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A Diffusion and Clustering-Based Approach for
Finding Coherent Motions and Understanding

Crowd Scenes
Weiyao Lin, Yang Mi, Weiyue Wang, Jianxin Wu, Jingdong Wang, and Tao Mei

Abstract— This paper addresses the problem of detecting
coherent motions in crowd scenes and presents its two appli-
cations in crowd scene understanding: semantic region detec-
tion and recurrent activity mining. It processes input motion
fields (e.g., optical flow fields) and produces a coherent motion
field named thermal energy field. The thermal energy field is
able to capture both motion correlation among particles and
the motion trends of individual particles, which are helpful
to discover coherency among them. We further introduce a
two-step clustering process to construct stable semantic regions
from the extracted time-varying coherent motions. These seman-
tic regions can be used to recognize pre-defined activities in
crowd scenes. Finally, we introduce a cluster-and-merge process,
which automatically discovers recurrent activities in crowd scenes
by clustering and merging the extracted coherent motions.
Experiments on various videos demonstrate the effectiveness of
our approach.

Index Terms— Coherent motion detection, semantic region
construction, recurrent activity mining.

I. INTRODUCTION

COHERENT motions, which represent coherent move-
ments of massive individual particles, are pervasive in

natural and social scenarios. Examples include traffic flows
and parades of people (cf. Figs 1a and 2a). Since coherent
motions can effectively decompose scenes into meaningful
semantic parts and facilitate the analysis of complex crowd
scenes, they are of increasing importance in crowd-scene
understanding and activity recognition [2]–[6].

In this paper, we address the problem of detecting coher-
ent motions in crowd scenes, and subsequently using them
to understand input scenes. More specifically, we focus
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Fig. 1. (a) Example frame of a Marathon video sequence, the red curve is
the coherent motion region; (b) Input motion vector field of (a); (c) Coherent
motion field from (b) using the proposed approach (Best viewed in color).

on 1) constructing an accurate coherent motion field to find
coherent motions, 2) finding stable semantic regions based on
the detected coherent motions and using them to recognize pre-
defined activities (i.e., activities with labeled training data) in
a crowd scene, and 3) automatically mining recurrent activities
in a crowd scene based on the detected coherent motions and
semantic regions.

First, constructing an accurate coherent motion field is
crucial in detecting reliable coherent motions. In Fig. 1, (b)
is the input motion field and (c) is the coherent motion field
which is constructed from (b) using the proposed approach.
In (b), the motion vectors of particles at the beginning of
the Marathon queue are far different from those at the end,
and there are many inaccurate optical flow vectors. Due to
such variations and input errors, it is difficult to achieve
satisfying coherent motion detection results directly from (b).
However, by transferring (b) into a coherent motion field
where the coherent motions among particles are suitably
highlighted in (c), coherent motion detection is greatly facil-
itated. Although many algorithms have been proposed for
coherent motion detection [2], [8]–[10], this problem is not yet
effectively addressed. We argue that a good coherent motion
field should effectively be able to 1) encode motion correlation
among particles, such that particles with high correlations can
be grouped into the same coherent region; and, 2) maintain
motion information of individual particles, such that activities
in crowd scenes can be effectively parsed by the extracted
coherent motion field. Based on these intuitions, we propose a
thermal-diffusion-based approach, which can extract accurate
coherent motion fields.

Second, constructing meaningful semantic regions to
describe activity patterns in a scene is also essential.
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Fig. 2. (a) Example time-varying coherent motions in a scene, where different
coherent motions are circled by curves with different color; (b) Constructed
semantic regions for the scene in (a); (c) Recurrent activities for the scene
in (a), where the arrows represent the major motion flows in each recurrent
activity (Best viewed in color).

Coherent motions at different times may vary widely.
In Fig. 2a, changing of traffic lights will lead to different
coherent motions. Coherent motions alone may not effectively
describe the overall semantic patterns in a scene either. There-
fore, semantic regions need to be extracted from these time-
varying coherent motions to achieve stable and meaningful
semantic patterns, as in Fig. 2b. However, most existing works
only focus on the detection of coherent motions at some
specific time, while the problem of handling time-varying
coherent motions is less studied. We proposed a two-step
clustering process for this purpose.

Third, mining recurrent activities is another important
issue. Many crowd scenes are composed of recurrent
activities [11]–[13]. For example, the scene in Fig. 2 is com-
posed of recurrent activities including vertical motion activities
and horizontal motion activities, as in Fig. 2c. Automatically
mining these recurrent activities is important in understanding
scene contents and their dynamics. Although many researches
have been done for parsing recurrent activities in low-crowd
scenes [14]–[17], this issue is not well addressed in crowd
scene scenarios where reliable motion trajectories are unavail-
able. We proposed a cluster-and-merge process, which can
effectively extract recurrent activities in crowd scenes.

Our contributions to crowd scene understanding and activity
recognition are summarized as follows.

1) We introduce a coarse-to-fine thermal diffusion process
to transfer an input motion field into a thermal energy
field (TEF), which is a more accurate coherent motion
field. TEF effectively encodes both motion correlation
among particles and motion trends of individual par-
ticles. To our knowledge, this is the first work that
introduces thermal diffusion to detect coherent motions
in crowd scenes. We also introduce a triangulation-
based scheme to effectively identify coherent motion
components from the TEF.

2) We present a two-step clustering scheme to find semantic
regions according to the correlations among coherent
motions. The found semantic regions can effectively
catch activity patterns in a scene. Thus good perfor-
mance can be achieved when recognizing pre-defined
crowd activities based on these semantic regions.

3) We propose a cluster-and-merge process to automatically
mine recurrent activities by clustering and merging the
coherent motions. The obtained recurrent activities can

accurately describe recurrent motion patterns in a crowd
scene.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III describes the
framework of the proposed approach. Sections IV to VI
describe the details of our proposed thermal diffusion process,
triangulation scheme, two-step clustering scheme, and cluster-
and-merge process. Section VII shows the experimental results
and Section VIII concludes the paper.

II. RELATED WORKS

Many works [2], [7]–[10], [18]–[22] have been proposed
on coherent motion detection. Due to the complex nature of
crowd scenes, they are not yet mature for accurate detec-
tion of coherent motion fields. Cremers and Soatto [20] and
Brox et al. [21] model the intensity variation of optical
flow by an objective functional minimization scheme. These
methods are only suitable for motions with simple patterns and
cannot effectively analyze complex crowd patterns such as the
circular flow in Fig. 1a. Other works introduce external spatial-
temporal correlation traits to model the motion coherency
among particles [8]–[10]. Since these methods model par-
ticle correlations in more precise ways, they can achieve
more satisfying results. However, most of these methods only
consider short-distance particle motion correlation within a
local region while neglecting long-distance correlation among
distant particles, they have limitations in handling low-density
or disconnected coherent motions where the long-distance
correlation is essential. Furthermore, without the information
from distant particles, these methods are also less effective
in identifying coherent motion regions in the case when local
coherent motion patterns are close to their neighboring back-
grounds. One example of this kind of scenario is showcased
in the region B in Fig. 1b.

There are also other works related to motion modeling.
One line of related works is advanced optical flow estimation.
These methods try to improve the estimation accuracy of
the input motion field by including global constraints over
particles [23]–[26]. The focus of our approach is different from
these methods. We focus on enhancing the correlation among
coherent particles to facilitate coherent motion detection. Thus,
the motion vectors of coherent particles are enhanced even if
their actual motions are small, such as the region B in Figs 1b
and 1c. In contrast, advanced optical flow estimation methods
focus on estimating the actual motion of particles. They are
still less capable of creating precise results when applied to
coherent motion detection.

The anisotropic diffusion based methods, used in image
segmentation, is also related to our work [27]–[29]. Our
approach differs from these methods. First, our approach
not only embeds the motion correlation among particles, but
also suitably maintains the original motion information from
the input motion vector field. Comparatively, the anisotropic-
diffusion-based methods are more focused on enhancing the
correlation among particles while neglecting the particles’
original information. As aforementioned, maintaining particle
motion information is important in parsing crowd scenes.
More importantly, due to the complex nature of crowd scenes,
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Fig. 3. The flowchart of the proposed approach (best viewed in color).

many coherent region boundaries are vague, subtle and
unrecognizable. Simply applying the anisotropic-diffusion
methods cannot identify the ideal boundaries. The proposed
thermal diffusion process can achieve more satisfying results
by modeling the motion direction, strength, and spatial corre-
lation among particles.

Besides coherent motion detection, it is also important
to utilize coherent motions to recognize pre-defined crowd
activities. However, most existing coherent motion works
only focus on the extraction of coherent motions while the
recognition of crowd activities is much less studied. In [7], Ali
and Shah detected instability regions in a scene by comparing
with its normal coherent motions. However, they assume
coherent motions to be stable, while in practice, many coherent
motions may vary widely over time, making it difficult to con-
struct stable normal coherent motions. Furthermore, besides
the works on coherent motion, there are also other works
which directly extract global features from the entire scene to
recognize crowd activities [3], [30]. However, since they do not
consider the semantic region correlations inside the scene, they
have limitations in differentiating subtle differences among
activities. Although there are some works [4], [31] which
recognize crowd activities by segmenting scenes into semantic
regions, our approach differs from them. Our approach finds
the semantic regions by first extracting global coherent motion
information, while these methods construct semantic regions
from the particles’ local features. As will be shown later,
information from the coherent motions can effectively enhance
the correlation among particles, resulting in more meaningful
semantic regions to facilitate activity recognition.

Furthermore, pre-defining or labeling crowd activities
requires lots of human labors, making it desirable to auto-
matically discover activity patterns in a crowd video without
human intervention. In [16], Morris and Trivedi clustered tra-
jectories into groups and modeled the spatio-temporal dynamic
patterns of each trajectory group by Hidden Markov Models.
Wang et al. [14] and Hu et al. [15] further introduced
Dirichlet processes to model the activity patterns of differ-
ent trajectory groups. However, since these methods extract
recurrent activities from motion trajectories, they are not
suitable for crowd scene scenarios where reliable trajectories
are difficult to achieve. Besides using motion trajectories,
other researches tried to find recurrent activities by extracting

low-level or short-term motion features. For example,
Zhou et al. [13] extracted fragments of trajectories (called
tracklets) and utilized a Latent Dirichlet Allocation topic
model to infer recurrent activities. Emonet et al. [11] and
Jagannadan et al. [12] extracted low-level motion flows
as motion descriptors and introduced a Probabilistic Latent
Sequential Motif (PLSM) model to achieve recurrent activities.
Although these methods can be applied in crowd scenes, they
still have limitations in obtaining precise recurrent activity
patterns under scenes with complex motions. Our approach
differs from the previous methods in that 1) Our approach
utilizes coherent motions to discover recurrent activities. Since
coherent motions can effectively catch the local activity pattern
in each frame, more precise recurrent activities can be achieved
by our approach, 2) Our approach also extracts flow curves to
describe and visualize recurrent activities. Compared with the
previous methods which described recurrent activities by tra-
jectory clusters or probability densities, the flow curves derived
by our approach can visualize recurrent activity patterns in a
clearer and more straightforward way.

III. OVERVIEW OF THE APPROACH

The framework of the proposed approach is shown in Fig. 3.
The optical flow fields [7], [32] are first extracted from input
videos. Secondly, the coarse-to-fine thermal diffusion process
is applied to transfer the input motion fields into coherent
motion fields, i.e., thermal energy fields (TEFs). Thirdly, the
triangulation-based scheme is applied to identify coherent
motions. Fourthly, with the obtained coherent motions, the
two-step clustering scheme is performed to cluster coherent
motions from multiple TEFs and construct semantic regions
for the target scene. Finally, based on these semantic regions,
we can extract effective features to describe crowd activities in
the scene and recognize pre-defined crowd activities accord-
ingly. At the same time, the cluster-and-merge process is also
applied based on the extracted coherent motions and semantic
regions to discover recurrent activities in the target scene.
These proposed techniques are described in the following
sections in detail.

IV. FINDING COHERENT MOTIONS

In order to find accurate coherent motions, it is important
to construct a coherent motion field to highlight the motion
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correlation among particles while still maintaining the original
motion information. To achieve this requirement, we introduce
a thermal diffusion process to model particle correlations.
Given an input optical flow field, we view each particle
(i.e., each pixel in a frame) as a “heat source” and it can diffuse
energies to influence other particles. By suitably modeling this
thermal diffusion process, precise correlation among particles
can be achieved. The formulation is motivated by the following
intuitions:

1) Particles farther from heat source should achieve fewer
thermal energies;

2) Particles residing in the motion direction of the heat
source particle should receive more thermal energies;

3) Heat source particles with larger motions should carry
more thermal energies.

A. Thermal Diffusion Process

Based on the above discussions, we borrow the idea from
physical thermal propagation [33] and model the thermal
diffusion process by Eq. 1:

∂EP,l

∂l
= k2

p

(
∂2EP,l

∂x2 + ∂2EP,l

∂y2

)
+ FP (1)

where EP,l = [E x
P,l, E y

P,l] is the thermal energy for the particle

at location P = (px , py) after performing thermal diffusion
for l seconds, FP = [ f x

P , f y
P ] is the input motion vector for

particle P, k p is the propagation coefficient.
The first term in Eq. 1 models the propagation of thermal

energies over free space such that the spatial correlation among
particles can be properly enhanced during thermal diffusion.
The second term FP can be viewed as the external force added
on the particle to affect its diffusion behavior, which preserves
the original motion patterns. The inclusion of this term is one
of the major differences between the proposed approach and
the anisotropic-diffusion methods [29]. Without the FP term,
Eq. 1 can be solved by:

EP,l = 1

wh

∑
Q∈I,Q�=P

eP,l (Q) (2)

where EP,l is the final diffused thermal energy for particle P
after l seconds, I is the set of all particles in the frame, w and h
are width and height of the frame. The individual thermal
energy eP,l (Q) = [ex

P,l (Q) , ey
P,l (Q)] is diffused from the heat

source particle Q = (qx , q y) to particle P after l seconds,
defined as:

eγ
P,l (Q) = uγ

Q · e
−kp

l ||P−Q||2 (3)

where γ ∈ {x, y}, UQ = (ux
Q, uy

Q) is the current motion pattern

for the heat source particle Q and it is initialized by UQ = FQ,
||P − Q|| is the distance between particles P and Q. In this
paper, we fix l to be 1 to eliminate its effect.

However, when F in Eq. 1 is non-zero, it is difficult to get
the exact solution for Eq. 1. So we introduce an additional term
e−k f |FQ·(P−Q)| to approximate the influence of FQ where k f

is a force propagation factor. Moreover, in order to prevent
unrelated particles from accepting too much heat from Q,

Fig. 4. (a),(b): One input optical flow field and its thermal energy field;
(c), (d): Individual thermal diffusion result by diffusing from a single heat
source particle A and B to the entire field.

we restrict that only highly correlated particles will propagate
energies to each other. The final individual thermal energy
from Q to P is:

eγ
P,l (Q) = uγ

Q × e−kp ||P−Q||2 × e−k f |FQ·(P−Q)| (4)

if cos(FP, FQ) ≥ θc and is 0 if otherwise, where FP and FQ are
the input motion vectors of the current particle P and the heat
source particle Q, and cos(FP, FQ) is the cosine similarity,
θc is a threshold. In our experiments, kp, k f , and θc are set
to be 0.2, 0.8, 0.7, which are decided from the experimental
statistics.

From Eq. 2, we see that the diffused thermal energy EP
is the summation from all other particles, which encodes the
correlation among P and all other particles in the frame. Fur-
thermore, in Eq. 4, the first term preserves the motion pattern
of the heat source. The second term considers the spatial
correlation between source and target particles. The third term
guarantees that particles along the motion direction of the
heat source receives more thermal energies. Furthermore, the
cosine similarity cos(FP, FQ) is introduced in Eq. 4 such that
particle P will not accept energy from Q if their input motion
vectors are far different (or less-coherent) from each other.
That is, Eq. 4 successfully satisfies all the intuitions.

Fig. 4 shows one example of the thermal diffusion process,
which reveals that:

1) Comparing Figs 4b and 4a, the original motion infor-
mation is indeed preseved in the TEF. Moreover, TEF
further strengthens particle motion coherency by ther-
mal diffusion, which integrates the influence among
particles. Coherent motions become more recognizable,
thus more accurate coherent motion extraction can be
achieved.

2) From Fig. 4c, we can see that the thermal energy
for each heat source particle is propagated in a sector
shape. Particles along the motion direction of the heat
source (C and D) receive more energies than particles
outside the motion direction (such as E). In Fig. 4d,
since particles on the lower side of the heat source B
have small (cosine) motion similarities with B, they do
not accept thermal energies.

B. The Coarse-to-Fine Scheme

Although Eqs 2 and 4 can effectively strengthen the
coherency among particles, it is based on a single input
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Algorithm 1 Coarse-to-Fine Thermal Diffusion Process

Fig. 5. (a), (b): An input video frame and its input motion vector
field; (c), (d): TEF results of Algorithm 1 after 1 and 3 iterations, respectively
(Tmax = 5 and Tstep = 1).

motion field, and only short-term motion information is con-
sidered, which is volatile and noisy. Thus, we propose a
coarse-to-fine scheme to include long-term motion informa-
tion. The entire coarse-to-fine thermal diffusion process is
described in Algorithm 1.

The long-term motion vector field with a large frame
interval Tmax is first calculated and used to create the ther-
mal energy field. Then, the TEF is iteratively updated with
shorter-term motion vector fields, i.e., FP(T ) with smaller T .
Figs 5a to 5d show the TEF results after different iteration
numbers. When more iterations are performed, more motion
information with different intervals will be included in the
thermal diffusion process. Thus, more precise results can be
achieved in the TEF, as in Fig. 5d. Fig. 1c shows another TEF
result after the entire coarse-to-fine thermal diffusion scheme.
We find that:

1) TEF is an enhanced version of the input motion where
particles’ energy directions in the TEF are similar to
their original motion directions. Besides, since TEF
include both the motion correlation among particles and

the short-/long-term motion information among frames,
coherent motions are effectively strengthened and high-
lighted in TEF.

2) As mentioned, input motion vectors may be disordered,
e.g., region A in Fig 1b. However, the thermal energies
from other particles can help recognize these disordered
motion vectors and make them coherent, e.g., Fig. 1c.

3) Input motion vectors may be extremely small due to
slow motion or occlusion by other objects (region B in
Fig. 1b and region C in Fig. 5b). It is very difficult to
include these particles into the coherent region by tra-
ditional methods [7]–[10] because they are close to the
background motion vector. However, TEF can strengthen
these small motion vectors by diffusing thermal energies
from distant particles with larger motions.

C. Finding Coherent Motions Through Triangulation

Coherent motion regions can be achieved by performing
segmentation on the TEF. We propose a triangulation-based
scheme as follows:

Step 1 (Triangulation): In this step, we randomly sample
particles from the entire scene and apply the triangulation
process [34] to link the sampled particles. The block labeled
as “triangulation” in Fig. 3 shows one triangulation result,
where red dots are the sampled particles and the lines are
links created by the triangulation process [34].

Step 2 (Boundary Detection): We first obtain each triangu-
lation link weight by:

ω (P, Q) = ||EP − EQ||
||P − Q|| (5)

where P and Q are two connected particles, EP and EQ are
the thermal energy vectors of P and Q in the TEF. A large
weight will be assigned if the connected particles are from
different coherent motion regions (i.e., they have different
thermal energy vectors). Thus, by thresholding on the link
weights, we can find links crossing the boundaries. The block
labeled as “detected region boundary” in Fig. 3 shows one
boundary detection result after step 2.

Step 3 (Coherent Motion Segmentation): Then, coherent
motions can be easily segmented and we use the watershed
algorithm [35]. The final coherent motions are shown in the
block named “detected coherent motions” in Fig. 3.

V. CONSTRUCTING SEMANTIC REGIONS

With the extracted coherent motions, accurate motion infor-
mation in a frame can be achieved. However, since coherent
motions vary over time, it is essential to construct semantic
regions from time-varying coherent motions to catch stable
semantic patterns inside a scene. For this purpose, we propose
a two-step clustering scheme. Assuming that in total M
coherent motions (Cm , m = 1, ..., M) from N TEFs extracted
at N times, the two-step clustering scheme is:

Step 1 (Cluster Coherent Motion Regions): The similarity
between two coherent motions Cm and Ck is computed as:

SC (Cm, Ck) = #{(P, Q)|P ∈ Lm , Q ∈ Lk ,

cos(EP, EQ) · e−kp ||P−Q||2 > θbp} (6)
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Fig. 6. (a) Step 1: Coherent regions in the three TEFs have been assigned
different cluster labels by Step 1 and are displayed in different colors);
(b) Find semantic regions by clustering the cluster label vectors of the particles
(best viewed in color).

where #{·} is the number of elements in a set. θbp is a
threshold which is set to be the same as θc in Eq. 4 in
our experiments. Furthermore, Lm and Lk are the sets of
“indicative particles” for Cm and Ck :

Lm = {P| cos(EP, VP) > θc, P is on the boundary of Cm}
Lk = {Q| cos(EQ, VQ) > θc, Q is on the boundary of Ck} (7)

where VP = [vx
P, v

y
P] is the outer normal vector at P, i.e., per-

pendicular to the boundary and pointing outward the coherent
motion region, θc is the same threshold as in the condition for
Eq. 4. That is, only particles which are on the boundaries of
the coherent motion region and whose thermal energy vectors
sharply point outward the region are selected as the indicative
particles. Thus, we can avoid noisy particles and substantially
reduce the required computations.

From Eq. 6, we can see that we first extract the indicative
particles, then only utilize those high-correlation pairs, and the
total number of such pairs are the similarity value between two
coherent motions. It should be noted that the similarity will
be calculated between any coherent motion pairs even if they
belong to different TEFs.

Then, we construct a similarity graph for the M coherent
motions, and perform clustering [36] on this similarity graph
with the optimal number of clusters being determined auto-
matically, the cluster results are grouped coherent regions.

Step 2 (Cluster to Find Semantic Regions): Each coherent
motion is assigned a cluster label in Step 1, as illustrated in
Fig. 6a. However, due to the variation of coherent motions
at different times, there exist many ambiguous particles. For
example, in Fig. 6a, the yellow cross particle belongs to
different coherent motion clusters in different TEFs. This
makes it difficult to directly use the clustered coherent motion
results to construct reliable semantic regions. In order to
address this problem, we further propose to encode particles
in each TEF by the cluster labels of the particles’ affiliated
coherent motions. And by concatenating the cluster labels over
different TEFs, we can construct a “cluster label” vector for
each particle, as in Fig. 6a And with these label vectors, the
same spectral clustering process as Step 1 can be performed on
the particles to achieve the final semantic regions, as in Fig. 6b.

Fig. 7. (a) Directly segmenting semantic regions according to the particles’
local features. (b) Segmenting semantic regions with the guidance of coherent
motion clusters.

Comparing with previous semantic region segmentation
methods [4], [31] which perform clustering using local simi-
larity among particles, our scheme utilizes the guidance from
the global coherent motion clustering results to strengthen
the correlations among particles. For example, in Fig. 7a,
when directly segmenting the particles by their local features,
its accuracy may be limited due to similar distances among
particles. However, by utilizing cluster labels to encode the
particles, similarities among particles can be suitably enhanced
by the global coherent cluster information, as in Fig. 7b. Thus,
more precise segmentation results can be achieved.

A. Recognizing Pre-Defined Activities

Based on the constructed semantic regions, we are able
to recognize pre-defined activities (i.e., activities with labeled
training data) in the scene. In this paper, we simply average
the TEF vectors in each semantic region and concatenate these
averaged TEF vectors as the final feature vector for describing
the activity patterns in a TEF. Then, a linear support vector
machine (SVM) [37] is utilized to train and recognize pre-
defined activities. Experimental results show that with accurate
TEF and precise semantic regions, we can achieve satisfying
results using this simple method.

B. Merging Disconnected Coherent Motions

Since TEF also includes long-distance correlations between
distant particles, by performing our clustering scheme, we
also have the advantage of effectively merging disconnected
coherent motions, which may be caused by the occlusion
from other objects or low density of the crowd. For examples,
the two disconnected blue regions in the right-most figure in
Fig. 6a are merged into the same cluster by our approach.
Note that this issue is not well studied in the existing coherent
motion research.

VI. MINING RECURRENT ACTIVITIES

With the extracted coherent motions and constructed seman-
tic regions, crowd activities can be recognized by constructing
and pre-labeling training data, as in Section V-A. However,
since pre-defining or labeling crowd activities take lots of
human labors, it is also desirable to automatically mine
recurrent activity patterns in a crowd scene without human
intervention. For this purpose, we propose a cluster-and-marge
process which includes three steps: frame-level clustering,
coherent motion merging, and flow curve extraction.
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Fig. 8. Example of matched and unmatched coherent motion region sets
(best viewed in color).

A. Frame-Level Clustering

The frame-level clustering step clusters frames according
to the extracted coherent motions and semantic regions, such
that frames with the same recurrent activity pattern can be
organized into the same group. In this paper, we first calculate
inter-frame similarities for all frame pairs and then utilize
spectral clustering [36] to cluster frames according to these
inter-frame similarities.

In order to calculate the inter-frame similarity between
frames t and t − τ , the similarities between all coherent
motions from frames t and t − τ are first calculated using
Eq. 6. Then, the inter-frame similarity SF (t, t − τ ) can be
achieved from these coherent motion similarities and the
segmented semantic regions. More specifically, we define
SF (t, t − τ ) as

SF (t, t − τ ) = SFU (t, t − τ ) · SF M (t, t − τ ) (8)

where SF M (t, t − τ ) is the similarity for the matched coherent
motion pairs between t and t − τ , SFU (t, t − τ ) is the
similarity for the unmatched coherent motion regions in frames
t and t−τ . SF M (t, t − τ ) and SFU (t, t − τ ) can be calculated
by Eqs 9 and 10.

First, SF M (t, t − τ ) is defined as

SF M (t, t − τ ) =

∑
(Ct,i ,Ct−τ, j)∈Ht,t−τ

λi, j SC
(
Ct,i , Ct−τ, j

)

max{nt , nt−τ } (9)

where SC
(
Ct,i , Ct−τ, j

)
is the similarity between coherent

motion regions Ct,i and Ct−τ, j , λi, j is the corresponding
weight. nt and nt−τ are the total number of coherent motion
regions in frames t and t − τ , respectively. Ht,t−τ is the set
of all matched coherent region pairs. In this paper, Ht,t−τ and
λi, j are calculated by the Hungarian algorithm [38] which
can achieve optimal coherent motion matching results based
on the input coherent motion similarities. Furthermore, in
order to exclude dissimilar coherent motion pairs from the
matching result, coherent motion pairs

(
Ct,i , Ct−τ, j

)
with

small similarity values SC
(
Ct,i , Ct−τ, j

)
will be deleted from

Ht,t−τ . Fig. 8 shows an example of the matched coherent
motion pairs.

Fig. 9. Motion flows for two recurrent activities displayed over semantic
regions.

The next term SFU (t, t − τ ) is defined as

SFU (t, t − τ) =
∏

Ct−τ, j ∈Dt−τ

ε
(
Ct−τ, j

) ·
∏

Ct,i∈Dt

ε
(
Ct,i

)
(10)

where Dt−τ and Dt are the sets of unmatched coherent regions
in frames t − τ and t , as shown in Fig. 8. ε (C) is the
unmatching cost for coherent motion region C:

ε (C) =
∑

Rk ,Rk∩C �=∅
1

ρ (Rk)

#{Rk|Rk ∩ C �= ∅} (11)

where Rk is the k-th semantic region of the scene, the term
#{Rk|Rk ∩ C �= ∅} represents the total number of semantic
regions that have overlap with the coherent motion region C.
ρ (Rk) is the importance cost measuring whether semantic
region Rk is important in distinguishing different recurrent
activities. For example, assuming that a scene includes two
recurrent activities, as in Fig. 9, it is obvious that the semantic
region R2 on the right should have larger importance cost
since the two recurrent activity patterns have different motion
flows in R2. Comparatively, the semantic region R1 on the
left should have smaller importance cost since both recurrent
activity patterns have similar flows in R1. Therefore, when
calculating the similarity between frames t and t − τ , if
there exists an unmatched coherent region C in R2, a large
importance cost ρ (R2) will be applied to reduce the inter-
frame similarity, indicating that frames t and t − τ have
different recurrent activity patterns. On the contrary, if there
exists an unmatched coherent region C in R1, the inter-frame
similarity will be less affected since a coherent region in R1 is
less indicative of the differences between recurrent activities.

For ρ (Rk), we first perform a pre-clustering according to
the matched coherent motion similarities SF M (t, t − τ ) which
roughly clusters frames into different recurrent activity groups.
Then a vector is constructed for each semantic region Rk :[
NumRk ,G1, NumRk ,G2 , ..., NumRk ,GZ

]
where NumRk ,Gi is

the total number of coherent motions located in Rk in the i -th
pre-clustered recurrent activity group Gi , Z is the total number
of pre-clustered recurrent activity groups. Finally, ρ (Rk) can
be calculated by:

ρ (Rk) = eks ·var
{

NumRk ,G1 ,NumRk ,G2 ,...,NumRk ,GZ

}
(12)

where var{·} is the variance operation, ks = 1
Num f

2 where

Num f is the total number of frames to be clustered. According
to Eq. 12, if coherent motions appear evenly in Rk for different
recurrent activities, i.e., the variance is smaller, it implies
that Rk is less important in distinguishing different recurrent
activities. On the contrary, if the appearance time of coherent
motions in Rk has larger variation over different pre-clustered
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Algorithm 2 Frame-Level Clustering Process

recurrent activity groups, a large ρ (Rk) will be achieved to
increase the importance of Rk . The complete process of frame-
level clustering is illustrated in Algorithm 2.

B. Coherent Motion Merging

After frame-level clustering, frames are clustered into dif-
ferent recurrent activity groups. Thus, by parsing frames in
each recurrent activity group, complete motion patterns for
each recurrent activity can be estimated. In this paper, we
introduce a coherent motion merging step to merge similar
coherent motions from the same recurrent activity group for
achieving motion pattern regions. More specifically, we first
apply the same operation as Step 1 in the two-step clustering
scheme (Section V) to cluster coherent motion regions inside
the same recurrent activity group. Then, coherent motions of
the same cluster are merged together to form a motion pattern
region. The merging process can be described by Eq. 13
and Fig. 10.

EP,� j =
∑

Cm∈� j

EP,Cm

#{� j } (13)

if
#

{
EP,Cm |EP,Cm �= [0, 0], Cm ∈ � j

}
#{� j } > θm f , and it is

[0, 0] if otherwise, where � j the j -th coherent motion clus-

ter. EP,� j =
[

E
x
P,� j

, E
y
P,� j

]
is the merged motion vector

result for � j at particle P. Cm is a coherent motion region
belonging to coherent motion cluster � j . #{� j } is the total
number of coherent motion regions in cluster � j . θm f is
a threshold which is set as 0.4 in our experiments. EP,Cm

is the TEF thermal energy for Cm at particle P. Note that
EP,Cm is set to [0, 0] if P is outside the region of Cm . And
#

{
EP,Cm |EP,Cm �= [0, 0], Cm ∈ � j

}
is the total number of

non-zero TEF thermal energies at particle P and belonging
to � j .

According to Eq. 13, the merged motion pattern region
R� j = {EP,� j } for a coherent motion cluster � j is basically
the normalized summation over all coherent regions in � j .
Besides, we further introduce a threshold θm f to filter out noisy

Fig. 10. Process of similar coherent motion merging. Frames t and t − τ
are from the same recurrent activity group, the green coherent motion regions
in frames t and t − τ belong to one coherent motion cluster, and the blue
coherent motion regions in frames t and t − τ belong to another coherent
motion cluster. (Best viewed in color).

Fig. 11. Flow curve extraction process. Finding segmentation points, draw
straight lines to achieve sub-regions, and calculate centroids of each sub-
region; (b) Link centroids to achieve the extracted flow curve. (Best viewed
in color.)

or isolated particles which have low frequent motions in the
coherent motion cluster � j . An example of merged motion
pattern regions is shown in Fig. 10.

C. Flow Curve Extraction

The motion pattern regions achieved in the previous step can
represent the complete motion information for each recurrent
activity. However, since motion pattern regions may overlap
with each other and the contours of motion pattern regions may
also be irregular, it is necessary to extract flow curves from
these motion pattern regions such that recurrent activities can
be more clearly described and visualized.

Our proposed flow curve extraction process can be
described by Algorithm 3 and Fig. 11. According to
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Fig. 12. Coherent motion extraction results. (a): Ground Truth, (b): Results of our approach, (c): Results of [7], (d): Results of [8], (e): Results of [9],
(f): Results of [10], (g): Results of [40], (h): Results of [28]. (Best viewed in color).

Algorithm 3 Flow Curve Extraction

Algorithm 3 and Fig. 11, our approach first sequentially cuts a
motion pattern region R� j into sub-regions along the motion
direction in R� j . Then the centroids of sub-regions are linked

together to achieve the output flow curve. With the above
process, the extracted flow curve can accurately catch the
major motion flow of a motion pattern region. Furthermore,
it should be noted that in step 5 of Algorithm 3, if the
line perpendicular to the motion vector EPK+1,� j at PK+1 is
intersecting with a branched motion region (i.e., the motion
region diverges around PK+1), multiple Pmov,s points will be
achieved and the following flow curve extraction process will
be performed on each Pmov,s respectively. In this way, we can
properly achieve branched flow curves at the branch region.

VII. EXPERIMENTAL RESULTS

Our approach is implemented by Matlab and the optical flow
fields [32] are used as the input motion vector fields while each
pixel in the frame is viewed as a particle. In order to achieve
motion vector fields with T -frame intervals (T = 10 in our
experiments), the particle advection method [7] is used which
tracks the movement of each particle over T frames.

A. Results for Coherent Motion Detection

We perform experiments on a dataset including 30 different
crowd videos collected from the UCF dataset [7], the UCSD
dataset [39], the CUHK dataset [10], and our own collected set.
This dataset covers various real-world crowd scene scenarios
with both low- and high-density crowds and both rapid and
slow motion flows. Some example frames of the dataset is
shown in Fig. 12.

We compare our approach with four state-of-the-art coherent
motion detection algorithms: The Lagrangian particle dynam-
ics approach [7], the local-translation domain segmentation
approach [8], the coherent-filtering approach [9], and the
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collectiveness measuring-based approach [10]. In order to
further demonstrate the effectiveness of our approach, we
also include the results of a general motion segmentation
method [40] and an anisotropic-diffusion-based image seg-
mentation method [28].

1) Qualitative Comparison on Coherent Motion Detection:
Fig. 12 compares the coherent motion detection results for
different methods. We include the manually labeled ground
truth results in the first column. From Fig. 12, we can see that
our approach can achieve better coherent motion extraction
than the compared methods. For example, in sequence 1,
our approach can effectively extract the circle-shape coherent
motion. Comparatively, the method in [7] can only detect part
of the circle while the methods in [9] and [10] fail to work
since few reliable key points are extracted from this over-
crowded scene. For sequences 2 and 4 where multiple complex
motion flows exist, our approach can still precisely detect the
small and less differentiable coherent motions, such as the
pink region on the bottom and the blue region on the top in
sequence 2 (a). The compared methods have low effectiveness
in identifying these regions due to the interference from the
neighboring motion regions. In sequences 3 and 6, since
motions on the top of the frame are extremely small and
close to the background, the compared methods fail to include
these particles into the coherent motion region. However, in
our approach, these small motions can be suitably strength-
ened and included through the thermal diffusion process.
Furthermore, the methods in [28] and [40] do not show
satisfying results, e.g., in sequences 5 and 6. This is because:
(1) the crowd scenes are extremely complicated such that the
extracted particle flows or trajectories become unreliable, thus
making the general motion segmentation methods [40] difficult
to create precise results; (2) Since many coherent region
boundaries in the crowd motion fields are rather vague and
unrecognizable, good boundaries cannot be easily achieved
without suitably utilizing the characteristics of the motion
vector fields. Thus, simply applying the existing anisotropic-
diffusion segmentation methods [28] cannot achieve satisfying
results.

2) Capability to Handle Disconnected Coherent Motions:
Sequences 5-8 in Fig. 12 compare the algorithms’ capability
in handling disconnected coherent motions. In sequence 7, we
manually block one part of the coherent motion region while
in sequences 5, 6, and 8, the red or green coherent motion
regions are disconnected due to occlusion by other objects or
low density. Since the disconnected regions are separated far
from each other, most compared methods wrongly segment
them into different coherent motion regions. However, with
our thermal diffusion process and two-step clustering scheme,
these regions can be successfully merged into one coherent
region.

3) Quantitative Comparison: Table I compares the quan-
titative results for different methods. In Table I, the aver-
age Particle Error Rates (PERs) and the average Coherent
Number Error (CNE) for all the sequences in our dataset
are compared to measure the overall accuracy of coher-
ent motion detection. PER is calculated by PER = # of
Wrong Particles/Total # of Particles. CNE is calculated by

TABLE I

AVERAGE PER AND CNE FOR ALL SEQUENCES IN THE DATASET

Fig. 13. The coherent motion detection results of our approach under different
kp and k f values. (a) kp = 0.2. (b) kp = 0.5. (c) kp = 0.7. (d) k f = 0.6.
(e) k f = 0.9.

C N E =
∑

i |Numd (i) − Numgt (i)|

i 1

where Numd (i) and

Numgt (i) are the numbers of detected and ground-truth coher-
ent regions for sequence i , respectively, 
i 1 is the total number
of sequences.

Table I further demonstrates the effectiveness of our
approach. In Table I, we can see that 1) Our approach can
achieve smaller coherent detection error rates than the other
methods, 2) Our approach can accurately obtain the coherent
region numbers (close to the ground truth) while other methods
often over-segment or under-segment the coherent regions.

4) Effect of Different Parameter Values: Finally, Fig. 13
shows the results of our approach under different parameter
values, i.e., k p and k f in Eqs 3 and 4. From Figs 13a to 13c, we
can see that kp mainly governs the thermal diffusion distance.
A small k p will make the thermal energies to be diffused
farther and thus can achieve larger coherent motion regions.
When k p increases, the extracted coherent motion region will
shrink. Furthermore, k f determines the directivity of thermal
diffusion. When k f increases, the diffused thermal energies
will concentrate more along the motion direction of the source
heat particles. On the contrary, when k f decreases, the thermal
energies will be propagated more uniformly to all directions
around the heat source particle. Thus, the boundaries will
shrink horizontally with larger k f , as in Fig. 13e. However,
note that in all examples in Fig. 13, our approach can always
suitably merge coherent regions together even when they
become disconnected when the parameter value changes.

B. Results for Semantic Region Construction and
Pre-Defined Activity Recognition

We perform experiments on two crowd videos in our dataset,
as the first and second rows in Fig. 14. 400 video clips are
selected from each video with each clip including 20 frames.
Four crowd activities are defined for each video and the
example frames for the crowd activities are shown in Fig. 14.
Note that these videos are challenging in that: (1) the crowd
density in the scene varies frequently including both high
density as Fig. 14d and low density clips as Fig. 14c; (2) The
motion patterns are varying for different activities, making it
difficult to construct meaningful and stable semantic regions;
(3) There are large numbers of irregular motions that disturb
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Fig. 14. Example frames of the ground-truth activities in different videos.
First and second rows: videos in our dataset; Third row: video of QMUK
Junction dataset [41]. HD: Horizontal pass and down turn; HP: Horizontal
pass; BT: Both turn; VP: Vertical pass; VL: Vertical pass and left turn;
HU: Horizontal pass and up turn; VR: Vertical pass and right turn;
VB: Vertical pass and both turn. (a) HD. (b) HP. (c) BT. (d) VP. (e) VL.
(f) BT. (g) HP. (h) HU. (i) VR. (j) HU. (k) VP. (l) HD. (m) VB.

the normal motion patterns (e.g., people running the red
lights or bicycle following irregular paths); (4) The number
of clips in the dataset is small, which increases the difficulty
of constructing reliable semantic regions. Moreover, in order to
further demonstrate the effectiveness of our approach, we also
perform experiments on a public QMUK Junction dataset [41]
where five crowd activities are defined, as shown in the third
row of Fig. 14.

1) Accuracy on Semantic Region Construction: For each
video in Fig. 14, we randomly select 200 video clips and
use them to construct the corresponding semantic regions.
Fig. 15 compares the results of four methods: (1) Our approach
(“Our”), (2) Directly cluster regions based on the particles’
TEF vectors (“Direct”, note that our approach differs from
this method by clustering over the cluster label vectors),
(3) Use [8] to achieve coherent motion regions and then
apply our two-step clustering scheme to construct semantic
regions (“[8]+Two-Step”, we show the results of [8] because
in our experiments, [8] has the best semantic region construc-
tion results among the compared methods in Table I), (4)
The activity-based scene segmentation method in [4] (“[4]”).
We also show original scene images and plot all major activity
flows to ease the comparison (“original scene”).

Fig. 15 shows that the methods utilizing “coherent motion
cluster label” information (“our” and “ [8]+two-step”) create
more meaningful semantic regions than the other methods,
e.g., successfully identifying the horizontal motion regions
in the middle of the scene in Fig. 15b. This shows that
our cluster label features can effectively strengthen the cor-
relation among particles to facilitate semantic region con-
struction. Furthermore, comparing our approach with the
“[8]+Two-Step” method, it is obvious that the semantic
regions by our approach are more accurate (e.g., more precise
semantic region boundaries and more meaningful segmen-
tations in the scene). This further shows that more precise
coherent motion detection results can result in more accurate
semantic region results.

Fig. 15. Constructed semantic regions of different methods for the videos
in Fig. 14. The caption “ [8]” denotes the method “ [8]+Two step”. (Best
viewed in color). (a) Original. (b) Our. (c) Direct. (d) [8]. (e) [4]. (f) Original.
(g) Our. (h) Direct. (i) [8]. (j) [4]. (k) Original. (l) Our. (m) Direct. (n) [8].
(o) [4].

TABLE II

RECOGNITION ACCURACY OF DIFFERENT METHODS

Fig. 16. The confusion matrix of clustering results. (The clustering results
in the 1st, 2nd, and 3rd rows correspond to the videos in the 1st, 2nd, and 3rd
rows in Fig. 14, respectively). (a) Our. (b) Direct Clustering. (c) Pre-clustering.
(d) Our. (e) Direct Clustering. (f) Pre-clustering. (g) Our. (h) Direct Clustering.
(i) Pre-clustering.

2) Performances on Recognizing Pre-Defined Activities:
In order to recognize the pre-defined activities in Fig. 14, for
each video, we randomly select 200 video clips and construct
semantic regions by the methods in Fig. 15. After that, we
derive features from the TEF and train SVM classifiers by
the method in Section V-A. Finally, we perform recognition
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Fig. 17. Recurrent activity mining results. First rows in (a), (b), and (c): the merged motion pattern regions and the extracted flow curves by our approach;
Second rows in (a), (b), and (c): the extracted flow curves of our approach displayed over the video frame; Third rows in (a), (b), and (c): the recurrent
activities extracted by [12].

on the other 200 video clips in the same video. Besides,
we also include the results of two additional methods:
(1) a state-of-the-art dense-trajectory-based recognition
method [3] (“Dense-Traj”); (2) the method which uses our
semantic regions but uses the input motion field (i.e., the
optical flows) to derive the motion features in each semantic
region (“Our+OF”). From the recognition accuracy shown in
Table II, we observe that:

1) Methods using more meaningful semantic regions
(i.e., “our”, “our+OF”, and “ [8]+Two step”) achieve
better results than other methods. This shows that suit-
able semantic region construction can greatly facilitate
activity recognition.

2) Approaches using TEF (“Our”) achieve better results
than those using the input motion field (“Our+OF”).
This demonstrates that compared with the input motion
filed, our TEF can effectively improve the effectiveness
in representing the semantic regions’ motion patterns.

3) The dense-trajectory method [3] which extracts global
features does not achieve satisfying results. This is
because the global features still have limitations in
differentiating the subtle differences among activities.
This further implies the usefulness of semantic region
decomposition in analyzing crowd scenes.

C. Results for Recurrent Activity Mining

In this experiment, we use the same videos as in Fig. 14
for mining recurrent activities. For each video, we sample
one frame per second, then calculate coherent motions for
the sampled frames, and finally apply our cluster-and-merge
process to achieve recurrent activity patterns. Note that the
target for recurrent activity mining is to automatically discover
recurrent activities from an input video without pre-defining
activity types or pre-labeling training data. And ideally, good
activity mining approaches should achieve similar activity
patterns as the human-observed activity types in Fig. 14.

1) Performances on Frame-Level Clustering: For each
video, we apply our frame-level clustering step to cluster
the sampled frames into four recurrent activity groups. Our
clustering results are compared with two methods: (1) Direct
clustering. Directly clustering based on the TEF difference
between two frames (i.e., use the summation of absolute
thermal energy differences between the co-located particles
in two TEFs as the inter-frame similarity). (2) Pre-clustering.

Using the matched-coherent-motion similarities SF M (t, t − τ )
in Eq. 9 as the inter-frame similarity for clustering.

Fig. 16 compares the clustering confusion matrixes of differ-
ent methods. From Fig. 16, we can see that since frames of the
same recurrent activity may contain different parts of a com-
plete activity flow (e.g., Fig. 10), their TEFs may have large
differences. Therefore, directly using TEF difference for clus-
tering (i.e., direct TEF clustering) cannot achieve satisfying
results. Comparatively, by including coherent motions to eval-
uate inter-frame similarities (i.e., “pre-clustering” and “our”),
the clustering accuracy can be improved. However, the pre-
clustering method still have limitations in differentiating sim-
ilar recurrent activities, e.g., HP and HU in Figs 14g and 14h.
Comparatively, by introducing the importance cost of seman-
tic regions to measure the effects of unmatched coher-
ent motions, our frame-level clustering approach can have
stronger capability in differentiating similar recurrent activity
patterns.

2) Performances on Coherent Motion Merging and Flow
Curve Extraction: Fig. 17 shows the results of our coherent
motion merging and flow curve extraction steps. Besides, we
also compare our approach with a state-of-the-art activity
mining method which utilizes a Probabilistic Latent Sequential
Motif (PLSM) model to discover recurrent activities [12],
which are shown as the last rows in Figs 17a, 17b, and 17c.
From Fig. 17, we can have the following observations:

1) The recurrent activities mined by our approach is sim-
ilar to the human-observed activity types in Fig. 14.
This demonstrates that our proposed cluster-and-merge
process can effectively discover desired activity types
from an input video.

2) Note that although the clustering result in our frame-
level clustering step is not 100 percentage accurate (as
in Fig. 16), the extracted flow curves are less affected
by the wrongly clustered frames because: (i) The noisy
or isolated thermal energy vectors from the wrongly
clustered frames will be filtered by the threshold θm f

in Eq. 13. (ii) The flow curve extraction process will
further reduce the effects of wrong frames by dividing
sub-regions to derive flow curves, as in Fig. 11a.

3) Comparing our approach with the PLSM-based
method [12], we can see that: (i) By introducing
coherent regions to measure inter-frame similarities and
derive motion pattern regions, our approach can achieve
cleaner activity flows which are more coherent with the
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human-observed activity types in Fig. 14.
Comparatively, results of the PLSM-based method
still include noisy motion patterns, e.g., the last column
in Fig. 17b. (ii) Our approach can precisely differentiate
motion flows inside a recurrent activity. However, the
PLSM-based method has limitations in differentiate
motion flows when they are located close to each
other, e.g., the second column in Fig. 17a. (iii) The
differences between similar recurrent activities are
clearly differentiated and visualized by our approach,
while they are less obvious in the results of the
PLSM-based method, e.g., the third and fourth columns
in Fig. 17b.

VIII. CONCLUSION

In this paper, we study the problem of coherent motion
detection, semantic region construction, and recurrent activity
mining in crowd scenes. A thermal-diffusion-based algorithm
together with a two-step clustering scheme are introduced,
which can achieve more meaningful coherent motion and
semantic region results. Based on the extracted coherent
motions and semantic regions, a cluster-and-merge process
is further proposed which can effectively discover desirable
activity patterns from a crowd video. Experiments on various
videos show that our approach achieves the state-of-the-art
performance.
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