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Flexible Image Similarity Computation
Using Hyper-Spatial Matching

Yu Zhang, Jianxin Wu, Member, IEEE, Jianfei Cai, Senior Member, IEEE, and Weiyao Lin

Abstract— Spatial pyramid matching (SPM) has been widely
used to compute the similarity of two images in computer vision
and image processing. While comparing images, SPM implicitly
assumes that: in two images from the same category, similar
objects will appear in similar locations. However, this is not
always the case. In this paper, we propose hyper-spatial matching
(HSM), a more flexible image similarity computing method, to
alleviate the mis-matching problem in SPM. The match between
corresponding regions, HSM considers the relationship of all spa-
tial pairs in two images, which includes more meaningful match
than SPM. We propose two learning strategies to learn SVM
models with the proposed HSM kernel in image classification,
which are hundreds of times faster than a general purpose SVM
solver applied to the HSM kernel (in both training and testing).
We compare HSM and SPM on several challenging benchmarks,
and show that HSM is better than SPM in describing image
similarity.

Index Terms— Image similarity, spatial matching, fast SVM
learning.

I. INTRODUCTION AND RELATED RESEARCH

SPATIAL pyramid matching (SPM) [1] has been widely
used in computer vision problems to compute the simi-

larity of two images, achieving state-of-the-art performance in
various applications [2]–[9]. In SPM, an image is divided into
N spatial non-overlapping or overlapping regions at different
spatial levels, which form the spatial pyramid (SP). Then, each
region is represented by a histogram of visual codewords using
the bag-of-visual-words (BOV) model or other features, e.g.,
Fisher vector [10]. Finally, in classification or recognition,
many methods compute the similarity of two images as the
sum of the similarity of all corresponding regions using
measures such as a linear [11] or non-linear additive kernel
[12]–[14] κ , which can be solved efficiently by fast SVM
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classifiers, that is,

KS P M(xi , x j ) =
N∑

p=1

κ(x p
i , x p

j ), (1)

where x p
i , x p

j ∈ R
d are the feature vectors of the p-th spatial

region in two images xi and x j , respectively.
SPM was originally proposed to compare corresponding

spatial local regions in two images (that is, regions at the same
relative spatial location in two images). It implicitly assumes
that regions at the same spatial location in two images from
the same category are similar. This implicit assumption is also
inherited by most variants of SPM. In [3], each region in an
image is assigned a learned weight (i.e., spatial saliency), and
the similarity of two images is the sum of similarities of all
weighted spatially corresponding regions. In [4], the authors
used receptive fields, which are combinations of basic spatial
regions, to provide more features in their image representation.
Then, the image similarity is the sum of similarities of all spa-
tially corresponding receptive fields. In [15], a specific spatial
partition of images is learned for a given task. Similarly, [16]
used different random partitions to split each image and find
the optimal partition for each class to learn a classifier. In [17],
the object location and its spatial subdivision are both learned
in a latent structured SVM framework. In the face recognition
area, different regions of faces are matched using the earth
mover’s distance in [18]. In [19], spatial regions of faces at
multi-resolution are used to evaluate the face similarity, which
leads to better face classification performance. More works
focus on improving SPM by designing more powerful features
for each region, see [5]–[9], [20]. In this paper, we focus on
the matching of spatial regions, rather than the matching of
interest points as in [21] and [22].

However, given two images in which similar objects appear
in different spatial locations in them, SPM usually provides
an inferior spatial matching result. In Fig. 1, two images of
skyscrapers are divided into 4 non-overlapping regions. The
sky and skyscrapers appear in different locations in these
images, which make the spatially corresponding regions mis-
match seriously. This phenomenon has also been observed
in [23] and [24]. In [23], different spatial regions are mapped
to a flexible spring lattice counting grid [25]. This method
is suitable for scene images with shared parts. Researches
in [24], [26], and [27] suggest to segment the foreground
object from the background in each image and match them
respectively. However, these approaches may not be suitable
for scene images, which usually have no central objects.
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Fig. 1. Mis-matching of two images A and B in the same category (skyscraper) using SPM. The corresponding spatial regions in these two images mis-match
seriously.

In this paper, we propose a novel hyper-spatial matching
(HSM) kernel to alleviate the mis-matching problem in SPM.
Specifically, we consider the pairwise relationship of all local
regions in two images. The similarity between two images is
defined as the sum of the weighted similarities of all spatial
pairs, that is,

K H S M (xi , x j ) =
N∑

p=1

N∑

q=1

Rpqκ(x p
i , xq

j ), (2)

where R ∈ R
N × R

N is a learned weight matrix encoding the
relationships among different spatial regions.

HSM can include many variants of SPM, by assigning
different values to the relationship matrix R. From Eq. 2,
we can see that SPM is a special case of HSM, where R is
an identity matrix. More importantly, with an appropriate
R matrix, HSM can include meaningful matching between
different spatial locations, e.g., between region 1 and 3, and
region 2 and 4 of the two images in Fig. 1.

The value Rpq must represent the statistical relationship
between the p-th and the q-th spatial region in all the (training)
images. For example,

• A region in one image is usually similar to the spatially
surrounding regions in images from the same category.
It is thus intuitive to require that: Rpq should be relatively
large if the p-th and the q-th regions are neighboring each
other;

• If two regions are similar only in a few image pairs, then
the corresponding weight in R should be small;

• When two images come from different categories,
we should require that their HSM similarity is as small
as possible; and,

• For a given problem or dataset, the learned R matrix
should be stable. That is, if we use different subsets of
images from the problem to learn several R matrices, they
should be similar to each other.

In order to accommodate to these complicated constraints in a
systematic manner, in this paper, the relationship matrix R is
learned from the training images, by maximizing the HSM
similarity of images from the same category, while at the
same time minimizing the HSM similarity of images from
different categories. In fact, after learning the R matrix in
real datasets, we will visualize it and demonstrate that the
above intuitions about the R matrix indeed hold. This fact
also reflects the feasibility of the proposed HSM framework.
Further discussions are provided in Section II-B (for showing

the stability of R) and the experimental part of this paper (for
validating other intuitions).

K H S M is a Mercer kernel when R is a positive semidefi-
nite (PSD) matrix and κ(·) is a Mercer kernel (cf. Section III-
A). So it can be used within SVM directly for image classi-
fication tasks. Because additive kernels have shown excellent
efficiency and efficacy in image classification tasks [13], [14],
[28], we assume that the κ in Eq. 2 is additive (including the
dot product kernel). However, it is easy to observe that HSM
causes much more computations than SPM. A general purpose
SVM solver like LIBSVM will be thousands of times slower
than the recently designed additive kernel algorithms [13],
[14], [28]. It is necessary to also devise a fast learning
algorithm to apply HSM in large-scale problems.

Recent development of fast training algorithms for large
scale problems include dual coordinate descent [11] and
stochastic gradient descent [29] for the linear (dot product)
kernel; intersection coordinate descent [12], piece-wise linear
classifier [28], and nonlinear SVM [30] for the histogram
intersection (HI) kernel; explicit data embedding [31], feature
mapping [13] and power mean SVM (PmSVM) [14] for
general additive kernels, etc. However, none of these fast
methods can be directly applied to solve the HSM kernel
learning problem.

In this paper, we propose two efficient strategies for HSM
SVM learning and prediction: spectral linearization and gra-
dient approximation. In spectral linearization, K H S M learning
is explicitly transformed into an approximate linear learning
problem, and any linear SVM solver can be applied to solve it.
In the gradient approximation strategy, the gradient of a dual
HSM SVM objective is directly approximated by polynomial
regression. Training and testing speed of both strategies for
HSM are comparable to those of fast algorithms for linear
and additive kernel SVM + SPM, and hundreds of times faster
than general purpose SVM solvers + HSM. In addition, we
propose a Hyper-spatial feature (HSF) to approximate HSM
for high-dimensional features like Fisher vector (FV) [32] and
VLAD [33] when a linear classifier is used. Thus, HSM can
be readily applied to both large scale image classification
problems, and to those problems requiring real-time testing
speed.

Overall, the following contributions are presented in this
paper:

• Hyper-Spatial Matching. HSM is proposed to alleviate
the mis-matching in SPM, which is caused by consid-
ering only corresponding spatial regions in two images.
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It evaluates all spatial pairs, which provides a better
similarity metric than spatial pyramid matching. We also
propose hyper-spatial features (HSF) if linear classifiers
are preferred. HSF consistently improves classification
results, with almost no increase in storage or CPU cost;

• Efficient HSM SVM Learning and Prediction
Algorithms. The proposed strategies provide efficient
and scalable learning and testing, in addition to high
image classification accuracy. More importantly, they also
provide explanations about why HSM provides better
matching than SPM; and,

• Accurate Classification Results. HSM has higher clas-
sification accuracy rates than SPM on several challenging
benchmark datasets, e.g., the SUN dataset [34].

II. HYPER-SPATIAL MATCHING

Before proposing the details of hyper-spatial matching, we
first summarize the notations used in this paper:

• An image x has N regions x = (x1, . . . , xN ), and each
region is represented by a d-dimensional feature vector
xi ∈ R

d ;
• The training set X = {x1, . . . , xn} contains n images.

Each image is divided into N regions xi = (x1
i , . . . , x N

i ),
and has a class label yi ∈ {1, 2, . . . , Nc}, where Nc is the
number of image categories; and,

• x p,t
i denotes the t-th dimension in the feature vector

extracted from the p-th region in the i -th image in X ,
where i = 1, . . . , n, p = 1, . . . , N , and t = 1, . . . , d .

We use an additive kernel κ to compare two regions throughout
this paper. For more details of the additive kernels, the readers
are referred to [13], [14], and [28].

A. Learn an Overall Relationship Matrix R

In hyper-spatial matching, the relationship matrix R plays
a key role. We learn an overall relationship matrix R from the
training samples of all categories, and require it to maximize
the similarity of images from the same category, meanwhile
to minimize the similarity of images from different categories.
First, we define an n × n matrix D:

Dij =
{ − 1

n− if yi = y j

1
n+ otherwise,

(3)

where n− and n+ are the number of same class pairs (yi = y j )
and the number of cross class pair (yi �= y j ) in D, respectively.
This matrix indicates whether images i and j belong to the
same class or not. Since in a multiclass problem, the number
of same class pairs is much smaller than that of pairs with
different class labels, we normalize it with n− and n+ in Eq. 3,
respectively.

For multi-label problems, D can be computed as:

Dij =
{− 1

n− if yi ∩ y j �= ∅
1

n+ if yi ∩ y j = ∅,
(4)

where yi and y j are the label set related to the i -th and j -th
instance, respectively.

Then, the learning process of R is formulated as:

min
R

n∑

i, j=1

N∑

p,q=1

Rpq Dij κ(x p
i , xq

j ) + γ ‖R‖2
F

s.t. R � 0, Rpp = 1, ∀p. (5)

where ‖ · ‖F is the Frobenius norm of a matrix, R � 0 means
R is a positive semidefinite matrix, and γ > 0 is a parameter
to balance the loss on the training set and the regularizer on R.
Note that R is a symmetric matrix, based on the fact that the
pairwise relationship is symmetric. Meanwhile, the values in
its diagonal entries are set to 1, thus HSM can keep this same
spatial correspondence as SPM. Besides, HSM can include
more meaningful matching between different spatial locations
if the off-diagonal values in R are non-zero.

Many existing kernels [35]–[38] can be viewed as special
cases of HSM. For example, the kernels in [36]–[38] are
used to compute the similarity of two bags (images) of local
descriptors. When the bag sizes are the same, the sum-max
kernel [36] is equivalent to HSM, by setting one specific
column in each row of R to 1 (and 0 for all the rest). The
kernels in [37], and [38] are equivalent to HSM by setting all
values in R to 1.

The optimization in Eq. 5 is a standard semidefinite
programming (SDP) problem, which can be efficiently solved.
To see this, we change the order of summations in the objective
function and define a new matrix A ∈ R

N × R
N , where

A pq =
n∑

i, j=1

Dij κ(x p
i , xq

j ). (6)

This matrix encodes the average affinity or correlation of
different regions, with the class labels yi and y j incorporated.
Then, we can rewrite Eq. 5 in a more compact form, as:

min
R

tr(AT R) + γ tr(RT R)

s.t. R � 0, Rpp = 1, ∀p, (7)

where tr(·) is the trace of a matrix and tr(RT R) = ‖R‖2
F .

Since N is small (N = 31 in this paper), it is a small scale
SDP problem and can be solved in a few seconds.

In Fig. 2, we show an example of learned spatial relation-
ships for normalized human faces. An R matrix is learned for
all 7 × 7 regions with the size of 49 × 49. Relationships of
three parts (eye, nose and mouth) to all 49 regions (which are
three corresponding rows in R) are visualized according to R.1

In each of the three similarity images, the dark red regions are
the most similar to the query. We can see obvious symmetry
between both eyes, and the self-similarity around the mouth
and the nose.

B. Stability of the Affinity and Relationship Matrices

One important premise for the proposed hyper-spatial
matching framework to work well for image similarity com-
putation is that: in a specific dataset, the relationship matrix R

1This R is generated by replacing ‖R‖2
F in Eq. 7 to ‖R‖�1 , in order to get

a sparse R matrix for better visualization. In our experiments, the F-norm
has slightly higher classification accuracy than the �1-norm, so the F-norm
is adopted in Section IV and Eq. 7.
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Fig. 2. Spatial relationship between different regions of human faces. This
figure should be viewed in color.

learned from Eq. 7 should be stable. That is, if we use different
images sampled from the same problem domain to calculate
the affinity matrix A and to learn the relationship matrix R,
we expect the learned matrices to be similar to each other.

Empirically, we observe that in our experiments both
matrices A and R are in fact stable. We first sample five
subsets from all available images of a specific dataset. Then,
five versions of affinity matrices A1, . . . , A5 are computed.
Relationship matrices R1, . . . , R5 are learned correspondingly.
Next, we measure the variations of A or R by:

sA = 1

5

5∑

i=1

‖Ai − Ā‖F

‖ Ā‖F
, sR = 1

5

5∑

i=1

‖Ri − R̄‖F

‖R̄‖F
, (8)

in which Ā = 1
5

∑5
i=1 Ai , R̄ = 1

5

∑5
i=1 Ri , and ‖ · ‖F is the

Frobenius norm.
The computed sA and sR values are usually very small. For

example, when we randomly sample five subsets in the Scene
15 dataset (each with 10% examples from the training set),
we find that sA = 0.057 and sR = 0.065 (sR is computed
by removing 1s in the diagonal of Ri and R̄). Because both
A and R are stable within a given problem, and computing
the affinity matrix A is expensive, in this paper we simply
use the same R for all experiments on one dataset. This
relationship matrix is computed by sampling 10% examples
from the training set.

C. Learn Independent Relationship Matrices Rc

An overall relationship matrix for all categories capture the
global relationship between spatial regions. However, it may
neglect the unique spatial arrangement of a specific category,
e.g., two regions of one category are more similar than
those of other categories, which must be highlighted by the
relationship matrix. In this section, we learn one independent
relationship matrix for each category to capture their unique
spatial arrangements.

For each class c ∈ {1, 2, . . . , Nc}, the relationship matrix
Rc should maximize K H S M of any two images in class c,

and minimize the similarity of any two images with one from
class c and the other from the rest classes. To achieve this goal,
an n×n matrix Dc for class c (similar to Eq. 3) is first defined:

Dc
i j =

⎧
⎪⎨

⎪⎩

− 1

n− yi = y j = c

1

n+ (yi �= y j ) ∧ (yi = c ∨ y j = c).
(9)

Finally, Dc is used to compute Ac and learn Rc similarly as
Eq. 6 and 7, where Ac and Rc are the affinity and relationship
matrices for class c, respectively.

III. EFFICIENT HSM SVM LEARNING

HSM causes more computations than SPM in comparing
two images: O(N2d) vs. O(Nd). Since it is not an additive
kernel, recent developments of fast training algorithms for
additive kernel SVM are not applicable either. In this section,
we propose two novel fast learning strategies.

We choose SVM as the classifier and solve the dual SVM
problem (without a bias term):

min
α

f (α) = 1

2
αT Qα − eT α

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n, (10)

where α consists of the Lagrange multipliers, e is a vector with
all ones, and Qij = yi y j K H S M(xi , x j ). Then, the classifier
can be acquired as: w = ∑n

i=1 αi yiξ(xi ), where ξ is an
implicit mapping from the original input space to the feature
space of K H S M .

In the next two subsections, we propose two strategies to
solve the problem (10): a spectral linearization of the problem
(in Section III-A) and by directly approximating the gradient
in SVM learning (in Section III-B).

A. The Spectral Linearization Strategy

The first strategy we propose to solve Eq. 10 is to linearize
the non-linear HSM kernel approximately, using a spectral
decomposition of R and the Fourier sampling technique
in [13]. Any fast linear SVM solver can solve the converted
approximate linear problem efficiently.

Since the additive kernel κ is a positive definite one, there
exists a mapping φ that guarantees κ(x, y) = φ(x)T φ(y) for
any examples (images) x and y. With some abuse of notation,
we define a ‘matrix’ Kx for any example x, which is simply
a reshaped version of φ(x):

Kx =
⎛

⎜⎝
φ(x1)T

...

φ(xN )T

⎞

⎟⎠. (11)

Then, we define K = Kx K T
y , in which K y is defined similar

to Eq. 11. So,

K H S M (x, y) =
N∑

p=1

N∑

q=1

Rpqφ(x p)T φ(yq)

=
N∑

p=1

N∑

q=1

Rpq K pq = tr(RT K ). (12)
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where K pq = κ(x p, yq) = φ(x p)T φ(yq). Note that K
is dependent on x and y, although we did not make this
dependency explicit in the notation.

Because R is a real symmetric and positive semidefinite
matrix, it has a spectral decomposition as:

R =
N∑

p=1

λpupuT
p , (13)

where λp ≥ 0 and up ∈ R
N are the eigenvalues and

corresponding eigenvectors of R, respectively. With the spec-
tral decomposition, a linearization of the HSM kernel is not
difficult to figure out:

K H S M(x, y) = tr(RT K )

= tr

⎛

⎝
N∑

p=1

λpupuT
p Kx K T

y

⎞

⎠

=
N∑

p=1

λp tr
(

uT
p Kx K T

y up

)

=
N∑

p=1

(√
λp K T

x up

)T (√
λp K T

y up

)
, (14)

in which we used the fact that tr(AB) = tr(B A) and
tr(x) = x when x ∈ R. Then, the following mapping 	
provides a linearization for HSM, and K H S M(x, y) =
	(x)T 	(y) for all x and y:

	 : x = (x1, . . . , xN ) →(
√

λ1 K T
x u1, . . . ,

√
λN K T

x uN ). (15)

For many additive kernels κ , the mapping φ could be high
or even infinite-dimensional (or does not have an explicit
form), rendering Eq. 15 impractical. However, we can use
the random Fourier sampling technique in [13] to reach an
approximate linearization for additive kernels. An additive
kernel κ can be approximated by κ(x, y) ≈ φ̂(x)T φ̂(y). The
feature mapping φ̂ transforms any scalar value x into 2m + 1
dimensions, and φ̂(x) ∈ R

(2m+1)d if x ∈ R
d . Details of the

the Fourier sampling technique and examples of closed form
feature mapping φ̂ for some commonly used additive kernels
can be found in [13].

Replacing φ with φ̂ in Eq. 11 and Eq. 15, for any x in
an HSM setting, K̂x is now a N × (2m + 1)d matrix,
K̂ T

x up is (2m + 1)d dimensional, and the approximate HSM
linearization 	̂ is a (2m + 1)Nd dimensional vector.

Then, any fast linear SVM solver can be used to solve
the linearized problem. This fact shows that K H S M is a
Mercer kernel when R is a PSD matrix. The complete learning
process is shown in Algorithm 1.

Before presenting the next learning strategy, we end this
subsection with a technical note. Eq. 15 shows that R � 0 is
a sufficient condition for HSM to be a valid Mercer kernel.
In fact, R � 0 is also a necessary condition. If R is not positive
semidefinite, then K H S M(x, x) < 0 may hold, which cannot
happen in a Mercer kernel. One such example is when R =(

1 2
2 1

)
, N = 2, d = 1, x = (1,−2), and κ(x, y) = xy, we

have K H S M(x, x) = −3.

Algorithm 1 HSM SVM Learning by Spectral Linearization

Algorithm 2 The Coordinate Descent Method [39]

B. The Gradient Approximation Strategy

The second strategy we propose directly approximates the
gradient in coordinate descent SVM learning. This strategy is
better than the spectral linearization strategy in practice: SVM
training is faster and requires less memory; meanwhile it has
a slightly higher classification accuracy (cf. Section IV).

In order to efficiently solve the problem (10), we choose
the dual coordinate descent method [39], which is shown
in Algorithm 2. We approximate the gradient G (line 5 in
Algorithm 2) using the gradient approximation method in [14].

First, we substitute K H S M into G:

G = yi

N∑

p=1

d∑

t=1

N∑

q=1

Rpq

n∑

j=1

α j y jκ(x p,t
i , xq,t

j ) − 1. (16)

It needs O(nN2d) steps to compute, which is very expensive.
In Eq. 16, the essential part is

∑n
j=1 α j y jκ(x, xq,t

j ) for any
scalar value x . We define this summation as a function gq

t (x).
Then, we use an m′ degree polynomial regression model to

approximate it (following [14]):

gq
t (x) =

n∑

j=1

α j y jκ(x, xq,t
j ) ≈

m′∑

s=0

aq,t
s x s, (17)

where aq,t
s is the polynomial regression parameter for the t-th

dimension in the q-th region, and xs is x raised to the s-th
power.
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Algorithm 3 HSM SVM Learning by Gradient Approximation

Next, we need to learn the m′ + 1 parameters aq,t
s in the

model. We choose m′ + 1 values c = (c0, . . . , cm′) between
[0 1] and calculate gq

t (ci ), i = 0, . . . , m′. The optimal
parameters of aq,t = (aq,t

0 , . . . , aq,t
m′ ) equals [14]

aq,t = X−1gq
t (c), (18)

where X is a Vandermonde matrix with Xij = (ci )
j ,∀i, j ,

and gq
t (c) = (gq

t (c0), . . . , gq
t (cm′)). To simplify the notations,

we denote b p,t
s = ∑N

q=1 Rpqaq,t
s , and the vector form is now:

bp,t =
N∑

q=1

Rpq aq,t . (19)

Finally, we have the gradient approximated as:

G = yi

N∑

p=1

d∑

t=1

⎛

⎝
m′∑

s=0

b p,t
s (x p,t

i )s

⎞

⎠ − 1. (20)

Meanwhile, given a learned classifier w and a new testing
image x, the SVM decision value is:

wT ξ(x) =
N∑

p=1

d∑
t=1

(
m′∑

s=0
b p,t

s (x p,t)s

)
. (21)

In Eq. 20 and 21, m′ is usually very small, e.g., m′ = 2, so
the complexity are greatly reduced from O(nN2d) to O(Nd).
Note that Nd is the length of the whole feature vector for an
image in SPM. Thus, HSM has the same testing complexity
as a linear classifier. The complete learning process of HSM
SVM using the gradient approximation strategy is given in
Algorithm 3.

Note that if we want to compare the two proposed HSM
SVM strategies, we need to make 2m + 1 (the number of
dimensions in w corresponding to a single dimension in the
input in Algorithm 1) and m′ + 1 (in Algorithm 3) equal to
each other. In this paper, we choose m = 1 and m′ = 2 in our
experiments.

Algorithm 4 Dot Product HSM SVM

C. Dot Product HSM SVM

Both proposed strategies deal with HSM with a base non-
linear additive kernel. When the base kernel κ is a dot product
kernel, we can directly derive an exact formulation for HSM
SVM:

G = yi

N∑

p=1

d∑

t=1

x p,t
i

⎛

⎝
N∑

q=1

Rpq

n∑

j=1

α j y j xq,t
j

⎞

⎠ − 1, (22)

and the decision value is:

wT ξ(x) =
N∑

p=1

d∑

t=1

x p,t

⎛

⎝
N∑

q=1

Rpq

n∑

j=1

α j y j x
q,t
j

⎞

⎠. (23)

By defining ŵ, where ŵp,t = ∑N
q=1 Rpq

∑n
j=1 α j y j x

q,t
j , we

get wT ξ(x) = ŵ
T x, which has the same complexity as a linear

classifier. The learning process is shown in Algorithm 4.

D. The Decorrelation Effect of HSM

The fundamental motivation of HSM comes from the obser-
vation that different spatial regions are in fact interacting
with each other; or, correlated with each other. Thus, we
expect the matrix A that encodes affinity of regions (computed
from Eq. 6) has many non-zero off-diagonal entries. These
correlations make HSM highly non-linear.

However, as shown in the spectral linearization based
strategy, HSM can be approximately linearized. Since the
linearized version is an approximation of the original non-
linear HSM problem, in the linearized problem, different
regions should not correlate with each other any more. That is,
we would expect the relationship matrix R of HSM to decor-
relate those spatial regions that are originally correlated. This
statement is empirically verified in Fig. 3.

The left image in Fig. 3 visualizes the affinity matrix A
computed from the original dataset. It is obvious that although
the diagonal entries have the largest absolute values, many
off-diagonal entries have correlations that can not be ignored.
However, if we compute the affinity matrix A again on the
linearized dataset, the middle image demonstrates that most
off-diagonal entries are close to 0. That is, after applying HSM
to linearize the problem, different spatial regions now are not
correlated with each other in most cases.



4118 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2014

Fig. 3. Affinity matrix (computed on the Scene 15 problem [1]) of the original dataset; of the linearized dataset after applying HSM; and the eigenvalue
normalized version after applying HSM, respectively. This figure should be viewed in color.

Two points deserve further attention. First, because in
Eq. 15, we sort the eigenvalues as λ1 ≥ λ2 ≥ · · · , the values in
the middle image decreases from top to bottom and from left
to right. If we remove the effect of eigenvalues (i.e., remove all
λi from Eq. 15), the affinity matrix of the linearized dataset
is shown in the right part of Fig. 3. It is obvious that the
decorrelation effect still holds.

Second, there are a few remaining off-diagonal entries with
relatively large values after linearization. However, all of them
involve regions from the level 0 or level 1 in the spatial
pyramid. Such regions cover the entire image (level 0) or a
quarter of the entire image (level 1). Thus, it is possible that
they still have remaining correlation with level 2 regions that
are contained in them.

Overall, we believe that
• Correlations exist among regions at different spatial loca-

tions, which cannot be safely ignored; and,
• Through the learned relationship matrix R, HSM success-

fully decorrelates different spatial regions.
These observations may explain why HSM has an advantage
over SPM in various image categorization tasks in our exper-
iments (cf. Section IV).

E. SVM Learning With Independent Relationship Matrices

Until now, we only consider the HSM kernel with one
overall relationship matrix. We want to emphasize that both
strategies can readily use independent relationship matrices.

In the multi-class classification problem, we use the one-vs-
rest strategy. During the learning phase, images of one class
c ∈ {1, 2, . . . , Nc} are chosen as positive samples, and the rest
images are treated as negative samples. A binary classifier is
learned for this class c with Rc.

The choice to use multiple independent relationship
matrices (rather than one overall relationship matrix) has
influence to the two proposed strategies. For the gradient
approximation strategy, Nc relationship matrices means that
all training instances need to compute Nc times of Eq. 19.
When Nc is large, the cost of this gradient transformation
will be evident in the whole computation. However, Eq. 19
only influences the training stage. In the testing phase, the
computational cost for an example remains the same as that
using one overall relationship matrix. Similarly, the conversion
step (Eq. 15) needs to be run Nc times for any example x in

spectral linearization during the training stage, and the testing
cost is similar as that of the gradient approximation strategy.

F. Hyper-Spatial Features

For very high dimensional visual representations such as
Fisher vector [10] and VLAD [33], even Algorithm 4 could
be too costly. Thus, we propose a simple way to append hyper-
spatial features (HSF) to approximate HSM. Given an image
with N regions, x = (x1, . . . , xN ), we append the following
N(N−1)

2 values to the end of x:

(x p)T (xq), 1 ≤ p < q ≤ N. (24)

When using the linear (dot product) kernel on the expanded
vectors, the above appended within-image spatial similarity
values will approximate the HSM similarity.

Encoding spatial information is related to [40], which
appends coordinates into local visual descriptors to include
the spatial information. In contrast, HSF encodes the spatial
relation between regions rather than among local descriptors.
In other words, HSF values are additional useful contextual
information in an image.

IV. EXPERIMENTAL RESULTS

In this section, we empirically compare HSM with state-of-
the-art methods. The two proposed strategies are abbreviated
as “ga” and “sl”, to denote gradient approximation and spectral
linearization, respectively. We use the two most widely used
additive kernels for κ : χ2 and histogram intersection (HI).
They are denoted as HSM-ga(sl)-χ2(HI). We also denote
HSM with linear kernel as HSM-linear. Besides, we evaluate
the performance of HSM using the independent relationship
matrices with the gradient approximation strategy, denoted as
HSMind -ga-χ2(HI). All other HSM results use an overall R.

Eq. 7 is solved by using the CVX [41] software package and
γ = 0.2. In Eq. 10, C = 0.01 for gradient approximation with
non-linear kernels, C = 1 for spectral linearization with non-
linear kernels, and C = 1 for the linear kernel, respectively.2

In multi-class classification tasks, we use the one-vs-rest
strategy. An overview of HSM methods is listed in Table I.

2These values are default values for the PmSVM and LIBLINEAR software
package, respectively.
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TABLE I

OVERVIEW OF HSM METHODS IN THE EXPERIMENT

In Algorithm 3, X−1 ∑N
q=1 Rpqκ(c, xq,t

i ) in Line 9 is used
frequently during the iterations, which can be precomputed
and stored to save lots of computations in this process. It is
the same for Line 8 of Algorithm 4. If the dataset is too large
to fit into the memory, we have to compute it in every iteration,
however, which is still more efficient than other available
methods, e.g., LIBSVM [42]. In this paper, all datasets can
fit into main memory, so we use the former strategy.

Experiments are organized as follows. First, we com-
pare the proposed approximate learning strategies with exact
HSM SVM. We use LIBSVM [42] to implement the
exact HSM kernel K H S M . In order to use the HSM kernel in
LIBSVM, we precompute the kernel matrices for both training
and testing purposes, which are used as the input of LIBSVM
with the precomputed kernel option (“-t 4”).

Second, we compare HSM with SPM using both proposed
strategies and available fast classifiers with linear / nonlinear
base kernels. Two fast methods with nonlinear kernels are used
for SPM:

PmSVM [14] (SPM-ga). PmSVM includes a family of
additive kernels κ(x, y) = ( x p+y p

2 )1/p, x, y ∈ R. When
p = −1, it is the χ2 kernel, we denote it as SPM-ga-χ2.
When p = −∞, it is the histogram intersection kernel
κ(x, y) = min(x, y). In [14], the author uses p = −8 to
approximate the HI kernel denoted by SPM-ga-HI. We set
C = 0.01.

Feature Mapping (fm) [13] (SPM-sl). We map each
dimension of the original feature vector into a 3D vector
(that is, m = 1) and concatenate them altogether into a long
vector. These mapped feature vectors are used to train a linear
classifier with LIBLINEAR, where C = 1.

The fast linear classifier for SPM we adopted in our
experiments is:

LIBLINEAR [11] (SPM-Linear). LIBLINEAR is a fast
linear SVM solver using dual coordinate descent. We use its
default parameter C = 1.

We evaluate the above methods on four datasets. They are:
Scene 15 [1]. It contains 15 scene classes. 100 images from

each class are used for training the classifier and all the rest
images are used for testing.

Indoor 67 [43]. The dataset contains 67 classes.
80 images of each class are used for training and 20 for
testing.

SUN [34]. It has 397 classes. In each class, we use
50 training images and 50 testing images.

Fig. 4. Three level spatial pyramid of an image. The three figures show level
2, 1, and 0, respectively [9].

Fig. 5. Classification accuracy w.r.t. γ in Eq. 7 on Scene 15 using
HSM-ga-χ2.

VOC2007 [44]. It is a multi-label categorization problem.
We use the provided training and validation set for training,
and the testing set for testing.

A three level spatial pyramid in Fig. 4 is used for BOV,
following the pyramid structure in [9]. The region
numbers are 1, 5, and 25 at the three levels of the spatial
pyramid, respectively. We extract SIFT descriptors for all the
datasets. In the BOV process, different codeword numbers are
used for different datasets in order to compare with existing
works fairly. We also evaluate HSF + Fisher vector (FV)
and HSF + VLAD. All feature vectors are subject to the
power normalization [8] and �2 normalization for each region.
Following the setup in [45], we use non-linear classifiers for
BOV and linear classifier for FV.

We report the classification accuracy, the training time and
the testing time of all methods in the experiments. All the
results of each dataset (except VOC 2007) are averaged on
5 rounds by randomly splitting the training and testing sets.
We also compare our methods with recently published results
on these four datasets. Experiments are run on a computer
with a Intel Core i7 4930K CPU (using one core) and 64G
main memory.

A. HSM Combined With BOV Features

In this section, we first study the performance of HSM when
BOV features are used.

1) Scene 15: In Fig. 5, we first investigate how the critical
parameter γ in Eq. 7 influence the classification. It is shown
that the classification accuracy reaches a peak when γ = 0.2.
Thus, we will use γ = 0.2 for the following experiments.

In Table II, we show the results (training time, testing
time and classification accuracy) of different methods on
Scene 15 using BOV feature. 1000 codewords are used for
this dataset, following [3], [45]. The time to compute the
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TABLE II

RESULTS ON SCENE 15: BOV WITH 1000 VISUAL CODEWORDS

TABLE III

CLASSIFICATION ACCURACY OF HSM (HSM-GA-χ2) WITH

DIFFERENT SPATIAL PYRAMID (SP) SIZE ON SCENE 15

overall A and R are 14.71 and 6.15 seconds, respectively.
The time to compute independent Ac and Rc are 29.32 and
135.80 seconds, respectively. A and Ac are computed using
multiple processor cores.

All HSM accuracy rates are consistently higher than all the
SPM accuracy results, which demonstrates the effectiveness
of HSM in providing better spatial matching. HSM outper-
forms SPM in 80% classes of Scene 15. The first block
shows the results of HSM and the second block shows the
results of SPM. The difference between the training time of
HSM-ga-χ2 (HI) and SPM-ga-χ2 (HI) is that HSM needs to
compute b from a (Eq. 19), which is similar for “sl” method
(needs to do data transformation, Eq. 15). HSM-ga is faster
than HSM-sl in the training phase, which is related to the
observation that HSM-ga converges faster than HSM-sl. The
classification accuracy of HSM using different spatial pyramid
layers is shown in Table III.

HSM learned with an overall relationship matrix R
(HSM-ga-χ2, HSM-ga-HI) has slightly better results than
HSM learned with independent Rc for each class (HSMind -
ga-χ2, HSMind -ga-HI). This is because the range of values
for different Rc vary greatly using the same γ in Eq. 7, which
lead to a sub-optimal classification result.

A general purpose SVM solver is not suitable for the
proposed HSM kernel. We run one round using a general
purpose SVM solver (LIBSVM) to solve HSM with χ2 kernel
(HSM-exact-χ2). LIBSVM uses precomputed kernel matrices
for training and testing, which costs much more time than all
the fast learning methods.

Compared with related methods [3], [45], HSM has slightly
higher classification accuracy than them. It is worth noting

that HSM is more stable than the methods in [3] and [45].
The standard deviation of different HSM algorithms’ accuracy
rates ranges from 0.2 to 0.4, while [3], [45] have 0.6 and 0.8
standard deviation, respectively.

Finally, we show in Fig. 6 the relationship between regions
according to the learned overall matrix R. A region usually
has a high correlation with its surrounding regions. This
relationship matrix is learned from the Scene 15 dataset where
an object can appear (almost) anywhere in an image. When
learning from object images, e.g., frontal human faces in
Fig. 2, stronger relation can be found between local regions.
However, even for scene recognition, the simple neighborhood
relationship can consistently improve recognition accuracy
over SPM, as shown by our experiments.

In Fig. 7, we show the spatial relationship (the 4×4 split
in SP) in different classes using the independent relation-
ship matrix, which has different pattern with each other.
For example, in the “kitchen” class, walls appear in the
upper part and furniture appear in the lower part, so the
top regions have a low correlation with the bottom regions.
In the “MITtallbuilding” class, buildings often appear in the
lower part of an image, so the lower regions have strong
correlations. For the “store” class, because all images are full
of similar food items, all regions have some relatively strong
correlations.

2) Indoor 67: In Table IV, we show the results on
Indoor 67, with 4000 codewords. The time to compute the
overall A and R are 604.20 and 6.13 seconds, respectively.
The time to compute independent Ac and Rc are 1392.51 and
452.3 seconds, respectively. We see that the time to learn Rc

almost increases linearly with the class number, which is not
efficient when compared to compute an overall R. Thus, for
the following SUN and Pascal VOC dataset, we only test the
overall R in HSM.

All HSM methods (the first block) gets better accuracy than
all methods using SPM (the second block). HSM outperforms
SPM in 74.63% classes of Indoor 67. HSM also shows better
results than related methods. The state-of-the-art results using
BOV features is [46], which augmented coordinates to SIFT
features. We use a codebook size of 4000, which is similar
to but smaller than theirs (4096). The proposed HSM-linear
approach (50.25%) achieves comparable accuracy to theirs
(50.22%) using the linear classifier, and nonlinear HSM results
are 4% higher (54.44%).

3) SUN: SUN is a large vision dataset involving about
20,000 images in both the training and the testing processes.
4000 visual codewords are used. The time to compute the
overall A and R are 5242.08 and 6.10 seconds, respectively.

The results are reported in Table V. HSM (results in the
first block) always achieves better accuracy than SPM (results
in the second block). HSM outperforms SPM in 76.07%
classes of SUN. In [34], different features are used to evaluate
on this dataset. The accuracy using dense SIFT feature is
21.5%, which only use 300 visual codewords (fewer than our
experiments) to compute BOV. When multiple features are
used altogether, the accuracy reaches 38.0%. We also expect
HSM to achieve higher accuracy using the more powerful
features.
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Fig. 6. The relationship of a region (shown in dark red) to other spatial regions. The regions with light red color have close correlation with the dark red
region according to the relationship matrix R learned from all training images. This figure should be viewed in color.

TABLE IV

RESULTS ON INDOOR 67: BOV WITH 4000 VISUAL CODEWORDS

B. Hyper-Spatial Features

After empirically validating the performance of HSM, we
then evaluate the proposed hyper-spatial features (HSF) on
top of BOV (31 regions) and two high-dimensional features:
Fisher vector (FV) [32] and VLAD [33].

We use the SPM structure with 8 spatial regions: 1×1, 2×2,
and 3×1 for FV and VLAD. SIFT is used as the base feature,
which is reduced to 64 dimensions by PCA. We extract FV
with 100 Gaussian mixture models (GMM) and VLAD with

TABLE V

RESULTS OF SUN: BOV WITH 4000 VISUAL CODEWORDS

100 visual codewords. Only the mean and standard deviation
parts in FV are used, following [32]. Thus, one image has
8×2×100×64 = 102400 dimensions in the FV representation
8 × 100 × 64 = 51200 dimensions in VLAD.

One virtue of HSF is that it is almost “free”. For example,
the appended HSF features have only 8×7

2 = 28 values for
FV and VLAD. That is, appending HSF to FV or VLAD only
increases the dimensionality by 0.027% and 0.055%, respec-
tively. These small increases have negligible effect on the
storage size, the training and testing time. HSF experimental
results are shown in Table VI.

It is obvious that HSF consistently improves SPM, albeit
at a smaller improvement scale when compared with that
of HSM vs. SPM. However, we want to emphasize that the
HSF improvement is noticeable for two reasons. First, HSF
improves upon BOV / FV / VLAD almost “for free” (i.e., with
negligible additional cost). Second, the improvements are
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Fig. 7. Relationship of spatial regions in different classes of the Scene
15 dataset, visualized from the learned independent relationship matrix. Each
image is divided into 4 by 4 regions. For each region (dark red), the similarities
of other regions to it are shown in different color. This figure should be viewed
in color.

consistent and significant: BOV (FV/VLAD) + SPM + HSF
outperforms BOV (FV/VLAD) + SPM in all the 5×3×3 = 45
runs in Table VI; and the differences on all three datasets are
significant by paired t-test at significance level 0.05.

In the FV experiment, we use the same number of GMM
as the setup of the best result in [45]. They achieved the best
accuracy 88.2 ± 0.6% on the Scene 15 dataset. Our result
88.21 ± 0.21% on this dataset is similar to theirs. We also

TABLE VI

HSF CLASSIFICATION ACCURACY (%) ON BOV, FV AND VLAD

TABLE VII

ACCURACY OF FV USING AUG METHOD [40]

TABLE VIII

RESULTS ON VOC2007: BOV WITH 2000 VISUAL CODEWORDS

TABLE IX

mAP ON VOC2007: BOV WITH 2000 VISUAL CODEWORDS

AND 8-BINS SPM (1 + 2 × 2 + 3 × 1)

implement the AUG method [40] and test on three datasets
in Table VII, whose results are inferior to HSF, when they
use FV with the same number of GMM.

C. Multi-Label Image Classification

We evaluate both HSM and HSF on the VOC 2007 dataset,
which is a multi-label object categorization problem. We first
test HSM + BOV using 2000 visual codewords (same as the
setup in [45]). The results of HSM (learned using the gradient
approximation strategy) and SPM are presented in Table VIII.
HSM’s results outperform that of SPM, with the same base
kernel and the same BOV features. The time to compute the
overall A and R are 341.01 and 6.04 seconds, respectively.
In Table IX, we test a different SPM structure with BOV using
8 regions: 1+2×2+3×1. HSM also leads better accuracy than
SPM, although the improvement is less than that in Table VIII
using 31 spatial regions.
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TABLE X

RESULTS ON VOC2007 USING FV WITH 256 GMMS

We also evaluate HSF + FV on the VOC 2007 dataset. The
results are presented in Table X. We use 256 GMMs (following
the setup of the AUG method [40]). The HSF result is close
to that of AUG, which augmented the coordinates to local
features and then computed FV.

D. Discussions

After presenting experimental results and related obser-
vations, we now provide some more subjective comments
to summarize the findings of this paper, and to discuss the
limitations and drawbacks of the proposed methods.

First, the focus of hyper-spatial matching is to take into
account of matching between regions at different spatial
locations. Concerning spatial matching in image similarity
computation, we find that:

• Although Spatial Pyramid Matching (SPM) and almost all
of its improvements focused on matching between regions
at the same spatial locations in two images, regions at
different spatial locations have significant correlations
that cannot be ignored (cf. Fig. 3);

• In image classification, the proposed hyper-spatial match-
ing (HSM) consistently achieves higher accuracy than
SPM by explicitly considering relationships among all
spatial regions (cf. Tables II–V);

• HSF, a simplified version of HSM, considers the rela-
tionship between spatial regions in one image. HSF
consistently improves the classification ability for very
long features (cf. Table VI and Table X), but almost does
not incur additional cost in memory or CPU usage.

• In the relationship learned by HSM from scene images,
a region only has non-trivial relationship with spatially
nearby regions, and the relationship strength at the same
spatial location is the strongest amongst all regions.
In this sense, SPM intuitively captures the most important
components of all spatial relationships in HSM (cf. Fig. 6
and Fig. 7);

• Different image categories exhibits varied spatial relation-
ships (cf. Fig. 7), which might be used in the future for
other tasks, e.g., object recognition; and,

• The learned spatial relationships are stable inside a spe-
cific problem or dataset (cf. Section II-B) and can be
efficiently computed even for large scale datasets.

Furthermore, we have proposed two learning strategies
(gradient approximation “ga” and spectral linearization “sl”)
for HSM SVM. We also presented image classification results
with either an overall relation R or multiple relationship matri-
ces Rc. The following findings can be concluded concerning
HSM SVM learning:

• The effectiveness of relationship matrices (R or Rc) can
be explained by the fact that when it is used in the HSM
kernel, it effectively decorrelates the relationships among
regions at different spatial locations (cf. Fig. 3);

• The HSM-ga strategy (cf. Algorithm 3) consistently
achieves the best accuracy and efficiency during both
training and testing (cf. Tables II-V). In image classi-
fication with the hyper-spatial matching kernel, HSM-ga
is the preferred method;

• HSM-sl (cf. Algorithm 1), on the other hand, is inferior
in terms of practical performance. However, this strat-
egy provides convenient tools to understand and visu-
alize spatial matching (cf. Fig. 3). And, while HSM-ga
is mostly confined to be used with SVM learning,
explicit mapping (cf. Eq. 15) has applications in wider
domains;

• One more note is that although we present the HSM
framework and learning strategies based on SPM, it has
wider range of applications. For example, it can also be
combined with the receptive fields in [4].

In our experience, there is one major limitation of the
proposed learning strategies:

• Memory Consumption for Large Scale Datasets. As
described at the beginning of this section, we store some
precomputed values in memory, which is an n×Nd dense
array. The input data is also n × Nd , but could well be
sparse. It is thus important to research on how to remove
this memory assumption dependency in HSM-ga. On the
other hand, HSM-sl requires n × (2m + 1)Nd memory to
store the linearized dataset, which has even higher storage
requirement.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose hyper-spatial matching (HSM),
a framework for flexibly matching two images. HSM takes
into account the interactions among all pairs of spatial regions
in two images, which alleviates the mismatching problem
in SPM. Thus, HSM provides more flexibility and better
similarity measures for comparing two images than SPM.

We use relationship matrices to capture the relationship or
correlation between any two spatial locations of all images.
Training images are used to learn two types of relationship
matrices. The first is one overall relationship matrix R for
a dataset, and the second type contains multiple matrices,
one relationship matrix Rc per image class. To deal with the
high computational cost induced by HSM, we propose two
fast learning strategies for HSM SVM learning and testing.
HSM-ga is based on the dual coordinate descent SVM frame-
work, where polynomial regression is used to approximate
the SVM gradient on each dimension of the feature vec-
tor. It is hundreds of times faster than a general purpose
SVM solver in training and testing without loss of accuracy.
In the experiment, we compare HSM-ga with state-of-the-art
methods on three large scale scene datasets and one mutli-
label image classification problem. The proposed fast classifier
with HSM kernel shows better classification accuracy than
compared methods.
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The other proposed learning strategy is HSM-sl, which pro-
vides an approximate linearization strategy for HSM and uses
the feature mapping approach for additive kernels. Although
HSM-sl is inferior to HSM-ga in practical performance,
it provides ways to study the spatial matching behaviors.
HSM-sl reveals that the hyper-spatial matching kernel is
effective because it decorrelates the interactions among spatial
regions at different locations.

For very long features like Fisher vector and VLAD, HSF is
proposed to approximate HSM. HSF computes the relationship
between all spatial regions in one image. By appending HSF
to the original features, the classification accuracy is improved
consistently without additional cost in memory and CPU
usage.

In the future, our works include the following issues. First,
the HSM-sl linearization can provide better representation for
an image, which might have further applications in applica-
tions such as image retrieval. Second, when we study prob-
lems with more meaningful spatial relationships, the proposed
relationship matrix and learning strategies could be of more
use, e.g., in object detection where the object of interest has
strong spatial arrangement in it. Finally, we will consider to
learn the relationship matrix and the classifier together to get
a more uniform framework.
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