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Expression cloning plays an important role in facial expression synthesis. In this paper, a novel algorithm
is proposed for facial expression cloning. The proposed algorithm first introduces a new elastic model to
balance the global and local warping effects, such that the impacts from facial feature diversity among
people can be minimized, and thus more effective geometric warping results can be achieved. Further-
more, a muscle-distribution-based (MD) model is proposed, which utilizes the muscle distribution of
the human face and results in more accurate facial illumination details. In addition, we also propose a
new distance-based metric to automatically select the optimal parameters such that the global and local
warping effects in the elastic model can be suitably balanced. Experimental results show that our
proposed algorithm outperforms the existing methods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction and related works

Facial expression synthesis is of increasing importance in many
applications such as movie making, video conferencing, and video
games [1–8,12–18]. In this area, expression cloning (or mapping) is
one of the most effective techniques for synthesizing facial expres-
sions [1–6]. Basically, the target for facial expression cloning is to
transfer one person’s expression (i.e., the source person) to another
person’s neutral face (i.e., the target person), thus the second
person’s facial expression can be synthesized, as shown in Fig. 1.

Several algorithms have been proposed for expression cloning
[1–10,16]. Most algorithms utilize geometry warping [1–6,16] or
motion cloning [7,8] on the face feature positions or the triangu-
lated meshes to map facial expressions. For example, Sumner and
Popovic [8] utilize nonlinear deformation transfer to map the 3D
motions or expressions from one source object to the target object.
Song et al. [2] use vertex tent coordinate transfer to perform
geometric warping based on 3D models. Seol and Lewis [15] utilize
Radial Basis Functions and movement matching to determine the
warping. However, since these methods perform warping globally
while the local facial feature differences between people (e.g., face
shape differences, mouth or eye differences) are not well consid-
ered, their facial expression cloning results are less satisfactory in
some cases. Noh and Neumann [7] aim to refine the local parts
of the face based on the muscle model of human face [10].
Although they can create good facial feature motions for the same
person, their methods are less effective when applied to synthesize
the expression of another person as the facial feature differences
between people are still neglected.

Besides, since the facial illumination details will also change in
different expressions, this detailed illumination information also
needs to be transferred to the target person for creating more vivid
expression results. However, most existing algorithms only focus
on the geometry warping of the face while the illumination details
are ignored. Although some researchers introduced expression
ratio image (ERI) [5] or mesh image [2] to transfer the illumination
details, their methods still have limitations due to face feature
differences, unsuitable noise filtering, or detail importance
differences.

In this paper, a new elastic-plus-muscle-distribution-based
(E+MD) algorithm is proposed for facial expression cloning. Our
contribution can be summarized as follows: (1) A new elastic
model is proposed to balance the global and local warping effects
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Fig. 1. The process for facial expression cloning.
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such that the effects from facial feature differences between people
can be avoided. Thus more reasonable geometric warping results
can be created. (2) A muscle-distribution-based (MD) model is
proposed which utilizes the muscle distribution information of
the human face to evaluate and strengthen the facial illumination
details. By this way, the effects from human face difference as well
as the impacts of unsuitable noise filtering can be effectively
reduced. (3) A new distance-based (DB) metric is designed to auto-
matically select the parameters in the elastic model. The proposed
DB metric evaluates the facial expression cloning results based on
the expression distance among the synthesized target person’s
expression face, the source person’s expression face, and the target
person’s globally warped face. With the proposed DB metric, the
global and local warping effects in the elastic model can be suitably
balanced. Experimental results demonstrate the effectiveness of
our proposed method.

The rest of the paper is organized as follows: Section 2 describes
the motivations of our proposed E+MD algorithm. Section 3
describes the details of our algorithm. Section 4 shows the exper-
imental results. Section 5 concludes the paper.

2. Motivation of the proposed algorithm

As aforementioned, geometric warping can be used for creating
the target person’s expression face [1–6]. In the geometric warping
(a)         (b)              

Fig. 2. (a) The identified face feature positions of the source person’s expression face in F
result from the three available images in Fig. 1 [3], (d) the ‘‘local’’ geometric warped res
process, the face feature positions are first identified for each face
(e.g., Fig. 2(a)). Many algorithms can be used to automatically
achieve these feature positions such as the active appearance mod-
el (AAM) [12]. In the experiments of this paper, we manually iden-
tify the feature points in order to have fair comparisons with the
other methods [2,5]. However, similar results can be achieved
when automatic feature position identification methods [12,15]
are used in our experiments.

Then, triangulation can be performed for creating the triangle
meshes according to these feature positions (Fig. 2(b)). In this pa-
per, the Delaunay triangulation method is used to get the triangle
meshes [5]. Based on the triangulated mesh information, the result
of the target expression face can be achieved by geometric-con-
trolled image warping (i.e., warp the pixels of the target person’s
neutral face to create the target person’s expression face based
on the corresponding warp ratio between the pixels in the source
person’s neutral face and the source person’s expression face)
[3,5]. Fig. 2(c) shows one geometric warping result from the three
available images in Fig. 1 [3,5] (i.e., the source person’s neutral
face, source person’s expression face, and target person’s neutral
face images, as in Fig. 1). However, the warping result in Fig. 2(c)
is unsatisfactory since it looks not so much like the expression
‘‘smile’’. This is because most of the existing geometric warping
algorithms [1–6,8] are performed ‘‘globally’’ where the feature
positions in the target expression image are moved ‘‘relatively’’
according to the movements of their corresponding feature posi-
tions in the source person’s face. Although some methods apply
registration steps to further control the expression changes and
achieve better results [3–8], they may still have limitations in pre-
cisely cloning the local expression feature changes from the source
person.

In order to overcome the problem of global warping, we pro-
pose a ‘‘local’’ warping method which includes the following two
rules: (a) Each organ on the target person’s face (e.g., eye and
mouth) is warped independently without considering its relation-
ship with the rest of the face. (b) The feature positions for each or-
gan are warped in a way to make the organ’s absolute shape as
close as possible to the organ in the source person’s expression
face. The easiest way to perform ‘‘local’’ warping is to copy the fea-
ture positions of one particular organ from the source person’s face
to the target person’s face. By this way, the organ shapes in the tar-
get person’s face can be exactly the same as the ones on the source
person’s face. However, since different people have quite different
appearances in their faces, it is difficult to decide the proper loca-
tion, size, and orientation of the ‘‘copied’’ organ. Therefore, in this
paper, we propose to use a simple but effective method to perform
local warping. That is, we locally ‘‘re-shape’’ the feature points for
each organ from the global warping results to make the re-shaped
organ similar to the one in the source person’s expression face. In
this paper, we use the organ’s height-to-width ratio as the
(c)              (d) 

ig. 1, (b) the triangulated meshes according to (a), (c) the ‘‘global’’ geometric warped
ult from the available images in Fig. 1.
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Fig. 3. Local re-shaping process of the mouth in vertical direction (the feature point Pt is moved vertically to make the height-to-width ratio of (b) close to (a)). (a) The mouth
feature positions of the source person’s expression face, (b) the mouth feature positions of the globally warped target person expression face (the blue dashed box is the
minimum bounding box surrounding the mouth feature positions and the red dashed line is the horizontal middle line of the minimum bounding box). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Local re-shaping process of the mouth in horizontal direction (the feature point Pt is moved horizontally to make the height-to-width ratio of (b) close to (a)). (a) The
mouth feature positions of the source person’s expression face, (b) the mouth feature positions of the globally warped target person expression face (the blue dashed box is
the minimum bounding box surrounding the mouth feature positions and the red dashed line is the vertical middle line of the minimum bounding box). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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constraints to perform local re-shaping. For example, Figs. 3 and 4
show the local ‘‘re-shaping’’ process of the feature positions for the
mouth. In Figs. 3 and 4, (a) is the mouth feature positions for the
source person’s expression face and (b) is the mouth feature posi-
tions for the target person’s global warped face. Our target is to
‘‘re-shape’’ the global warped mouth feature positions in (b) such
that the mouth’s height-to-width ratio can be the same as the
source person’s mouth in (a).

Fig. 3 shows the height re-shaping process. In Fig. 3, we first
identify the horizontal middle line of the bounding box surround-
ing the mouth feature positions (i.e., the horizontal dashed red line
in Fig. 3(a) and (b)). After that, the feature positions in (b) will be
vertically moved with respect to this middle line. For example,
the feature position Pt in Fig. 3(b) is vertically moved by Eq. (1).

dt1 ¼ ds1 �
Wt

Ws
ð1Þ

where dt1 is the vertical distance between Pt and the middle line in
Fig. 3(b). ds1 is the vertical distance between Ps and the middle line
in Fig. 3(a) where Ps is Pt‘s corresponding feature position in the
source person’s mouth. And Ws and Wt are the width of the mouth’s
minimum bounding box in Fig. 3(a) and (b), respectively.

Similarly, Fig. 4 shows the width re-shaping process of the tar-
get person’s mouth where the horizontal locations of the feature
position Pt can be moved by:

dt2 ¼ ds2 �
Ht

Hs
ð2Þ

where dt2 is the horizontal distance between Pt and the vertical
middle line of the minimum bounding box (i.e., the red dashed line
in Fig. 4(b)). ds2 is the horizontal distance between Ps and the verti-
cal middle line in Fig. 4(a). Hs and Ht are height of the mouth’s min-
imum bounding box in Fig. 4(a) and (b), respectively.

By Eqs. (1) and (2), we can move all the feature positions on the
target person’s mouth and reshape its height-to-width ratio to be
the same as the source person’s expression mouth. Furthermore,
the same process can be applied to re-shape the other organs such
as the eyes, the eyebrows, and the nose. By this way, the shape of
each organ can be adjusted close to the one in the source person’s
expression face.

Furthermore, two things need to be noted about local warping:
(a) When the feature positions of one organ are warped, the other
feature positions in the target person’s face remain unchanged.
Therefore, each organ can be geometrically warped locally and
independently. (b) Since the relationship between the feature
points and their corresponding organs in the face can be automat-
ically decided by many automatic feature extraction methods
[3,12], this local warping step as well as the entire process of our
proposed expression cloning algorithm can be performed automat-
ically in practice.

Compared with global warping which tries to make the relative
neutral-to-expression feature position movements to be the same
[1–6,8], the local warping tries to equalize the ‘‘absolute’’ organ
shapes between the source and the target expression faces. By this
way, even if the organ appearances are different between people,
the organs of the target person’s expression face can still be
warped similar to the ones in the source person. Fig. 2(d) is the re-
sult by our proposed local warping method from the three avail-
able images in Fig. 1. Compared with Fig. 2(c), organs such as the
mouth and the eyes in (d) are more similar to those of the source
person in Fig. 2(a), thus making the smile expression more
recognizable. However, since the local warping method does
not consider the relationship among different organs and the
neutral-to-expression ratio among organs, the locally warped
results still look unnatural. For example, the mouth in (d) is too
small and incoherent with the other parts in the target person’s
face. Therefore, new methods need to be proposed to combine both
the local and global warping results. In this paper, we propose a
new elastic model to balance the effects of global and local
warping. The proposed elastic model can not only create more
vivid results for each local organ, but also keep the reasonable
global relationship among organs.

Furthermore, besides geometric warping, the detailed illumina-
tion information is also important in creating good expression re-
sults. Liu et al. [5] propose expression ratio image (ERI) which
transfers the illumination detail information based on the relative
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pixel-value ratio between the neutral and the expression face
images. Although this simple method can create effective results,
it has the following limitations: (a) Since the facial features are dif-
ferent for different people, simply applying the relative pixel-value
ratio from one face to another may not be able to transfer details
efficiently. (b) Since ERI may include noise, the transferred illumi-
nation details have to be filtered. However, since the filtering in ERI
does not consider the structural characters of the face, significant
illumination details may be weakened after filtering. Although
Song et al. [2] improve ERI by mapping all details into a mesh im-
age to reduce the facial feature differences, the facial structure
characters are still not considered when evaluating illumination
details, thus leading to unsatisfactory results in some cases. There-
fore, in this paper, we further propose a muscle-distribution-based
(MD) model which utilizes the muscle distribution information to
evaluate the importance of the facial illumination details. Since the
MD model includes the muscle distribution to reflect the facial
structure, the illumination details transferred by our MD model
are more precise than the previous methods in [2,5].

Based on the above discussions, we can propose a new elastic-
plus-muscle-distribution-based (E+MD) algorithm which uses the
elastic model for geometric warping and the MD model for trans-
ferring illumination details. The proposed E+MD algorithm is de-
scribed in detail in the following.
 

A 

B4 

B3 

B2 

B1 

B5 

B6 

B7 

A’ 

(a)           (b) 

Fig. 6. The feature position of the mouth corner and its neighboring feature points
(B1–B4). (a) A is the location of global warping result, (b) A’ is the location of local
warping result.
3. The elastic-plus-muscle-distribution-based algorithm

The framework of our proposed E+MD algorithm is shown in
Fig. 5. In Fig. 5, the three available images (i.e., the source person’s
neutral face, source person’s expression face, and target person’s
neutral face) are first used to create a globally warped target
expression image (GI) [3,5] and a locally warped target expression
image (LI). Then, our proposed elastic model is used to balance the
effects of GI and LI for creating the final geometrically warped im-
age (FI). After FI is achieved, it is aligned with the three available
images to create the initial ERIs [5]. These ERIs will be further pro-
cessed by our MD model for achieving the final target person’s
expression face image (F_IMG) which will include the facial illumi-
nation details. It should be noted that: (1) Although the warping
method in [3,5] is used to create the global warping result in this
paper, our elastic model is general and it can be combined with
the other global warping methods [8,15] to achieve the improved
facial expression results. This point will be further discussed in
the experimental result section. (2) As discussed in the previous
sections, the elastic model and the MD model are the key compo-
nents in our E+MD algorithm. Thus, in the following, we will de-
scribe these two models in detail.
3.1. The elastic model

As mentioned above, the target for our elastic model is to bal-
ance the effects of both the global warping result GI (e.g.,
Fig. 2(c)) and the local warping result LI (e.g., Fig. 2(d)), thus to give
a more natural and vivid expression in the target person’s face.

Our proposed elastic model can be described by Figs. 6 and 7. In
Fig. 6, A is the location of the mouth corner in the target person’s
expression face calculated by global warping (i.e., the location of
P in GI) and A’ is the location of the mouth corner decided by local
warping (i.e., the location of P in LI). B1–B7 are the neighboring fea-
ture positions of A in the global warping result. These neighboring
relationships are decided by triangulation as in Fig. 2(b). And our
proposed elastic model will create an optimized geometric position
of the mouth corner based on B1–B7 as well as A and A’. In order to
ease the discussion, in the following description, we will omit the
effects of B5–B7 and focus on discussing how to achieve the opti-
mal mouth corner location only by its four neighboring points
(i.e., B1–B4). Note that the omission of B5–B7 is only to simplify
the description in Fig. 7. In our real processing, all the neighboring
points B1–B7 are used to balance the location of P.

For the convenience to show the process of using our elastic
model, we redraw the points B1–B4 and A, A’ as well as the lines
linking them in Fig. 7. Also, we use P to indicate the current loca-
tion of the mouth corner point in Fig. 7.

We assume that there is a spring connected between the mouth
corner point P and each of its neighboring feature positions (i.e.,
B1–B4), respectively. At the same time, there is also another spring
connected between the mouth corner point P and its local position
A’. The springs can generate elastic forces. The neighboring feature
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article.)
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positions (i.e., B1–B4) try to pull or push the mouth corner point to
its global warping position A while the force between the mouth
corner point and A’ tries to pull or push P to its local warping posi-
tion A’. Since the positions of A and B1–B4 are all calculated by glo-
bal warping, there will be no elastic forces from B1–B4 when the
mouth corner point is located in its global warping location A
(i.e., when P is overlapping with A, as in Fig. 7 (a)). However, the
force from A’ will pull the mouth corner point from A to A’ (as
shown by the red arrows in Fig. 7 (a)). On the other side, when
the mouth corner point is located in its local warping location A’
(Fig. 7(b)), there will be no elastic force from A’ as P is overlapping
with A’, but the forces from B1–B4 will try to pull or push P back to
its global warping location A. Finally, the optimal location of the
mouth corner point Popt (i.e., the location of P in FI) can be decided
where the elastic forces from different directions are balanced, as
in Fig. 7(c) and Eq. (3):

P ¼ Popt when
X

i

F
!

BiðPÞ þ F
!

A0 ðPÞ ¼ 0 ð3Þ

where F
!

BiðPÞ and F
!

A0 ðPÞ are the elastic forces to the current posi-
tion P from the neighboring feature position Bi and the local warp-
ing location A’, respectively. The elastic forces F

!
BiðPÞ and F

!
A0 ðPÞ can

be calculated by Hooke’s law [13], which tells the force generated
by a spring is in direct proportion with the extension of that spring,
as in Eq. (4):

F
!

BiðPÞ ¼ kBi � DlBiðPÞ �~eBiðPÞ
F
!

A0 ðPÞ ¼ kA0 � DlA0 ðPÞ �~eA0 ðPÞ

(
ð4Þ

where DlX(P) (X = A or Bi) denotes the distance change between P
and X when P moves. DlBi(P) = 0 when P is in the position of A and
DlA’(P) = 0 when P is in the position of A’. ~eXðPÞ is the unit vector
(a) Search within a searching window      

Win

Fig. 8. Searching in a searching window bounded by
pointing from P to X and kX is the elasticity coefficient for the elastic
force between P and X. In this paper, we let the neighboring points
have the same coefficient value (i.e., kB1 = kB2 = kB3 = kB4 = kN).

From Eqs. (3) and (4) and Figs. 6 and 7, we can see that our elas-
tic model introduces elastic forces to model the effects of the local
and global warping results (i.e., GI and LI). Thus, by balancing the
impacts from these forces, the advantages of the global and local
warping effects can be effectively combined.

In order to speed up the process and avoid large facial cloning
distortions, we assume that the optimal position Popt should not
be far from its global location A and the local location A’. Therefore,
we can define a searching window Win which is bounded by the
global location A and the local location A’ (i.e., the search window
for the feature position P is adaptively determined by using A and
A’ as the vertices of the search window rectangle, as the grey box in
Fig. 8) and only search for Popt within this searching window. Thus,
Eq. (3) can be solved by:
Popt ¼ arg min
P;P2Win

X
i

F
!

BiðPÞ þ F
!

A0 ðPÞ
�����

����� ð5Þ
where Win is the searching window bounded by the global location
A and the local location A’, and || � || is the Euclidean distance oper-
ation. Fig. 8 shows the detailed process for searching for Popt. It
should be noted that since the distance between A and A’ is nor-
mally small, we only need to search for a small window for each
feature position. Thus, the computing cost for this step is small.

Furthermore, from Eq. (4), we can see that the elasticity coeffi-
cients kX is another key issue to decide the relative importance be-
tween the global and local warping results. Different ratios
between the elasticity coefficients kA’ and kN will lead to different
          (b) The optimal position
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balanced results. In this paper, we define the elasticity ratio as kk,
as in Eq. (6):

kk ¼
kA0

kN
ð6Þ

By changing the value of kk, we can control the relative impor-
tance between the global and local warped results and create
different facial expression cloning results. For example, if we
choose a large kA’ and a small kN, that is, kk is large, the final
balanced result will be more favorable to the local warping results
(e.g., the result will be exactly the same as the local warping result
when kN = 0). Therefore, it is very important to select a suitable set
of kA’ and kN for achieving optimized result. In this paper, we
propose a new distance-based (DB) metric for automatically select
the best kk. It is described in the following subsection.

3.2. The distance-based metric

The proposed DB metric for the synthesized target person’s
expression face image Itarget_exp can be described by Eq. (7):

DBðItarget expðkkÞÞ ¼ e
E
!

target expðkkÞ� E
!

source exp

��� ���
þxdb

� e
E
!

target expðkkÞ� E
!

target gl

��� ���
ð7Þ

where E
!

target exp(kk) is the feature vector for the synthesized target
person’s expression face image Itarget_exp(kk) (note that both Itarget_exp

and E
!

target exp are controlled by the elasticity ratio kk in Eq. (6)),
E
!

source exp is the feature vector for the source person’s expression
face image, and E

!
target gl is the feature vector for the target person’s

global warped expression image. || � || is the Euclidean distance
operation. And xdb is the balancing parameter and it is set to be 1
in our experiments.

Since the target for facial expression cloning is to transfer the
source person’s expression to the target person, better expression
cloning result should be expected if the target person’s expression
is more similar to that of the source person. Therefore, the first
term of Eq. (7) is used to calculate the distance between the target
person’s final expression face and the source person’s expression
face. It is straightforward that better expression cloning results
should achieve smaller value in the first term.

However, the first term only considers the similarity between
the target expression and the source expression while the target
person’s own characters are not considered. This will lead to a
problem that any expression face similar to the source person’s
expression but totally different from the target person’s face will
achieve small values in the first term (e.g., if we view the source
person’s expression face as the final synthesized result, the first
term in Eq. (7) will be 0). Therefore, in our DB metric, we also intro-
duce the second term to calculate the distance between the final
target person’s expression face and the target person’s global
warping result (i.e., k E

!
target exp � E

!
target gl k). By taking the target

person’s global warping result as the reference, the target person’s
own expression character can be suitably included. Therefore,
according to Eq. (7), an expression cloning result Itarget_exp is good
if: (a) it can efficiently carry the source person’s expression (i.e.,
close to the source person’s expression face), and (b) it suitably
holds the target person’s own character (i.e., close to the target per-
son’s global warping results).

There can be many ways to extract the feature vectors for
describing faces in Eq. (7) (i.e., E

!
target exp, E

!
source exp, and E

!
target gl).

In this paper, we use the Eigenface method [11,19] for extracting
feature vectors. That is, we set images with different expressions
of one person as the training set (12 images in our experiments)
and perform Principle Component Analysis (PCA) to extract the
principal components. Then, for the input images, their eigenvec-
tors will be extracted based on these principal components and
used as the feature vectors [11,19].

With the DB metric in Eq. (7), the optimal elasticity coefficients
kA’ and kN in the elastic model in Eq. (4) can be decided by:

kk opt ¼ arg min
kk

DBðItarget expðkkÞÞ ð8Þ

where kk ¼ kA0=kN is the elasticity ratio as defined in Eq. (6). Itar-

get_exp(kk) is the resulting expression cloning image with elasticity
ratio kk. In our experiments, we simply calculate DB(Itarget_exp(kk))
over 19 candidate kk values (i.e., kk = x/10 and kk = 10/x where
x = 1, . . .,10) and select the one with the smallest DB value as the
optimal kk_opt. After the optimal elasticity ratio is decided, the opti-
mal elasticity coefficients can be achieved accordingly.

3.3. The muscle-distribution-based (MD) model

The target for the MD model is to process the detailed illumina-
tion information (i.e., ERI in Fig. 1) such that suitable illumination
details can be added to the target person’s expression face image
F_IMG. We observe that facial muscles play key roles in a person’s
expression details. According to the muscle theory [1,10], most
facial illumination details come from the movements of muscles
in one’s face (e.g., shrink and expand). Therefore, in our MD model,
we introduce the muscle distribution information to evaluate the
importance of illumination details such that important illumina-
tion details are strengthened properly to create more vivid expres-
sion results.

Based on the muscle structure theory [10] (as in Fig. 9(a)), we
first define the key muscle areas which are closely related with
the illumination details and the muscle movements on person’s
face. Fig. 9(b) shows some examples of the defined key muscle
areas. Note that in order to show the key muscle areas clearly, only
parts of the areas are displayed in Fig. 9(b). The locations of the key
muscle areas can be decided by one feature point (e.g., the muscle
area B in Fig. 10(a)) or the center of several feature points (e.g., the
muscle area A in Fig. 10(a)). Furthermore, the radius of the key
muscle areas can also be decided by the distance among the fea-
ture positions. As mentioned, since the feature positions in the face
can be automatically decided [3,12], these key muscle areas can be
automatically calculated from the feature positions as long as the
corresponding relation between the muscle areas and feature posi-
tions has been preset.

After the key muscle areas are decided, our MD model will
strengthen the illumination details inside these key muscle areas.
The final processed illumination detail at pixel (u, v) by our MD
model can be calculated by Eq. (9).

ILMDðu; vÞ ¼ Mðu;vÞILðu;vÞ ð9Þ

where IL(u, v) = ERI(u, v) � 1 is the shifted ERI [5] and M(u, v) is
the detail importance mask decided by the key muscle areas.
Since the main purpose of our MD model is to strengthen the
illumination details inside the key muscle areas, the detail impor-
tance mask M(u, v) should mainly obey the following three rules:
(a) The illumination details should be strengthened properly in-
side these key muscle areas. (b) The illumination details outside
these circles should not be too much affected. (c) The changes
of illumination details should be as smooth as possible at the
boundary of these circles and no abrupt changes are allowed.
Considering the above three rules, we use a low-pass-filter-like
mask for each key muscle area and let it fade gradually around
the boundary of the area, as in Eq. (10).

Mðu; vÞ ¼ 1þ hðu0; v0Þ � e
�ðu�u0 Þ

2þðv�v0 Þ
2

2rðu0 ;v0 Þ
2 ð10Þ



(a)                           (b) 

Fig. 9. (a) The muscle structure [1,10], (b) some example key muscle areas.

(a) (b)

Fig. 10. (a) Deciding the key muscle areas by feature points, (b) an example mask
image for an entire face image (the brighter pixels indicate more illumination
details are enhanced).
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where (u0, v0) is the center of the key muscle areas. h(u0, v0) deter-
mines the strength by which illumination details are added and it is
adaptive for different key muscle areas. Furthermore, r(u0, v0) is the
impact range of the key muscle area centered at (u0, v0). In this
paper, r(u0, v0) is calculated by:

rðu0;v0Þ ¼
1ffiffiffiffiffiffiffiffi
ln 2
p rðu0;v0Þ ð11Þ
 (a) (b) (c)       (d)    

Fig. 11. Facial expression cloning results for the experiment in Fig. 1. ((a) Global war
warping+ERI, (f) elastic model+ERI, (g) E+MD algorithm, (h) the source person’s express

(a)                  (b)                   (c)               

Fig. 12. The difference images of the expressions in Fig. 11. ((a–f
where r(u0, v0) is the radius of the area as in Fig. 10(a). Fig. 10(b)
shows an example of the mask image for an entire face where the
brighter pixels indicate that more illumination details are
enhanced.

By our proposed elastic model and MD model, the facial expres-
sion cloning results can be obviously improved. The experimental
results are shown in the next section.
4. Experimental results

In this section, we show experimental results for our proposed
E+MD algorithm.

Fig. 11 shows the results of the experiment in Fig. 1 where the
following seven methods are compared: (a) use only global warp-
ing for facial expression cloning (Global warping) [3], (b) use only
local warping for facial expression cloning (Local warping), (c) use
only our elastic model for balanced result, (d) use global warping
for geometric warping and use ERI for adding illumination details
(Global warping+ERI) [5], (e) use local warping for geometric warp-
ing and ERI for the expression cloning (Local warping+ERI), (f) use
our elastic model for geometric warping and ERI for adding illumi-
nation details (Elastic model+ERI), and (g) use our elastic model for
geometric warping and use our MD model for adding illumination
details (E+MD). In order for easy comparison, we also attach the
original person’s expression face in Fig. 11(h).
  (e)      (f)     (g)         (h)

ping [3], (b) local warping, (c) elastic model, (d) global warping+ERI [5], (e) local
ion face).

      (d)                     (e)                    (f)

) correspond to the differences between Fig. 11(b–g) to (a)).



(a)                   (b)                   (c)                    (d)                    (e)                    (f)

Fig. 13. The difference images of the expressions in Fig. 11. ((a) Fig. 11(b–a), (b) Fig. 11(c–a), (c) Fig. 11(d–a), (d) Fig. 11(e–d), (e) Fig. 11(f–d), (f) Fig. 11(g–f)).

(a)  (b) (c) (d) (e)

Fig. 14. Facial expression cloning results. ((a) Target person’s neutral face, (b) global warping+ERI [5], (c) elastic model+ERI, (d) our E+MD algorithm, (e) source person’s
expression face).

(a)            (b)           (c)           (d) (e)

Fig. 15. Facial expression cloning results. ((a) Target person’s neutral face, (b) global warping+ERI [5], (c) elastic model+ERI, (d) our E+MD algorithm, (e) source person’s
expression face).

(a)         (b)           (c)           (d) (e)                           (f)

Fig. 16. Facial expression cloning results. ((a) Target person’s neutral face, (b) global warping+ERI [5], (c) Song’s method [2], (d) Elastic+ERI, (e) our E+MD algorithm, (f) source
person’s expression face).
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From Fig. 11, we can see that the results by only using the global
or local warping (i.e., Fig. 11(a) and (b)) are obviously less similar
to the ‘‘smile’’ expression of the source person. Although the ‘‘glo-
bal warping+ERI’’ and ‘‘local warping+ERI’’ methods improve the
result by adding illumination details (i.e., Fig. 11(d) and (e)), their
expressions are still less satisfactory as the smile extent is obvi-
ously different from that of the source person in Fig. 1. The smile
extent is more natural in Fig. 11(f) where the local facial difference



(a)              (b)         (c)          (d) (e)

Fig. 17. Facial expression cloning results. ((a) Target person’s neutral face, (b) Song’s method [2], (c) elasic+ERI by using Song’s method for global warping, (d) our E+MD
algorithm by using Song’s method for global warping, (e) source person’s expression face).
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between the source and the target people are reduced by our
elastic model. Finally, by adding illumination details using our
MD model, it is obvious that the smile expression in Fig. 11(g) is
the most expressive and the most effective in cloning the source
person’s facial expression.

In order to further analyze the results, we also create the
difference images among the expression images in Fig. 11. The dif-
ference images are created by taking the difference between two
images and normalizing the values to the range 0–255. The
resulting difference images are shown in Figs. 12 and 13. Fig. 12
shows the difference images by taking the difference between
Fig. 11(b–g) and the global warping result in Fig. 11(a), and
Fig. 18. Using our E+MD algorithm to transfer the expressions of a person in a video to th
second row: the target person’s expression video whose feature positions are achieved m
achieved by the automatic AAM method [12]).
Fig. 13 shows the difference images between different image pairs
in Fig. 11. From Fig. 12(b) and (f), we can see that our E+MD
algorithm improves the expression results by suitably including
geometric warping adjustments and illumination details. Also,
from Fig. 13(f), it is clear that illumination details of the key muscle
areas are properly enhanced by our MD model.

Furthermore, Figs. 14 and 15 show the other two sets of facial
expression cloning results. In Figs. 14 and 15, we want to transfer
one person’s expression in (e) to the person in (a). Figs. 14 and
15(b), (c), and (d) show the results of the ‘‘global warping+ERI’’
method [5], use our elastic model for geometric warping and
ERI for adding illumination details, and our E+MD algorithm,
e neutral face of a person in portrait (first row: the source person’s expression video;
anually; third row: the target person’s expression video whose feature positions are



(a)     (b) (c)  (d) 

Fig. 19. Facial expression cloning results by applying our algorithm on other expression warping methods. ((a) Target person’s neutral face, (b) result by Seol’s method [15],
(c) result by applying our elastic model on (b), (d) source person’s expression face).

(a) (b)     (c) (d) 

Fig. 20. Facial expression cloning results by applying our algorithm on other expression warping methods. ((a) Target person’s neutral face, (b) result by Seol’s method [15],
(c) result by applying our elastic model on (b), (d) source person’s expression face).

(a) (b) (c)

Fig. 21. Facial expression transfer results by combing our algorithm with the method in [20]. ((a) Target person’s expression face by [20], (b) target person’s expression face
by combining our algorithm with the method in [20], (c) source person’s expression face).
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respectively. It is obvious that the result by our E+MD algorithm
catches the sad expression more precisely where the organs such
as the eyes and the mouth in (d) are more vivid than those in
(b). Furthermore, comparing (d) and (c), we can see that our MD
model can effectively strengthen the details (e.g., the details be-
tween the eyebrows and around the nose) to make the expression
more recognizable.
In order to further demonstrate the effectiveness of our
algorithm, we also compare our results with Song’s method [2]
where the vertex tent coordinate (VTC) transfer and mesh images
are used. In Figs. 16(f) and 17(d), the expressions of the source
persons are to be transferred. Fig. 16(c) and Fig. 17(b) are the
expression cloning results of Song’s method [2] while Fig. 16(e)
and Fig. 17(d) are the results of our E+MD algorithm. Again, it is



Table 1
Subjective user study results for different facial expression cloning algorithms.

Global warping+ERI [5] Song’s method [2] Seol’s method [15] Wang’s method [20] Elastic model+ERI E+MD

Fig. 11 2.40 – – 3.75 3.95
Fig. 14 2.50 – – 2.85 3.00
Fig. 15 3.10 – – 3.35 3.45
Fig. 16 2.95 2.85 – 3.85 4.10
Fig. 17 2.30 3.70 – 3.85 3.85
Fig. 19 – – 3.15 – 3.55
Fig. 20 – – 3.75 – 3.95
Fig. 21 2.90 4.05
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obvious that our E+MD algorithm creates the best result. Compar-
ing the results in Figs. 16 and 17, we can also see that our E+MD
algorithm can produce more satisfactory results than Song’s meth-
od [2] (e.g., the shape of the mouth and the details around the eye-
brow center in Fig. 16(e) are more precise than (c)). This is because:
(a) although Song’s method [2] utilizes 3D model and mesh image
to reduce the facial differences, it is still less efficient in addressing
the impacts from local facial feature differences. (b) Song’s method
[2] also ignores the facial structure information during illumina-
tion detail transfer. Compared with [2], these problems can be
suitably addressed by our proposed elastic and MD models.

Furthermore, Fig. 18 shows another example by using our
E+MD algorithm to transfer the expressions of a person in a video
to a neutral face of a portrait. In Fig. 18, the first row is the source
person’s expression sequence. The second row is the target per-
son’s expression sequence whose feature positions are achieved
by manually identifying the feature positions. And the third row
is the target person’s expression sequence whose feature positions
are achieved by an automatic feature position identification meth-
od (i.e., the Active Appearance Model (AAM) method [12]). From
Fig. 18, we can see that the expressions of the source person are
efficiently transferred to the person in the portrait. Besides, the re-
sults in the third row are similar to the ones in the second row, this
further demonstrates that the automatic feature position identifi-
cation methods [12,15] can create similar results as the manual
feature position identification method. Note that the framework
of our algorithm is general, and besides the AAM method [12],
our algorithm can also be combined with other advanced auto-
matic feature position identification methods [25,26] to perform
automatic facial expression cloning in more challenging conditions
(e.g., poor lighting condition or low image resolution).

Moreover, as mentioned, in the experiments of this paper, our
E+MD algorithm is implemented based on the geometric warping
strategy [3,5]. However, the idea of our proposed algorithm is gen-
eral and it can be extended to combine with other facial expression
warping strategies [3,4,8,15,16,20]. For example, we can use the
Radial-Basis-Function-based method [15] or the deformation-
transfer-based method [8] to create the globally warped results
and then apply our E+MD algorithm accordingly. Figs. 19 and 20
show two examples by applying our elastic model on the warping
results of [15]. In Figs. 19 and 20, (a) is the target person’s neutral
face and (d) is the source person’s expression face. (b) is the result
by [15] and (c) is the result by applying our elastic model on (b).
Note that our MD model is not applied in Figs. 19 and 20 since
the target person’s face does not include the texture information.
From Figs. 19 and 20, it is clear that our elastic model can effec-
tively improve the facial expression results of [15] by introducing
local warping to handle the local organ similarities (e.g., compared
with (b), the mouth and the eyebrow regions in (c) are more vivid
and closer to those of the source person’s expression face in (d)).

Furthermore, Fig. 21 show another example by combining our
elastic model with the method in [20] (i.e., using the facial transfer
results in [20] as the global warping results and then applying our
elastic model to obtain better expression transfer results). Fig. 21
further demonstrates that our proposed model can effectively pro-
vide better expression transfer results when combining with the
existing facial expression cloning methods (e.g., compared with
(a), the eye and month regions in (b) are closer to those of the
source person’s expression face in (c), making the smile expression
more vivid).

Finally, Table 1 shows a subjective user study test on the results
in Figs. 11–20 [15,17,18]. We asked 30 participants to grade the
facial expression mapping results for different algorithms. The par-
ticipants include 18 males and 12 females whose ages ranged from
20 to 60. All the participants are without visual problems and 28
participants reported that they did not know about facial expres-
sion cloning. In order to avoid the evaluation bias, the algorithm
information of the resulting images is totally concealed from the
participants and the images for different algorithms are randomly
placed. During the test, the participants are first required to ob-
serve the results. After that, they shall give a score to each facial
expression mapping result. The score is within the range of 1–5,
where 1 means the poorest and 5 means the best. Finally, the
scores over 30 participants are averaged and quantized to be the
subjective evaluation score for each for each facial expression clon-
ing image. The user study test result in Table 1 further demon-
strates that our proposed E+MD algorithm can improve the facial
expression cloning results from the previous methods. Besides,
comparing ‘‘Elastic model+ERI’’ with our E+MD, we can also see
that the ‘‘E+MD’’ method has larger values. This demonstrates that
adding illumination details can further improve the facial expres-
sion cloning results.

5. Conclusion and future work

In this paper, a new E+MD algorithm for facial expression
cloning is proposed. The proposed algorithm introduces an elastic
model for balancing the global and local warping effects and a
muscle-distribution model for evaluating and strengthening the
facial illumination details. In addition, we also propose a new
distance-based metric for automatically selecting the parameters
to balance the global and local model effects. Experimental results
show that our proposed algorithm can achieve better expression
results than the existing methods.

The future works for our algorithm will include the following
aspects:

(a) Extending to 3D facial expression cloning. In the experi-
ments in this paper, the facial expressions are synthesized
with a 2D elastic model. However, our elastic model can
be easily extended to the 3D space. For example, we can first
achieve the 3D feature positions from the face image or face
image sequences [19,23,24]. Then, the global locations of
feature positions in the target person’s expression can be
obtained. By directly re-shaping these feature positions in
the 3D space, we can achieve their 3D local locations. Finally,
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we can use the elastic model to get the 3D balanced loca-
tions for these feature positions and apply 3D warping
[21,22] to create the expression cloning results.

(b) Extending to other shape deformation and warping applica-
tions. Since the basic idea of our algorithm is to introduce
the local model and apply the elastic model to improve the
warped feature position locations, it is not limited to facial
expression cloning. Instead, it can also be applied to improve
the shape deformation results of other objects such as the
human or animal body shapes [21,22].
Acknowledgments

This work was supported in part by the National Science Foun-
dation of China, under Grants. 61379079, 61025005, 61202154,
and 61102100, in part by the Shanghai Pujiang Program, under
Grant 12PJ1404300, in part by the SMC grant of SJTU, and in part
by the Chinese national 973 project, under Grant 2013CB329603.
References

[1] K. Kahler, J. Haber, H.P. Seidel, Geometry-based muscle modeling for facial
animation, Graphics Interface (2001) 37–46.

[2] M. Song, Z. Dong, C. Theobalt, H. Wang, Z. Liu, H. Seidel, Generic framework for
efficient 2D and 3D facial expression analogy, IEEE Trans. Multimedia 9 (7)
(2007) 1384–1395.

[3] G. Wolberg, Digital Image Warping, IEEE Comp. Society Press, 1990.
[4] T. Weise, S. Bouaziz, H. Li, M. Pauly, Kinect realtime performance-based facial

animation, SIGGRAPH (2011) 1–8.
[5] Z. Liu, Y. Shan, Z. Zhang, Expressive expression mapping with ratio images,

SIGGRAPH (2001) 271–276.
[6] B. Theobald, I. Matthews, J. Cohn, S. Boker, Real-time expression cloning using

active appearance models, Int. Conf. Multimodel Interfaces (2007) 134–139.
[7] J. Noh, U. Neumann, Expression cloning, SIGGRAPH (2001) 277–288.
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