFAD framework. TPN block denotes the temporal
action proposal network. A 3D Conv Head block indicates a cascaded NL-3D Conv
structure (“NL” represents the NonLocal Block of [35]). 2D Conv Head block denotes
cascaded 2D spatial convolutions. (Best viewed in color) (Color figure online)

of actors during the time interval when the action happens. Gkioxiari et al. pro-
posed the first pipeline for this task in [6], where R-CNN [5] was applied on
each frame to locate actors and classify actions, the results are then linked by
viterbi algorithm. Saha et al. [26] designed a potential-based temporal trimming
algorithm to extend general detection methods to untrimmed video datasets.
Following the workflow of these two works, [9,15,19,21] tried learning more dis-
criminative features of action instances with larger spatial or temporal context,
a concept greatly enhanced by [16] through a multi-channel architecture that
learns recurrently from tubelet proposals. Some works [12,29] aimed to improve
heuristic linking for better localization. Recent works [32,39] proposed innovative
two-stream fusion schemes for this task. [38] took a novel route to progressively
regressing clip-wise action tubelets and linking them along time. Overall, all
these works require temporally dense detections for each video, which is cum-
bersome. This inefficiency gets worse when optical flow computation is taken
into account.

Among the existing works, [38] is the most similar to CFAD with its refine-
ment process. However, our method is different from it from three aspects.
Firstly, CFAD estimates coarse level tubes with parametric modeling and global
supervision, while [38] relies on per-frame detection. Secondly, our approach does
not require further temporal linking or trimming process. Finally, [38] refines the
boxes densely for each frame, while our method only refines the box locations at
selected key timestamps.

2.3 Weight Prediction

Weight prediction is a meta-learning concept where machine learning models
are exploited to predict parameters of other structures [1]. For example, the
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STN [13] utilized deep features to predict affine transformation parameters. [10]
used category-specific box parameters to predict an instance weighted mask,
while MetaAnchor [37] learned to predict classification and regression functions
from both box parameters and data. The Coarse Module of our method is also
inspired by such similar mechanisms, where the trajectory parameters are pre-
dicted by relevant spatio-temporal structures to depict the tube variation along
time. To the best of our knowledge, our approach is the first attempt at exploit-
ing parameterized modeling to handle action tube estimation.

3 Methodology

3.1 Framework

In this section, we introduce the proposed Coarse-to-Fine Action Detector
(CFAD) in detail. We first formulate the problem and provide an overview of
our approach. Then we discuss more elaborately on the two primary components
of CFAD – the Coarse Module for tube estimation and Refine Module for final
proposal.

One action tube instance in videos can be formulated as a set, A =
{(ti, bi)|i = 0, · · · , TA − 1}, where ti is the timestamp of a certain frame,
bi = (xi, yi, wi, hi) is the corresponding actor box within this frame, and TA

denotes the total number of bounding boxes in a ground-truth tube. Each tube
A is accompanied with a category label c.

The workflow of CFAD is shown in Fig. 2. Firstly, the input video is resampled
to a fixed length T and fed into 3D CNN for spatio-temporal feature extraction.
Then the feature is processed a temporal proposal network (TPN) to obtain
class-agnostic temporal proposals (ts, te). ts is the start timestamp and te denotes
the end timestamp. In this paper, we instantiate the temporal proposal network
by implementing one that is similar to [36], readers can refer to Appendix A
for architecture detail. Given the temporal proposal, we uniformly sample N 2D
features {Fi|i ∈ [0, N − 1]} along the time axis within interval (ts, te), which
are sent to Coarse and Refine Module simultaneously. In Coarse Module, these
2D sampled features are used to estimate coarse level action tubes. Next, the
estimated tube and the sampled 2D features in the Refine Module are exploited
for frame selection and tube refinement at identified key timestamps.

3.2 Coarse Tube Estimation

We design two convolutional brunches in the Coarse Module to process The
sampled 2D features, one branch processes the input features directly and the
other branch handles the temporal residual component {Fi+1 −Fi|i = 0, N − 2}
of the input features, which is output through the “Diff Block” in Fig. 2. We
add residual processing since the temporal residual component can provide more
time variant information, which is beneficial to discriminate different actions and
predict localization changes along time. For each branch, a Non-Local Block [35]
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Fig. 3. (a). Illustration of coarse tube estimation, where “1” and “-1” symbols denote
the positive and negative samples after matching, and “0” are ignored samples. (b)
Key timestamps label selection process in the refine module. For ease of simplification,
this figure depicts the case of 1-dimensional linear interpolation. The blue curve is
the ground-truth, the orange one is the interpolated curve and green nodes represent
selected timestamps. (Best viewed in color) (Color figure online)

is cascaded with a 3D convolution blocks to construct the “3D Conv Head”
module in Fig. 2, which aggregates information from both spatial and temporal
context. The output of the two branches are fused by element-wise summation
and aggregated via temporal average pooling.

To estimate coarse-level action tubes, we adopt a parameterized modeling
scheme, where we define a coarse-level tube estimation as a parameterized map-
ping Â(t;θ) : [0, 1] −→ R

4. Â tries to predict the coarse spatial location, i.e.
[x(t), y(t), w(t), h(t)], given a normalized timestamp t and trajectory parameter
θ. The mapping parameters θ are predicted by the deep features from the tempo-
ral pooling block. To this end, we slide predefined anchor boxes of different sizes
on the 2D output feature map from temporal pooling block to obtain positive
samples B+ and negative samples B− as according to the IOUs between anchors
and tubes (illustrated in Fig. 3(a)). For each sample in B+, the network should
predict its corresponding classification score and the tube shape parameter θ
through an additional 1 × 1 convolution layer.

Segment-Wise Matching. To measure the overlap between an anchor box
ba and ground-truth A, an intuitive idea is to calculate the average value of
IOUs between ba and each boxes belonging to A. However, since tube shapes
may include motion and camera shake, such matching strategy might result in
small IOU value and induce the imbalance issue of samples. Hence, we design a
segment-wise matching scheme to separate positive and negative samples. To be
specific, We take the boxes on first K frames in A as a valid segment for matching
positive anchors, where K is a predefined segment length. We take the segment
from the beginning of the tube because we found the final model performance is
not sensitive to the segment position, readers can refer to Appendix B for detail
analysis. If the average overlap between ba and these K boxes is larger than a
threshold, it is taken as a positive sample. Further, if ba has high overlap with
multiple concurrent tubes, we choose the ground-truth with largest segment IOU
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as the matched tube. On the other hand, to find negative samples, we split the
ground-truth tube A into �TA

K � segments and compute IOUs between ba and
each segments as discussed above, if the maximum IOU among all segments is
still less than a threshold, then it is taken as a negative sample, the intuition
behind such design is that negative samples should have low overlap with any
boxes in A.

Parameterized Modeling. Generally, any parameterized function that takes a
single scalar as input and outputs a 4-dimensional vector can be used as the tube
mapping. In this paper, we use the family of high order polynomial functions
to model action tube variations along the timestamp. This is because action
tubes typically change smoothly and gradually, while polynomial functions are
capable enough of describing the patterns of tube shape changes. Therefore, the
instantiation of parameterized estimation function Â(t;θ) can be formulated as:

Â(t;θ) = [x(t;θx), y(t;θy), w(t;θw), h(t;θh)] =
[
θT

x t,θT
y t,θT

wt,θT
h t

]
(1)

where the trajectory of each coordinate is regarded as a polynomial curve of
order k, the predicted parameter matrix θ = [θx,θy,θw,θh] of size (k + 1) × 4
is composed of the polynomial coefficient for each bounding box coordinates.
The vector t = [1, t, t2, · · · , tk]T contains various orders of current timestamp.
To learn features that are invariant to anchor transitions, we do not use Â(t;θ)
to directly estimate the absolute coordinates, but instead perform estimation
of relative coordinates w.r.t matched bounding box ba following the method of
encoding in [23].

During training, the model learns to separate positive and negative samples,
to predict the correct action classes and relative coordinates of a coarse tube
under the supervision of the loss function in Eq. 2,

Lcoarse =
1

|B+ ∪ B−|Lc +
1

|B+|Lr (2)

where | · | denotes the size of the set. Lc is the classification loss in [23] while Lr

is the regression loss from the supervision of the whole ground-truth tube:

Lr =
1

TA

∑
ba∈B+

∑
(ti,bi)∈A

∣∣∣
∣∣∣Â(t̂i;θa) − enc(bi, ba)

∣∣∣
∣∣∣
2

(3)

The function enc(·, ·) in Eq. 3 is the same as the encoding function in [23] to
encode the 4-dimensional relative offsets from anchor box to ground-truth box.
θa is the predicted tube shape parameter associated with anchor ba. The symbol
t̂i defined in Eq. 4 is the normalized timestamp of ground-truth bounding boxes
in tube A. We normalize the input timestamp before calculating the tube shape
in order to avoid value explosion when the polynomial order increases.

t̂i =
ti − t0

tTA−1 − t0
∀ (ti, bi) ∈ A (4)
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3.3 Selective Refinement

After the estimated coarse tube Â(t;θ) has been generated by the Coarse Mod-
ule, its location is further refined in the Refine Module. The Refine Module first
selects the samples attached with key timestamps for action tube localization,
and then refine tube boxes based on these features and guidance of coarse tube.

Key Timestamp Selection. One simple and intuitive refinement scheme is to
observe the tube location at each sampled 2D feature map and then refine the box
according to the features within that area. However, when the sample number
N increases, such a scheme is costly in computation. Since changes in the action
tubes are usually smooth, there is only a limited number of sparsely distributed
bounding boxes that are decisive to the shape of tubes. Thus, we design a selector
network in the Refine Module to dynamically sample key timestamps that are
most essential for localization.

In our implementation, we perform importance evaluation by squeezing the
input 2D sampled features {Fi|i ∈ [0, N − 1]} with spatial pooling and applying
a 1D hourglass network along the time dimension. This outputs an importance
score pi for each sample (shown in Fig. 2). During inference phase, we only take
samples that satisfy pi ≥ α as samples of key timestamps and then proceed to
refinement.

In the training phase, we heuristically define sets of labels to guide the train-
ing of the selector network. Specifically, first the ground-truth action tube A is
uniformly split into N − 1 segments along temporal axis with N endpoints. The
i-th endpoint is associated with the i-th sampled feature Fi, and its normal-
ized timestamp is defined as si = i/(N − 1). Let the timestamp set be defined
as U = {si|i = 0, · · · , N − 1} and the key points set as Uk. We start from
Uk = {s0, sN−1} having the start and end points and gradually append other
si into Uk. The process can be illustrated in Fig. 3(b), whereby for each itera-
tion, we greedily select the timestamps s∗ which maximizes the overlap between
the interpolated tube and ground-truth A as in Eq. 5, and append this times-
tamp into Uk. The process stops when the IOU between interpolated tube and
ground-truth tube is larger than a predefined threshold ε.

s∗ = arg max
si∈U/Uk

IOU (Interp(Uk ∪ {si}),A) (5)

Here, the function Interp(·) can be any polynomial interpolation over the input
timestamp set. To avoid the large numerical oscillation around the endpoint, we
choose the piece-wise cubic spline interpolation in this paper as instantiation.
We assign feature samples in Uk with label 1 and samples in U/Uk with label
0. We utilize these labels to train the timestamp selector network with binary
cross-entropy loss.

Sample-Wise Location Refinement. In the Refine Module, the selected 2D
features are first processed by cascaded 2D convolution blocks (shown in Fig. 2),
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then a class-specific regional proposal network (RPN) [23] is applied over these
features to generate bounding box proposals at corresponding timestamps. With
the estimated action tube function Â(t;θ), we can now obtain the estimated
action bounding boxes at i-th sampled timestamps si with Eq. 6, where dec(·)
is the inverse operation of enc(·, ·) in Eq. 3.

x̂i, ŷi, ŵi, ĥi = dec
(
Â(si;θ)

)
(6)

We design a simple local search scheme to refine the estimated bounding box
at selected key timestamps. For each selected 2D sample, a searching area Ω is
defined as,

Ω = [x̂i − σŵi, x̂i + σŵi] × [ŷi − σĥi, ŷi + σĥi] (7)

where σ is a hyperparameter that controls the size of searching area. We choose
the action box proposal (from RPN) with the largest score where its center is
located inside Ω, as the replacement of the original coarsely estimated box.

The final output action tube is obtained via interpolation over all refined
boxes and unrefined bounding boxes (localized via Eq. 6). The associated action
score is the smooth average of classification score and RPN score.

4 Experiment Results

4.1 Experiment Configuration

Datasets. We conduct our experiment on three common datasets for the task
of action tube detection – UCF101-24, UCFSports and JHMDB-21 datasets.
Although the AVA [7] dataset also includes bounding box annotations, it mainly
focuses on the problem of atomic action classification on sparse single key frames
instead of spatiotemporal action detection at the video level, which is the task
we are focusing here. Hence, we did not conduct our experiments on the AVA
dataset.

The UCF101-24 dataset [31] contains 3,207 untrimmed videos with frame
level bounding box annotations for 24 sports categories. The dataset is chal-
lenging due to frequent camera shake, dynamic actor movements and a large
variance in action duration. Following previous works [26], we report results for
the first split with 2,275 videos for training and the other videos for validation.
We use the corrected annotation [29] for model training and evaluation. The
JHMDB-21 is a subset of HMDB-51 dataset [14], which contains a total of 928
videos with 21 types of actions. All video sequences are temporally trimmed.
The results are reported as the average performance over 3 train-val splits. The
UCFSports dataset [24] contains 150 trimmed videos in total and we report the
results on the first split. Note that although videos in JHMDB-21 and UCFS-
ports are trimmed temporally, their samples are still suitable for our framework
as they comprised mostly of cases where actions span the whole video.
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Table 1. Ablation study on the effectiveness of refinement with different hyperparam-
eter settings.

UCF101-24 JHMDB-21

k 2 3 4 5 1 2 3

no refine 46.0 48.4 51.6 50.1 79.7 80.9 80.3

σ = 0.4 57.5 57.6 58.8 58.0 80.8 82.5 81.3

σ = 0.6 59.9 60.1 61.7 60.0 81.4 83.2 82.4

σ = 0.8 60.3 62.0 62.7 61.6 82.3 83.7 83.2

Fig. 4. (a). v-MABO value of action tubes with different polynomial orders on UCF101-
24. (b) Time-performance trade-off with different timestamp selection schemes on
UCF101-24. (best viewed in color) (Color figure online)

Metrics. We report the video-mAP (v-mAP) [6] with different IOU thresh-
olds as our main evaluation metric for spatial-temporal action localization on
all datasets. In addition, frame-level mAP at threshold 0.5 is reported to eval-
uate per-frame detection performance. A proposal is regarded as positive when
its overlap with the ground-truth is larger than threshold δ. We also adopt
video-level mean Average Best Overlap (v-MABO) [15] in the ablation study to
evaluate the localization performance of our approach. The criterion calculates
the mean of largest overlap between ground-truth tubes and action proposals,
averaged over all classes.

Implementation Details. We use the I3D network [3] pretrained on Kinetics-
600 as our 3D feature extractor, taking the feature from mixed 5b layer as our 3D
feature. We set the video resampling length T to 96 frames for UCF101-24 and
32 frames for JHMDB-21 and UCFSports. The hyperparameter ε in our paper is
set to 0.8 and the segment length for matching K is set to 6 frames. The number
of sampling points N is set to 16 for UCF101-24, 6 for JHMDB-21 and 8 for
UCFSports according to the average length of action instances. For the anchor
design, we follow the strategy of [22] by clustering the bounding boxes from
training set into 6 centers and taking their respective center coordinates as the
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Fig. 5. Statistics of true positive and various false positive proposals of CFAD on
UCF101-24 and split-3 of JHMDB-21. (Best viewed in color) (Color figure online)

default anchor boxes. In the training phase, we train the network in two stages.
First, we train the temporal proposal network and backbone separately, and then
we jointly train the entire network end-to-end to learn the final action tubes. We
use the SGD solver to train CFAD with a batch size of 8. In inference stage, to
handle concurrent action instances, the Coarse Module outputs at most 3 (the
maximum number of instances in a video based on the datasets) estimated tubes
followed by a tube-wise non-maximal suppression process with IOU threshold of
0.2 in order to avoid duplicated action tubes.

4.2 Ablation Study

In this section, we report the video-mAP results with δ = 0.5 of various ablation
study experiments. The input modality is only RGB data unless specified.

The Effectiveness of Refinement. First, we analyze the effects of the refine-
ment process on the accuracy of coarse tube estimation on UCF101-24 and
JHMDB-21. The results are reported in Table 1 where “no refine” denotes the
configuration without location refinement. From these results, it is obvious that
the Refine Module can bring large improvements in v-mAP regardless of the
polynomial order of estimated tubes; the largest performance gain can be up to
+14.3% when k = 2 on UCF101-24. The improvement is less obvious on JHMDB-
21, which we think is owing to the fact that JHMDB-21 is less dynamic and
coarse-level estimations may be close to the ground-truth tubes. We also evalu-
ate the v-MABO value on UCF101-24 as shown in Fig. 4(a), where improvements
by at most +4.7% are possible by the refinement process. The results show that
the Refine component is essential to better detection performance.

Meanwhile, from Table 1, we can also see that as the searching area gets
larger, the mAP performance can be improved to some extent, since larger
searching area can cover more centers of action proposals. We did not try
larger searching area i.e. σ > 0.8 since we find the performance improvement
is marginal (less than +0.2%) beyond σ = 0.8. This is because larger searching
area also makes the refinement more vulnerable to noisy proposals.
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Polynomial Order Selection. We also report in Table 1 the effect of different
polynomial order k which decides the form of estimated tube mapping Â(t;θ).
Overall, we find that the performance improves along with the increase of k for
both with and without refinement, since higher order polynomial functions show
stronger ability in characterizing variations of action tubes.

On the other hand, we found that as the order gets larger (than k = 5 on
UCF101-24 and k = 3 on JHMDB-21), the detection performance drops com-
paratively against the optimal value in both cases. We think the reason behind
this is that although higher order polynomial functions are usually more repre-
sentative, they are more complex requiring more coefficients, and the parameters
predicting coefficients of higher orders are more difficult to be trained efficiently
since the corresponding gradients are very small. The similar tendency is also
reflected in the MABO results on UCF101-24 shown in Fig. 4(a), where the
localization did improve (for both refine and no refine cases) from k = 2 to
k = 4, but MABO drops after that with higher orders. Also, we observed during
training that configurations with a larger polynomial order tends to slow down
the convergence process and possibly result in numerical oscillation of the loss
function.

Effectiveness of Residual Processing Branch. Here, we conduct exper-
iments on UCF101-24 and JHMDB-21 to analyze how the temporal residual
information impacts the output action tube results. To test this, we remove the
branch with differential module (“Diff Block” in Fig. 2) as our baseline. For
a detailed comparison, we break down the final proposals into four mutually
exclusive types.

– True Positive: the proposal classifies an action correctly and has tube-
overlap with ground-truth that is larger than δ.

– Wrong Classification Error: a proposal with incorrectly classified action
although it overlaps more than δ with ground-truth.

– Bad Localization Error: a proposal that has correct action class but it
overlaps less than δ with ground-truth.

– Duplicated Detection Error: a proposal with correct action class and
overlaps more than δ with a ground-truth that has been detected.

Figure 5 illustrates the statistics of these proposals with/without the differential
module. From Fig. 5, we observe that the residual processing branch is particu-
larly important for accurate action classification. With the help of information
from the temporal residual feature, wrongly-classified samples are reduced by
42% on UCF101-24 and 14% on JHMDB-21. Furthermore, models with residual
processing also benefit from better tube localization while the overall recall also
improves due to the increase in true positive results. These results are evidential
of the effectiveness of temporal residual component in Coarse Module.

Key Timestamp Selection. We conduct an experiment on UCF101-24 to
analyze the impact of the proposed key timestamp selection mechanism. In the
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Table 2. Comparison with state-of-the-art methods (on video-mAP), ‘–’ denotes that
the result is not available, ‘+OF’ indicates the input is combined with optical flow.
All compared methods take both RGB and optical flow as input except [9,25]

Method JHMDB-21 UCF101-24 UCFSports

δ 0.2 0.5 0.75 0.5:0.95 0.2 0.3 0.5 0.5:0.95 0.2 0.5

2D backbone

Saha et al. [26] 72.6 71.5 – – 66.7 54.9 35.9 14.4 – –

Peng et al. [19] 74.3 73.1 – – 72.8 65.7 30.9 7.1 94.8 94.7

Saha et al. [25] 57.8 55.3 – – 63.1 51.7 33.0 10.7 – –

Kalogeiton et al. [15] 74.2 73.7 52.1 44.8 76.5 – 49.2 23.4 92.7 92.7

Singh et al. [29] 73.8 72.0 44.5 41.6 73.5 – 46.3 20.4 – –

Yang et al. [38] – – – – 76.6 – – – – –

Zhao et al. [39] – 58.0 42.8 34.6 75.5 - 48.3 23.9 – 92.7

Rizard et al. [20] 86.0 84.0 52.8 49.5 82.3 – 51.5 24.1 – –

Song et al. [30] 74.1 73.4 52.5 44.8 77.5 – 52.9 24.1 – –

Li et al. [16] 82.7 81.3 – – 76.3 71.4 – – 97.8 97.8

Li et al. [17] 77.3 77.2 71.7 59.1 82.8 – 53.8 28.3 – –

3D backbone

Hou et al. [9] 78.4 76.9 – – 73.1 69.4 – – 95.2 95.2

Gu et al. [7] – 76.3 – – – – 59.9 – – –

Su et al. [32] 82.6 82.2 63.1 52.8 84.3 – 61.0 27.8 – –

Qiu et al. [21] 85.7 84.9 – – 82.2 75.6 – – - –

CFAD 84.8 83.7 62.4 51.8 79.4 76.7 62.7 25.5 90.2 88.6

CFAD+OF 86.8 85.3 63.8 53.0 81.6 78.1 64.6 26.7 94.5 92.7

experiment setting, we gradually increase the selection threshold α from 0.15 to
0.45 (in increments of 0.1) and report their respective v-mAP value and per-
frame time cost. For comparisons, we design two baseline methods: (1) Random
selection of samples from the input N 2D features with their corresponding
timestamps taken as key timestamps, denoted as “random”. (2) Selection of
timestamps across si based on a fixed time step, denoted as “uniform”.

The time-performance trade-off curves are shown in Fig. 4(b). We can observe
that when the per-frame time costs are similar, our dynamic selection scheme is
superior to the other two baseline methods. It is also worth noting that when the
time cost gets smaller, the performance of “random” and “uniform” deteriorates
faster than our scheme. This result indicates that the key timestamp selection
process finds the important frames for location refinement and is reasonably
robust to the reduction of available 2D features.

4.3 Comparison with State-of-the-Art

In this section, we compare the proposed CFAD with other recent state-of-the-art
approaches in the spatio-temporal action localization task on the UCF101-24,
JHMDB-21 and UCFSports benchmarks. These results are listed in Table 2.
We also evaluate the performance of CFAD with two-stream input, where the
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Table 3. Comparison with state-of-the-art methods on frame-level mAP@0.5 on
UCF101-24 dataset. ‘+OF’ indicates the input is combined with optical flow.

Method Input modal Frame-mAP@0.5

Peng et al. [19] RGB+OF 65.7

Kalogeiton et al. [15] RGB+OF 69.5

Yang et al. [38] RGB+OF 75.0

Rizard et al. [20] RGB+OF 73.7

Song et al. [30] RGB+OF 72.1

Gu et al. [7] RGB+OF 76.3

CFAD RGB+OF 72.5

Hou et al. [9] RGB 41.4

Yang et al. [38] RGB 66.7

CFAD RGB 69.7

Fig. 6. (a). Comparisons of time-performance trade-off among different state-of-the-art
approaches. (b). Comparisons of trade-off between model size and performance among
different state-of-the-art approaches. (Best viewed in color) (Color figure online)

optical flow is extracted using the method of [2]. For simplicity, we opt for an
early fusion strategy [39] to maintain efficiency of our approach.

It is worth noting that in Table 2, our method with only RGB input out-
performs most other approaches that rely on two-stream features on UCF101-
24 and JHMDB-21. While it is still worse than the state-of-the-art method
on UCFSports, we think the reasons behind this can be that this dataset is
relatively simpler and smaller in scale with less dynamic movements, thus it
could be more challenging to learn robust tube estimation. For fair benchmark-
ing, we compare our method with other approaches utilizing 3D spatiotemporal
features [7,9,21,32]. With RGB as input, CFAD achieves competitive perfor-
mance on all datasets under different tested threshold criterion. Overall, our
method achieves state-of-the-art under small threshold while there is still a mar-
gin towards the performance of [17,32] under more strict criterion. Besides, we
also observe that the optical flow information is helpful for the overall detection
performance.
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Fig. 7. Visualization of detected action tubes. The green boxes denote the estimated
action tubes from the Coarse Module. The red boxes are the final refined action tubes.
(Best viewed in color) (Color figure online)

Frame-mAP. In Table 3, we compare CFAD with other approaches on frame-
level detection in UCF101-24. In our setting, we assign the video level score
of a tube proposal to all boxes included by the tube to generate frame-level
proposals. It can be observed that CFAD outperforms three pipelines with two-
stream input. While it is still worse than some approaches [7,20,38], we think
this is due to the less accurate interpolated boxes between sampled frames, which
might result in many false positives with high score (which in turn lowers the
overall metric). We argue that although such interpolation sacrifices frame-level
accuracy, it enhances the system efficiency and video-level accuracy in return.

Efficiency. We also compare the runtime (inference) and model size of CFAD
with RGB input on UCF101-24 against other approaches that also report their
runtime. The speed is evaluated based on per-frame processing time, which is
obtained by taking the runtime per video and dividing it by input length T .
Since some other works only reported per-video time on JHMDB-21 [25,26], we
compute their per-frame time in the same manner. The runtime comparison is
illustrated in Fig. 6(a) and the model size comparison is reported in Fig. 6(b). We
observe that CFAD only requires a small number of parameters (close to [29,39],
and much less than others) while achieving superior running speed compared to
other state-of-the-art methods. This vast improvement in processing efficiency
can be attributed to the coarse-to-fine paradigm of CFAD, which does not require
dense per-frame action detection followed by linking, and the RGB input of
CFAD avoids the additional computation to process optical flow. Specifically,
the proposed CFAD runs ≈3.3× faster than the nearest approach [29] (7.6 ms
vs. 25 ms).

4.4 Qualitative Results

Figure 7 shows some qualitative results of detected action tubes from the
UCF101-24 dataset. The green boxes denote the estimated action tube
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output from the Coarse Module while the red boxes are the refined action tubes.
We can observe that the selective refinement process has effectively corrected
some poorly located action tubes, causing the bounding boxes to wrap tighter
and more accurately around the actors. These visuals can evidently explain the
robustness of the coarse tube estimation method, and its capability at handling
a variety of dynamic actions.

5 Conclusion

In this paper, we propose a novel framework CFAD for spatio-temporal action
localization. Its pipeline follows a new coarse-to-fine paradigm, which does away
with the need for dense per-frame detections. The action detector comprises of
two components (Coarse and Refine Modules) which play vital roles in coarsely
estimating and then refining action tubes based on selected timestamps. Our
CFAD achieves state-of-the-art results for a good range of thresholds on bench-
mark datasets and is also an efficient pipeline, running at 3.3× faster than the
nearest competitor.
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