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ABSTRACT

In this paper, we propose a partition-masked Convolution
Neural Network (CNN) to achieve compressed-video en-
hancement for the state-of-the-art coding standard, High Ef-
ficiency Video Coding (HECV). More precisely, our method
utilizes the partition information produced by the encoder to
guide the quality enhancement process. In contrast to existing
CNN-based approaches, which only take the decoded frame
as the input to the CNN, the proposed approach considers the
coding unit (CU) size information and combines it with the
distorted decoded frame such that the degradation introduced
by HEVC is reduced more efficiently. Experimental results
show that our approach leads to over 9.76% BD-rate saving
on benchmark sequences, which achieves the state-of-the-art
performance.

Index Terms— High Efficiency Video Coding, Convolu-
tional neural network, Quality enhancement

1. INTRODUCTION AND RELATED WORK

Recently, the fast development of video capture and display
devices has brought a dramatic demand for high definition
(HD) contents. High Efficiency Video Coding (HEVC) [1]
provides higher compression performance compared to the
previous standard H.264/AVC by 50% of bitrate saving on
average at a similar perceptual image quality [2]. How-
ever, HEVC videos still contain compression artifacts, such
as blocking artifacts, ringing effects, blurring, etc.. There-
fore, it is desired to study on improving the visual quality of
the decoded videos.

Recently, many deep learning based approaches [3, 4, 5, 6]
have been proposed to enhance the visual quality of com-
pressed images and videos. [6] designed a CNN to replace
the loop filter [7, 8] in HEVC. [3] developed an Artifacts
Reduction CNN (ARCNN) built upon [9], which reduces
the JPEG compression artifacts. Following [3], [4] and [5]
proposed a Variable-filter-size Residual-learning CNN (VR-
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Fig. 1. Overview of the proposed framework.

CNN) and a Quality Enhancement CNN (QECNN) respec-
tively as post-processing techniques to further improve the
quality of the compressed videos in HEVC. However, exist-
ing works only consider the appearance of input coding units
(CUs) or frames, while the partition variations in different
CUs and frames are neglected. In practice, since the partition
information (e.g., 16×16, 8×8) is introduced by the block-
wise processing and quantization of HEVC, this indicates the
source of visual compression artifacts. Thus, we use the parti-
tion information to effectively guide the quality enhancement
process performed by CNN.

To this end, we propose a novel approach which first de-
rives a carefully designed mask from a frame’s partition in-
formation, and then uses it to guide the quality enhancement
process of the decoded frame through a double-input CNN.
As a result, the visual quality of HEVC-compressed videos
can be more properly improved under the same bit rate. The
diagram of the proposed approach is shown in Fig. 1. In sum-
mary, our contributions are 3 folds:

1. We develop a novel framework that utilizes the partition
information to guide the CNN-based quality enhance-
ment process in HEVC, where a mask derived from a
decoded frame’s partition information is fused with this
decoded frame through a double-input CNN to accom-
plish quality enhancement.

2. Under this framework, we systematically investigate dif-
ferent mask generation and mask-frame fusion methods
and find the best strategies. We also demonstrate that our
approach is general and can be integrated into the exist-
ing HEVC compressed-video enhancement methods to
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(a) original image with
partition information

(b) Mean-based mask (c) Boundary-based
mask

Fig. 2. Two Examples of Boundary-based mask and Mean-
based mask.

further improve their performances.
3. We establish a large-scale dataset which con-

tains 202,251 training samples for training reliable
compressed-video enhancement models. This dataset
will be made publicly available to facilitate further re-
search.

2. OVERVIEW OF OUR APPROACH

The framework of our approach is shown in Fig. 1. Each de-
coded frame and its corresponding mask, which is generated
using the frame’s partition information (cf. mask generation
in Fig. 1), are fed to a double-input CNN. Inside this CNN,
the features of the mask and decoded frame are first extracted
through two individual streams and then fused into one (cf.
mask-frame fusion). The rest layers of the double-input CNN
perform the feature enhancement, mapping, reconstruction,
and output the quality-enhanced decoded frame.

3. THE PROPOSED APPROACH

In this section, we first discuss the key components of our ap-
proach – mask generation and mask-frame fusion strategies.
Then, we describe the proposed double-input CNN.

3.1. Mask generation and mask-frame fusion strategies

Since the block-wise transform and quantization are per-
formed in HEVC during encoding, the quality degradation of
compressed frames is highly related to the coding unit split-
ting. Thus, the partition information contains useful clues for
eliminating the artifacts present during the encoding. Consid-
ering this, we design a mask based on the partition informa-
tion of CUs to guide the quality enhancement process.

Generation of the mask. We introduce two strategies to
generate masks from an HEVC-encoded frame’s partition in-
formation:

• Mean-based mask (MM). We fill each partition block in
a frame with the mean value of all decoded pixels inside

(a) (b)

(c)

Fig. 3. (a) Add-based fusion. (b) Concatenate-based fusion.
(c) Early fusion.

this partition. An example of a generated mean-based
mask is shown in Fig. 2b. As we can see that the differ-
ent partition blocks are properly displayed in the mask.
In this way, when we fuse it with the decoded frame dur-
ing the enhancement process, it can effectively distin-
guish different partition modes and reduce the compres-
sion artifacts more effectively.

• Boundary-based mask (BM). We also introduce a
boundary-based mask generation strategy. In this
boundary-based mask, the boundary pixels between par-
titions are filled with value 1 and the rest non-boundary
pixels are filled with value 0, as shown in Fig. 2c. The
width of the boundary is set to 2.

Mask-frame fusion strategies. As we mentioned in Sec-
tion 2, the mask is fed to CNN and integrated with its corre-
sponding decoded image to get the fused feature maps. We
also introduce three strategies to fuse the information of a de-
coded frame and its corresponding mask:

• Add-based fusion (AF). As shown in Fig. 3a, we first
extract the feature maps of the mask using CNN and then
combine it with the feature maps of the input frame using
element-wise add layer.

• Concatenate-based fusion (CF). We concatenate the
mask and frame as the input to the CNN. Then the two-
channel image is fed to CNN directly as shown in Fig.
3b.

• Early fusion (EF). We extract the features of mask only
using three convolutional layers and integrate it into the
network as shown in Fig. 3c.

3.2. Double-input convolutional neural network

The proposed double-input convolutional neural network in-
tegrates partition information with add-based fusion strategy
and enhances the quality of compressed frames. Its architec-
ture is shown in Fig. 4a. This CNN contains two streams
in the feature extracting stage so as to extract features for
the decoded frame and its corresponding mask, respectively.
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Fig. 4. (a) Double-input convolutional neural network with add-based fusion strategy. (b) Example snapshots of our dataset.

Each residual block [10, 11, 12] in the feature extracting stage
has two convolutional layers with 3×3 kernels and 64 feature
maps, followed by batch-normalization [13] layers and ReLu
activation functions. Then, the feature maps of the mask and
decoded frame are fused by the add-based fusion strategy and
are fed to the rest three convolutional layers. These three lay-
ers with 3×3 kernels and 64 feature maps are utilized for fea-
ture enhancement, mapping, and reconstruction as described
by [3]. When training the network, the Mean Squared Error
between the original raw frame and the CNN output is used
as the loss function.

Compared with the existing compressed video enhance-
ment methods [4, 5], our network has two differences: (1)
We introduce two stream inputs to include both the decoded
frame and the partition information. (2) We use a residual ar-
chitecture to perform the feature extraction. The deep residual
stream can capture the feature of input in a more distinctive
and stable way.

4. EXPERIMENTAL RESULTS

4.1. Dataset & experimental settings

Dataset. In order to construct a reliable double-input CNN,
we establish a large-scale dataset. The dataset is derived from
600 video clips with various resolutions. Fig. 4b shows some
snapshots of the video clips. All raw video clips are encoded
by HM-16.0 at Low-delay P [14] at QP=22, 27, 32, and 37.
In each raw clip and its compressed clip, we randomly se-
lect 3 raw frames and the corresponding decoded frames to
form 3 training frame pairs. For each frame pair, we di-
vide them into 64×64 sub-images without overlap resulting
202,251 sub-image pairs.

Experimental settings. We implement the proposed
model using TensorFlow [15]. During training, we use a mini-
batch size of 32. We start with a learning rate of 1e-04, decay
the learning rate with a power of 10 at the 20th epochs, and
terminate training at 40 epochs. An individual CNN is trained
for each QP. In order to save training time, we first train the

Table 1. Comparison of different mask and fusion methods
on ∆PSNR (dB) over HM-16.0 baseline at QP=37

Class Sequence 1-in
2-in
+BM
+AF

2-in
+MM
+EF

2-in
+MM
+CF

2-in
+MM
+AF

A

Traffic 0.31 0.37 0.36 0.33 0.39
PeopleOnStreet 0.56 0.64 0.64 0.61 0.64

Nebuta 0.27 0.20 0.25 0.30 0.32
SteamLocomotive 0.19 0.12 0.18 0.19 0.22

B

Kimono 0.36 0.39 0.38 0.39 0.41
ParkScene 0.17 0.19 0.19 0.19 0.20

Cactus 0.23 0.31 0.31 0.27 0.34
BQTerrace 0.18 0.29 0.28 0.29 0.38

BasketballDrive 0.19 0.32 0.31 0.30 0.35

C

RaceHorses 0.26 0.30 0.29 0.29 0.29
BQMall 0.10 0.25 0.23 0.27 0.36

PartyScene 0.11 0.17 0.15 0.19 0.27
BasketballDrill 0.22 0.34 0.32 0.32 0.47

D

RaceHorses 0.31 0.42 0.41 0.41 0.41
BQSquare -0.04 0.22 0.16 0.24 0.50

BlowingBubbles 0.13 0.22 0.20 0.22 0.26
BasketballPass 0.19 0.35 0.32 0.36 0.40

E
FourPeople 0.44 0.55 0.54 0.53 0.62

Johnny 0.35 0.48 0.47 0.45 0.54
KristenAndSara 0.39 0.56 0.52 0.52 0.59
Average 0.25 0.33 0.32 0.33 0.40

double-input CNN at QP=37 from scratch and the other net-
works at QP=32, 27, 22 are fine-tuned from it.

During the evaluation, we test our trained model on
20 benchmark sequences from the common test condi-
tions of HEVC [16]. The performance of quality enhance-
ment is measured by PSNR improvement (∆PSNR) and the
Rate-distortion performance is measured by the Bjontegaard
Distortion-rates (BD-rate) [17] savings over HM-16.0 base-
line. Similar to existing works, the performances on Y-
channel are evaluated in our experiments.

4.2. Results on different mask generation & mask-frame
fusion strategies.

Table 1 compares the performance of different mask gener-
ation and mask-frame fusion strategies described in Section
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3.1. In Table 1, 1-in represents a single-input baseline of
our approach where the mask-flow input is deleted from the
framework of Fig. 4a; 2-in+MM+AF represents our double-
input CNN using the mean-based mask and add-based fusion
strategy. Note that the performances of all methods are eval-
uated by the PSNR gain over HM-16.0 baseline at QP=37.
From Table 1, we can have the following observations:

1. When looking at different mask generation strategies,
the boundary-based mask strategy (2-in+BM+AF) can-
not provide noticeable improvement (0.08 dB over 1-
in). This is because only marking boundary pixels in a
mask is less effective in highlighting the partition modes
in a frame. Comparatively, the mean-based mask (2-
in+MM+AF) can obtain more obvious PSNR improve-
ment (0.15 dB over 1-in). This indicates its effectiveness
in capturing the partition modes in a frame.

2. As for mask-frame fusion strategies, the add-fusion strat-
egy (2-in+MM+AF) can obtain a large PSNR gain of
0.4 dB. This shows the effectiveness of the proposed fu-
sion strategy. Comparatively, the concatenate-fusion (2-
in+MM+CF) and early-fusion (2-in+MM+EF) strategies
obtains fewer gains. This is probably because these fu-
sion strategies are less compatible with the CNN model
used in this paper. Their performances may be more ob-
vious when combined with other CNN models.

3. The best performance is obtained when using mean-
based mask and add-fusion (2-in+MM+AF), which can
obtain over 0.15 dB improvement over single-input
method. This indicates that when strategies are prop-
erly selected, introducing partition information is indeed
useful to improve the quality of compressed videos.

4.3. Comparison with the existing methods

Table 2 further compares the overall BD-rate saving [17] of
different methods over the standard HEVC test model (HM-
16.0). Five methods are compared in Table 2: (1) VRCNN
[4] which is a benchmark CNN-based compressed-video en-
hancement method; (2) QECNN-P [5] which is a state-of-
the-art compressed-video enhancement method for P frames
in HEVC; (3) Our (1-in), which is the single input base-
line of our approach; (4) VRCNN+MM+AF, which integrates
our partition-mask-based approach into the existing VRCNN
method; (5) Our (2-in+MM+AF), which is the full version of
our approach with mean-based mask and add-based fusion.
Note that in order to have a fair comparison, all methods are
trained using the same dataset (i.e., our dataset) and evaluated
under the same setting. From Table 2, we can observe that:

1. The full version of our approach (our+2-in+MM+AF)
achieves the best performance overall the compared
methods. Specifically, it can obtain over 9.76% BD-rate
reduction from standard HEVC and 4% BD-rate reduc-
tion when compared with the state-of-the-art QECNN

Table 2. Comparison of different methods on BD-rate (Y,%)
saving over HM-16.0 baseline

Class Sequence VRCNN QECNN-P
Our
(1-in)

VRCNN
+MM
+AF

Our
(2-in
+MM
+AF)

A

Traffic -6.84 -8.28 -9.271 -9.09 -11.35
PeopleOnStreet -7.41 -8.66 -9.84 -9.43 -10.36

Nebuta -5.65 -7.56 -6.23 -6.55 -7.85
SteamLocomotive -7.71 -9.18 -10.22 -9.89 -10.6

B

Kimono -7.39 -8.70 -9.49 -9.07 -10.91
ParkScene -3.97 -4.73 -5.4 -5.32 -6.92

Cactus -5.86 -7.39 -8.13 -8.16 -10.53
BQTerrace -1.73 -4.87 -7.25 -6.99 -11.07

BasketballDrive -3.75 -5.91 -6.42 -6.74 -11.10

C

RaceHorses -3.6 -4.78 -5.57 -5.44 -6.45
BQMall 0.11 -2.91 -4.01 -3.97 -7.62

PartyScene 2.72 -1.03 -2.48 -2.08 -4.84
BasketballDrill -0.08 -2.36 -5.71 -4.64 -10.65

D

RaceHorses -4.05 -5.03 -6.66 -6.41 -7.58
BQSquare -0.57 -0.11 -2.48 -2.72 -8.48

BlowingBubbles -0.15 -2.07 -4.12 -3.43 -6.33
BasketballPass -0.15 -2.37 -4.49 -4.02 -7.73

E
FourPeople -7.12 -9.27 -10.69 -10.33 -13.91

Johnny -7.00 -9.78 -10.40 -11.41 -17.22
KristenAndSara -7.13 -9.21 -9.5 -10.56 -13.78
Average -3.81 -5.71 -6.92 -6.81 -9.76

method. This clearly indicates the effectiveness of our
partition-mask-based approach.

2. When integrating our partition-mask strategy, the VR-
CNN+MM+AF can also obtain 3% BD-rate improve-
ment over the original VRCNN method. This demon-
strates that our partition-mask-based approach can be
easily combined with the existing methods to provide
further improved methods.

3. Our baseline single-input method (our+1-in) can also
obtain satisfactory results when compared with the ex-
isting methods (VRCNN, QECNN-P). This implies that
the baseline CNN model used in our approach is effec-
tive in handling the visual information of the input de-
coded frames.

5. CONCLUSION

This paper presents a novel approach for enhancing com-
pressed videos in HEVC. Our approach utilizes the parti-
tion information already existing in the bitstreams to design a
mask and integrate it with the decoded image in CNN to guide
the frame quality enhancement process. Experimental results
show that our approach is more effective in handling the vi-
sual quality degradation introduced by HEVC encoder, and
thus obtaining the best post-processing performance. Further-
more, it can also be applied to the existing compressed-video
enhancement methods and bring further improvement.
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