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Image deblurring techniques play important roles in many image processing applications.
As the blur varies spatially across the image plane, it calls for robust and effective methods
to deal with the spatially-variant blur problem. In this paper, a Saliency-based Deblurring
(SD) approach is proposed based on the saliency detection for salient-region segmenta-
tion and a corresponding compensate method for image deblurring. We also propose a
PDE-based deblurring method which introduces an anisotropic Partial Differential
Equation (PDE) model for latent image prediction and employs an adaptive optimization
model in the kernel estimation and deconvolution steps. Experimental results demon-
strate the effectiveness of the proposed algorithm.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction and related works

Normally, motion blurs are produced when the object
image changes during the recording of a single frame,
either due to rapid movement or long exposure. The
undesired blurry photograph with inevitable information
loss may not only have a bad visualization but also result
in a degrading effect in further process such as feature
extraction or object recognition. Therefore, it is always
desirable to develop efficient algorithms to remove these
motion blurs [1–4]. Specifically, it is of increasing impor-
tance for many consumer devices (such as digital camera,
tablet PC, or surveillance devices) to have deblurring
capability to handle the possible motion blurs.
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The motion blur can be formulated as the convolution of a
latent image with a blur kernel. When the kernel is unknown,
removing the blur from an image is thus a blind-
deconvolution operation, which involves lots of challenges
in modeling and optimization. Early algorithms only focus on
parameterized kernel forms or small size kernels [2–4], which
made the result less desirable. Some researchers use more
than one blurry image to estimate the blur kernel [5,6].
Although these methods can produce excellent deblurring
results, sometimes finding multiple images is difficult and it
cannot be easily used in every scenario.

Hence, single-image blind deconvolution has become
the focus of recent deblurring researches [7–14]. This ill-
posed problem can be mainly divided into two phases:
kernel estimation and deconvolution. In kernel estimation,
sparse priors are widely adopted. Fergus et al. [7] uses a
variational Bayesian method with mixture of Gaussian to
estimate natural image statistics. However, this algorithm
needs intensive computation. Furthermore, Shan et al. [8]
proposes a novel scheme with consideration of the ran-
dom noise model to reduce ringing artifacts. Besides, this
method uses an efficient optimization constraint that
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alternates between blur kernel estimation and latent
image restoration. However, this method is also time-
consuming and sometimes the noises cannot be effectively
suppressed. Some other researchers use edge prediction in
the kernel estimation step [9–11]. To speed up the deblur-
ring process, Cho and Lee [9] presents a new method by
introducing a derivative-based edge prediction step. This
scheme uses a combination of bilateral filter and shock
filter to predict the latent image's edge in iterative multiple
scales and performs fast kernel estimation and image
deconvolution under optimal constraints alternatively.
Although this method has less complexity, its results are
vulnerable to noises. Recently, Xu and Jia [11] employed
iterative support detection (ISD) for kernel estimation as
well as a robust TV-l1 algorithm with large Point Spread
Function (PSF) for deconvolution. Hu and Yang [12] per-
form deblurring by extracting “good regions” within the
Conditional Random Field framework. These approaches
improve the deblurring effect. However, they may still lead
to some unnatural effects in the result.

In some algorithms, only image restoration process is
discussed, which simplifies the problem into a non-blind
deconvolution scheme. Early works such as Weiner filter-
ing and Richardson–Lucy belong to this category. Yuan
et al. [13] proposes an effective edge-preserving non-blind
deconvolution approach and significantly reduces ringing
artifacts. Therefore, if kernel prediction and robust decon-
volution can be effectively combined, the deblurring
effects will be greatly enhanced. Furthermore, some hard-
ware approaches have also been implemented in the
motion deblurring problems [15,16]. For example, Joshi
et al. [16] uses a hardware attachment coupled with a
natural image prior to deblur images from consumer
cameras. However, these methods need specific system
requirements and thus are not applicable on many of the
existing consumer devices.

On the other hand, for some blurry images, when the
captured object is away from the focus plane, it may cause
spatially-variant blur problems. For example, the fore-
ground object is in focus whereas the background infor-
mation is blurred. In these cases, the blur is distributed
unevenly and if general deblurring methods are applied,
not only the local blur cannot be removed effectively but
they may produce undesired artifacts in the originally-
sharp areas either, as will be discussed later. Levin et al.
[21] manages to retrieve coarse depth information by
modifying the conventional camera system. This approach
can robustly realize refocusing and depth-based image
editing. However, their method has specific assumptions
and hardware requirements which limit their applications.
Cho et al. [17] proposes an algorithm for removing spa-
tially varying motion blurs from multiple images. The
disadvantage of this method is that at least two input
images are needed to analyze the spatially variant blur.
Recently, Chakrabarti et al. [18] proposes a novel way for
analyzing spatially varying blur from a single image.
Although this algorithm is robust, it only focuses on
foreground blurry object detection and extraction. Further-
more, Chan and Nguyen [19] also addresses the local blur
problem by using background prediction. However, this
method still needs further improvements under more
complicated scenarios. Thus, it is desirable to develop a
general algorithm which can handle spatially variant blur
problems with robust deblurring approaches.

In this paper, a new algorithm is proposed for motion
deblurring. The algorithm addresses the spatially variant
blur problem by proposing a Saliency-based Deblurring
(SD) method and a compensate approach such that the
blur is locally removed whereas sharp components are
preserved. Furthermore, we also propose a PDE-based
deblurring method which adopts anisotropic PDE model
for edge prediction as the initial step to estimate PSF and
employs an adaptive optimization constraint for kernel
estimation and deconvolution based on image derivatives.
The kernel estimation and latent image restoration are
performed in multi-scale iteration until convergence.
Experimental results show that our proposed algorithm
has both satisfactory deblurring performances and low
computation complexity. Thus, the proposed algorithm is
suitable to be applied on various consumer devices for
handling the motion blur problems.

The rest of the paper is organized as follows: Section 2
presents our proposed deblurring algorithm. The saliency-
based deblurring approach and the PDE model based
adaptive deconvolution are described with details.
Section 3 shows the experimental results and Section 4
concludes the paper.

2. The proposed deblurring method

2.1. The framework

For many motion blur cases, the blur effect may not be
uniform in the entire image because of the various depths
of recorded objects, selective focuses, or camera rotation.
Therefore, spatially-variant blur becomes an inevitable
problem in the deblurring research domain. Given an
image with spatially-variant blur, we cannot simply apply
the current deblurring approaches to this case due to the
following reasons: (1) different parts in the image have
different blur degrees. Some may be very sharp whereas
others may have various blur directions. Therefore, it is
impossible to estimate a uniform blur kernel for the entire
image. (2) Even if we can successfully estimate the kernel
for the blurry part in the image, deconvolution will also
cause undesired artifacts around the component which is
originally sharp. Therefore, if we can estimate the blur
kernel partially and perform deconvolution throughout
the entire image without introducing artifacts, the
spatially-variant blur problem can be handled properly.

For the ease of description, we will discuss our idea
based on the case where the foreground image is sharp
whereas the background parts are uniformly blurred due
to motion blur or defocus. It should be noted that our idea
is general and it can be extended to other blurry cases with
slight modifications.

According to this problem, our first attempt is to extract
the foreground region from the blurred background. Here
we propose to use the saliency method as visual saliency is
the perceptual quality that makes an object stand out
relative to its neighboring items. If the foreground region
is sharp, it will be easily recognized as a salient part from



Fig. 1. Saliency detection result: (a) the original spatially-invariant blur image, and (b) the segmented saliency part.
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Fig. 2. The framework of the Saliency-based Deblurring algorithm.
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the background. In our method, we adopt the Frequency-
tuned Salient Region Detection algorithm proposed by
Achanta et al. [20] for saliency detection. Due to the
limited space, we will not discuss the saliency detection
process in detail and only show its results in Fig. 1. Fig. 1 is
an example illustrating the saliency detection result by
Achanta's method [20]. We can see from Fig. 1 that most of
the sharp regions can be effectively segmented by the
detected saliency features. It should be noted that saliency
detection is just one of effective methods to separate
blurry part and sharp part from the entire image. Apart
from saliency detection, more complex approaches can be
introduced to deal with the blurry part extraction [18,19].
Besides, the image segmentation methods such as graph
cut [26] can also be used for saliency region segmentation.
This point will be further discussed in Section 3.3 later.

The framework of our proposed Saliency-based Deblur-
ring algorithm is illustrated in Fig. 2. Our aim is to deblur
the rest background part while keeping the foreground
components sharp and natural. In the first step, we
separate the foreground and background components by
the saliency map and extract a largest rectangle in the
background area which does not include the saliency part.
Then we perform the kernel estimation to this rectangular
area and get a blur kernel K. As the background blur is
uniform, we can conclude that the blur kernel applies to all
the background blurry area. For the deconvolution step,
we adopt a compensate method to preprocess the original
image such that a uniform blur is distributed throughout
the entire image and the blur kernel can be applied
globally for deconvolution. In our algorithm, we convolve
K with the segmented saliency part and fuse this blurred
convolution result with the background together. Hence,
the fusion result becomes a uniform blurry image with the
same blur kernel globally. Then deconvolution is per-
formed to the entire modified image by using the back-
ground blur kernel K estimated before. If we use the blur
kernel for deconvolution without preprocessing, undesired
artifacts will be introduced around the boundaries
between the blurry and sharp parts even though we keep
the sharp part unchanged. The detailed description of the
steps in Fig. 2 is described in the following.

In the separation step, we use the binary saliency map
mask (MAP) where white indicates the saliency position
and black corresponds to the background components. To
remove boundary artifacts, the saliency part in the map is
dilated. Therefore, the saliency and background compo-
nents can be formulated as

Saliency¼MAP⋅Original_image
Background¼ ð1�MAPÞ � Original_image ð1Þ

In the compensate method, the fused image with uni-
form blur is modeled as

Fused_image¼MAP⋅ðK⊗Original_imageÞ þ Background ð2Þ
In the final step, after we get the final deblurred image

from the fused image in (2), we can fuse it again with the
sharp saliency part in a similar way such that the result
can be more accurate. That is,

Final¼MAP⋅Original_imageþ ð1�MAPÞ � Deblurred_image

ð3Þ
Furthermore, the steps of “background blur kernel K

estimation” and “deconvolution with K” in Fig. 2 are
implemented by our proposed PDE-based deblurring
method. It is described in the following.

2.2. PDE-based deblurring method

As mentioned, most existing motion deblurring methods
still have limitations in artifacts suppressions. We observe
that in many cases, these undesired artifacts are mainly
caused by inaccurate Point Spread Function (PSF) estimation
or edge prediction as well as inappropriate optimization
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modeling in the deconvolution step. Therefore, new algo-
rithms which can improve these models are needed.

In our PDE-based deblurring method, the deblurring
process is modeled iteratively where the steps of latent
image prediction, kernel estimation, and deconvolution are
alternating in a coarse-to-fine scheme. After a suitable kernel
K is estimated, an additional deconvolution step is performed
to achieve the final deblurred image. The framework of the
proposed deblurring algorithm can be described as in Fig. 3
and the above three main steps are described in detail in the
following. It should be noted that our PDE-based deblurring
method can be directly used for image deblurring. When it is
included in our Saliency-based Deblurring framework, the
iterative parts (i.e., the gray blocks in Fig. 3) are used for
background blur kernel K estimation and the additional
deconvolution step (i.e., the dashed block in Fig. 3) is used
for the step “deconvolution with K”.

2.2.1. Latent image prediction
In the first place, edge prediction is performed for

predicting a latent image, which is used as an initial input
of kernel estimation. In [9], shock filter is introduced to
pre-sharp the blurry image. But it may lead to some
undesired artifacts caused by the “double edges” around
the true edge as well as inevitable information loss in the
predicted latent image. In our method, we propose to use a
bilateral filter to pre-smooth the input image first and then
solve an anisotropic PDE [21–23] to enhance the image's
true edges. The description of anisotropic PDE is described
in the following:

The PDE of a 2D scalar image I can be formulated as the
juxtaposition of two 1D flows along the gradient direction
Estimated blur kernel K

Final deblurred image

PSF

Input blurry Image

PDE-based
Edge Prediction

Kernel Estimation
(Including PSF denoise)

Adaptive Deconvolution

Adaptive Deconvolution

+

Fig. 3. The proposed iterative deblurring algorithm.
ξ and its orthogonal direction η, that is,

∂I
∂t

¼ cξ
∂2I
∂ξ2

þ cη
∂2I
∂η2

η¼ ∇I
jj∇Ijj ; ξ¼ η⊥ ð4Þ

where jj∇Ijj denotes the image gradient magnitude. cξ And
cη are the corresponding weights suggested in [21,22]

cη ¼
1

1þ jj∇Ijj2 ; cξ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jj∇Ijj2
p ; ð5Þ

The PDE in Eq. (4) can be solved as

∂I
∂t

¼ traceðTHÞ ¼ΔI ð6Þ

where H is the Hessian matrix of I and T is a 2�2 tensor
defined as

H¼
Ixx Ixy
Ixy Iyy

" #
and T ¼ cξξξT þ cηηηT ð7Þ

In order to enhance edges, we update the predicted latent
image as

Ipred ¼ I�λΔI ð8Þ
where λ is a controlling parameter which varies in each
iteration at one scale.

In the anisotropic PDE process, �λΔI represents the
true edge map of the blurry image. Therefore, the purpose
of predicted latent image update is to enhance the true
edges of the blurry object. Results by our method have
shown that the true edges are enhanced whereas the
image nature is also preserved. Thus the edge prediction
can be more accurate for the consequential kernel
estimation.

2.2.2. Kernel estimation
In the kernel estimation step, Point Spread Function

(PSF) is estimated from the blurry image B and the
gradient maps P* of the previously predicted latent image
L (L is the desired deblurred image). And the resulting PSF
will become the estimated blur kernel K. Basically, the blur
kernel K can be estimated such that the latent image L is
similar to the blurry image B when convolved with K

K ¼ argminK′f∥B�K′⊗L∥þ ρK ðK′Þg ð9Þ
where ⊗ is the convolution operator, and ρKðKÞ is the
regularization term.

By using the gradient maps P*, Eq. (9) can be solved by
minimizing the energy function f(K) in the following
[8,9,11]:

K ¼ argminðf ðKÞÞ
f ðKÞ ¼ ∑

ðPn ;∂nBÞ
wn∥K⊗Pn�∂nB∥2 þ θ∥K∥2 ð10Þ

where

ðPn; ∂nBÞ∈fðPx; ∂xBÞ; ðPy; ∂yBÞ; ð∂xPx; ∂xxBÞ;
ð∂yPy; ∂yyBÞ; ðð∂xPy þ ∂yPxÞ=2; ∂xyBÞg

and Pn ¼ ðPx; PyÞ is the threshold-based gradient map of L
[9]. The purpose of using threshold-based gradient map is
to eliminate the effects of double edges. ∂i Is the derivation
operation on i direction. ⊗ Is the convolution operation.
θ Is the weight for the Tikhonov Regularization and wn

includes the weights for each partial derivatives. In our
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experiment, wn is set to be {25, 25, 12.5, 12.5, 12.5} [9] and
θ equals 5. Note that the first term in f(K) can be viewed as
the derivative version of the first term in Eq. (9) while the
second term in f(K) corresponds to the regularization term
in Eq. (9). The solution for Eq. (10) is [8,9]

FðKÞ ¼ ∑ðPn ;∂nBÞwn⋅FðPnÞ⋅Fð∂nBÞ
∑ðPn ;∂nBÞwn⋅F Pnð Þ⋅F Pnð Þ þ γ⋅IB

ð11Þ

where FðnÞ denotes the Fourier transformation, FðnÞ is the
conjugate of the Fourier transformation, and IB is an all-
one matrix which has the same size with the blurry image
B, and γ is a weighting parameter which is set to be 5 in
our algorithm.

However, when PSF is estimated by Fourier transforma-
tion, noises may be produced especially after the predicted
image L is up-sampled in the multi-scale scenario. There-
fore, we further propose to perform a denoising process
for the blur kernel after PSF estimation, that is, first let the
pixels to be zero if their values are less than 1/20 of the
maximum pixel value. And then remove the unconnected
components whose area is less than 1/D of the kernel size.
Here D is determined by the parameters during each
iteration. For simplicity, it can be chosen from the interval
between 128 and 256. This process can be viewed as
deleting those non-good points during kernel estimation.
After normalization, the refined PSF is our estimated blur
kernel in one iteration.

2.2.3. Adaptive deconvolution
With the estimated kernel in the previous step, our

basic deconvolution idea is to restore the latent image L by
minimizing the energy function f(L) from the estimated
kernel K and the input blurry image B. Basically, the latent
image L is estimated such that L is similar to B when
convolved with K:

L¼ argminL′f∥B�K⊗L′∥þ ρLðL′Þg ð12Þ
where ⊗ is the convolution operator, and ρLðLÞ is the
regularization term. Similar to Eq. (10), the problem of
Eq. (12) can be solved by the gradient information as

L¼ argminðf ðLÞÞ
f ðLÞ ¼∑

∂n
ωnjjK⊗∂nL�∂nBjj2 þ αjj∇L�vjj2 þ βjjvjj ð13Þ

where ∂n∈f∂0; ∂x; ∂y; ∂xx; ∂yy; ∂xyg, ωn is the corresponding
weights which is set similar to wn: {50, 25, 25, 12.5, 12.5,
12.5} [9]. α And β are the weights for the regularization
terms. The first term in Eq. (13) uses image derivatives for
reducing ringing artifacts while the second and third
terms are the regularization terms which prefer L with
smooth gradients. Note that in our algorithm, we further
introduce a variable v¼ ðvx; vyÞ to measure the similarity of
∇L. In this way, the sensitivity of L to the noise can be
further reduced. The solution for Eq. (13) is

FðLÞ ¼ FðKÞ⋅FðBÞ⋅Δþ αðFð∂xÞFðvxÞ þ Fð∂yÞFðvyÞÞ
FðKÞ⋅FðKÞ⋅Δþ αðFð∂xÞFð∂xÞ þ Fð∂yÞFð∂yÞÞ ð14Þ

where FðnÞ denotes the Fourier transformation, FðnÞ is the
conjugate of the Fourier transformation, and Δ¼∑∂nωn

ðFð∂nÞ⋅Fð∂nÞÞ.
According to the shrinkage formula, we can derive the
optimal solution for v

ðvx; vyÞ ¼ ∂xL
jj∇Ljj ;

∂yL
jj∇Ljj

� �
⋅max jj∇Ljj� β

2α
;0

� �
ð15Þ

From the observation, as the term α becomes smaller,
the final image is sharper whereas more noises are pro-
duced. Therefore, we propose to handle this problem
between sharpening and noise suppression by adaptively
adjusting the parameter through the entire iterative pro-
cess. When the blurred image is downsized at the begin-
ning of iterations, our main concern is to suppress the
noises. Otherwise, the effects of noises may degrade in the
consecutive iterations especially when the predicted image
is up-sampled. And as more iterations are involved, our
focus is shifted to enhance the sharpening effect. Therefore,
through the iterations at different scales, we adaptively
adjust the value of α in the optimization constraint by
setting it relatively large in the initial step and letting
αn ¼ αn�1⋅μ during iterations at each scale, where μ is a
regularization term which is less than one. With our
adaptive scheme, both noise suppression and image shar-
pening are properly taken into considerations. In our
experiments, α0, μ, β are set to be 0.2, 0.9, 1, respectively.

Moreover, at each scale, λ in Eq. (8) is also adjusted
decreasingly in each iteration since the predicted image is
becoming sharper as the iteration runs at the same scale.
So we set λ0 equals 1 and let λn ¼ λn�1⋅0:9. This scheme
works well in our experiment and it is robust among
different input blurry images.

3. Experimental results

In this section, we show experimental results of our
proposed PDE-based deblurring method and our Saliency-
based Deblurring (SD) algorithm. We perform two groups
of experiments for the uniform motion blur case and
spatially-variant blur case, respectively. Note that the
parameters α0, μ, β in Eq. (15) are set to be 0.2, 0.9, 1,
respectively throughout the experiments.

3.1. Experiments for uniform motion deblurring

Our modified deblurring algorithm is effective in
the following aspects: (1) PDE-based latent image predic-
tion, (2) adaptive deconvolution, and (3) the deblurring
results. Based on the above parts, various experiments are
conducted.

3.1.1. Latent image prediction
Fig. 4 shows the result of our experiment. In Fig. 4, the

blurry image is converted into grayscale. (b) is the result after
bilateral and shock filter [9]. And (d) is the result after bilateral
filter and our anisotropic PDE edge enhancement method.

Comparing (b) and (d), the effect of our edge prediction
approach is apparent. In (b), artifacts are serious around
the edges and some edges even appear unnatural. In (c),
the white contour is estimated from �λΔI in Eq. (8) and it
exactly represents the true edge, which makes the image
in (d) much sharper than the original one without loss of
nature.



Fig. 4. (a) Original blurry grayscale image, (b) predicted image by shock filter, (c) contour map estimated from PDE, and (d) predicted image by
anisotropic PDE.

Fig. 5. (a) Original blurry image of 504�500, (b) the deblurring result by [9], (c) the deblurring result by using PDE for edge prediction and then using fast
deconvolution in [9], and (d) the deblurring result by our PDE-based method (best view in color).

C. Zhang et al. / Signal Processing: Image Communication 28 (2013) 1171–11861176



Table 1
Comparison of RMSEs between the ground truth sharp images and the deblurring results by [8,9,11,12] and our approach.

Deblurring
results by [8]

Deblurring
results by [9]

Deblurring
results by [11]

Deblurring
results by [12]

Our deblurring
results

Image 1 0.2346 0.2391 0.2401 0.2482 0.2310
Image 2 0.0590 0.0560 0.0666 0.0619 0.0427
Image 3 0.0623 0.0401 0.0411 0.0361 0.0257
Image 4 0.0559 0.1121 0.0654 0.0647 0.0474

Table 2
Comparison of time complexity for algorithms of [8,9,11,12] and our approach.

Image num. Image size Kernel size Entire processing time (s) Our method

[8] [9] [11] [12]

1 255�255 17�17 8.47 2.34 3.408 9.33 2.86
2 686�508 25�23 62.59 10.98 22.22 76.47 18.30
3 910�754 33�32 175.12 23.70 37.00 178.26 36.62
4 1024�768 41�41 163.75 25.20 52.99 182.35 38.41

Fig. 6. Deblurring results: (a) part of the original blurry image of 340�280, (b) deblurring result by [9], (c) deblurring result by [8], (d) deblurring result
by [11], (e) deblurring result and estimated kernel by [12], and (f) deblurring result and estimated kernel by our approach(best view in color).

C. Zhang et al. / Signal Processing: Image Communication 28 (2013) 1171–1186 1177



Fig. 7. Deblurring results: (a) part of the original blurry image of 600�432, (b) deblurring result by [9], (c) deblurring result by [8], (d) deblurring result by
[11], (e) deblurring result and estimated kernel by [12], and (f) deblurring result and estimated kernel by our approach (best view in color).
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3.1.2. Deconvolution
To demonstrate the effectiveness of our adaptive

deconvolution, we use the same edge prediction scheme
with fast deconvolution method in [9] and our adaptive
deconvolution. Fig. 5 shows the deblurring result from [9]
(b), the deblurring result by using PDE for edge prediction
and then using fast deconvolution in [9] (c), and our
deblurring result by using adaptive deconvolution (d).
The corresponding estimated kernels are also shown at
the right-bottom corners in (b)–(d).

In Fig. 5, the deblurring result directly by [9] (i.e., (b)) is
too saturated such that unnatural artifacts are introduced
and the words in the top are not clear enough. In (c) where
the fast deconvolution mentioned in [9] is adopted,
although the image's natural property is preserved, ringing
artifacts are serious, which can also be indicated from the
kernel. Compared to the above two results, our result is
robust. The deblurring effect is significant and artifacts are
properly removed as well.
3.1.3. More experimental results
More experiments are conducted compared with

[8,9,11,12]. The corresponding results are shown in Figs. 6–8.
From Figs. 6 and 7, we can see that in the deblurring

results by [9,8,12] (i.e. (b), (c) and (e)), the images are not
sharp enough and the noises are serious. In the results by [11]
(i.e. (d)), the final effects are much sharper but the artifacts are
also produced around the edge. With our approach (i.e. (f)),
the denoising effects are obviously improved.

In Fig. 8, the blurry images are chosen from real
photographs. The results by our proposed PDE-based
deblurring method show that the sharp edges have been
significantly enhanced and the estimated kernels have
reasonable shapes. Besides, almost no ringing artifacts
are produced around the arc-shaped boundary.

3.1.4. Quantitative comparison results
In order to test the denoising effectiveness of our

approach, we also ran our modified deblurring algorithm



Fig. 8. Deblurring results. (a, c) original blurry image (b, d) deblurring results by our method (best view in color).
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over four blurred images including the images from Levin's
dataset [14]. In the experiment, we measure Root Mean
Squared Errors (RMSE) between the ground truth sharp
images and the deblurring results by [8,9,11,12], and our
approach.

In the experiment, for each image, a fixed kernel size is
used for different deblurring methods. From Table 1, the
first four columns represent deblurring results performed
by [8,9,11,12]. The rightmost column shows our RMSEs
results. We can see that images deblurred by our approach
have smaller errors. This further demonstrates that the
noises can be more effectively suppressed by our deblur-
ring approach.

Furthermore, Table 2 compares the time complexity for
four blurred images with different sizes on a PC with
2.0 GHz dual-core CPU and 1 G memory. In Table 2, the
first four columns represent the processing time by the
executable of [8,9,11,12]. The last column shows the
processing time by our approach with C++ implementa-
tion. We can see that the processing time of our method is
faster than [8,11,12]. Although the complexity is a little
larger than [9], the deblurring results by our method is
obviously better than [9]. Note that the complexity of our
algorithm can be further reduced after optimization. For
example, when our algorithm is implemented with GPU
acceleration and other optimization, the average proces-
sing time is reduced to less than 5 s.
3.2. Experiments for spatially-variant blur case

In this part, the experiments are conducted in four
groups: (1) the effectiveness of our Saliency-based Deblur-
ring algorithm, (2) comparison between our approach and
other spatial-varying deblurring methods, (3) quantitative
comparison results, and (4) more general cases.

3.2.1. The effectiveness of our SD algorithm
When the blur is not uniform (i.e., spatially-variant blur

problem), the conventional deblurring approaches are not
suitable in this case. Based on saliency detection, our SD
algorithm can properly handle the problem.

In Fig. 9, the original image has spatially variant blur in
which the foreground object is sharp whereas the back-
ground clock is blurred. If we estimate the blur kernel from
the entire image and use it in the deconvolution step, the
deblurring effect is not satisfactory (i.e., (c)). On the other
hand, if the background blur kernel is directly applied to
the entire image without the compensate method, we can
see that artifacts are serious (i.e., (e)). In our SD approach,
the saliency map is first calculated. From it, we can see
most of the foreground part is extracted as saliency (i.e.,
(b)). Then we estimate a blur kernel according to the
background and perform the compensate method before
we use the kernel globally. From (d) and (f), it is apparent
that in our method, the background edges are enhanced
and the artifacts in the foreground are eliminated in the
meanwhile.

In Fig. 10, the original image is from the website which
also represents a spatially-variant blur case. In the original
image, the foreground athlete is sharp and the background
is blurry. If we estimate the kernel globally, it fails to
reflect the blur direction due to the uneven blur between
foreground and background, thus making the deblurring
effects unobvious (i.e., (c)). If we apply the background
kernel to the entire image and fuse the result with the
originally sharp saliency part, undesired ringing artifacts
will come out around the boundaries of the foreground sharp



Fig. 9. Spatially-variant deblurring: (a) original image with foreground sharp and background blurred, (b) saliency map of (a), (c) result by global
deblurring method, (d) result by our saliency-based deblurring method, (e) zoomed details in (c), and (f) zoomed details in (d) (best view in color).
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component for the same reason (i.e., (d)). Compared with
these methods, our SD approach first compensates the sharp
region such that the entire image is blurred by the same
kernel (i.e., (e)). Then, the global deconvolution is performed
in our SD approach where the background is deblurred and
the foreground sharp part is also preserved (i.e., (f)).

More experiments are conducted to illustrate the
results of our SD algorithm. From Fig. 11, we can see that
the global deblurring method cannot effectively estimate
the blur kernel (i.e., (b)). And applying the background
kernel to the entire image without compensation will
cause undesired artifacts around boundaries of the sharp
foreground components (i.e., (c)). By our SD algorithm,
these problems can be solved and the output results are
satisfactory (i.e., (d)).
3.2.2. Comparison between our approach and other spatial-
varying deblurring methods

Moreover, we also conduct some experiments compar-
ing the deblurring results of Chan and Nguyen [19] and our
approach.



Fig. 10. Spatially-variant deblurring: (a) original image, (b) saliency map of (a), (c) result by global deblurring method, (d) result by applying the
background blur kernel to the entire image, (e) compensate fusing result, and (f) final output by our SD algorithm (best view in color).
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In Figs. 12 and 13, the original image is blurred in the
background (i.e., (a)). From the deblurring result of [19]
(i.e., (b)), we can see that serious artifacts are produced in
the background. In the results by our SD algorithm (i.e.,
(c)), blur in the background is removed whereas artifacts
are suppressed as well.
3.2.3. Quantitative comparison results
Table 3 compares the RMSE and time complexity

between the method of [19] and our proposed method
over four images from the image matting dataset [24]. The
experimental settings are the same as Tables 1 and 2. From
Table 3, we can see that our proposed method can achieve
better deblurring results (smaller RMSE) than [19] while
having similar time complexity with [19]. This further
demonstrates the effectiveness of our proposed method.
Again, note that the time complexity of our algorithm can
be further reduced with GPU acceleration and other
optimization, as mentioned in Table 2.
3.2.4. More general cases
In the previous deblurring experiments, for the original

blurry image, the foreground component is sharp and the
background parts are uniformly blurred. However, as
mentioned before, our method can also be applied in
more general cases. For example, the foreground is defo-
cused whereas the background is sharp.

In Fig. 14, the foreground objects are blurred in the
original images. In the experiment, after separating the
foreground and background information by saliency detec-
tion, we perform deblurring algorithm and the compen-
sate method in a similar way. From our results, the
deblurring effect is obvious. Besides, almost no artifacts
or noises are produced around the boundaries of the
blurry components.

Moreover, note that our algorithm can also be easily
extended to deblur multiple regions with different blurs
(i.e., different regions with different motion blurs in the
same image). In this case, we first extract the blurred
regions and then apply our deblurring method. For



Fig. 11. Spatially-variant deblurring: (a) original image, (b) result by global deblurring method, (c) result by applying the background blur kernel to the
entire image, and (d) result by our approach (best view in color).

Fig. 12. Spatially-variant deblurring: (a) original image with foreground focused, (b) deblurring result by Chan and Nguyen [19], and (c) our final deblurring
result (best view in color).
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example, assume that there are two blurred foreground
objects A and B. The regions for A, B, and the background
components can be formulated as

RegionA ¼MAPA⋅Original_image

RegionB ¼MAPB⋅Original_image

Background¼ ð1�MAPA�MAPBÞ⋅Original_image ð16Þ

where MAPA and MAPB are the binary region masks for the
blurred objects A and B, respectively. Then, we can create
two fused images for objects A and B, as in Eq. (17)

Fused_imageA ¼ ð1�MAPAÞ⋅ðKA⊗Original_imageÞ þ RegionA

Fused_imageB ¼ ð1�MAPBÞ⋅ðKB⊗Original_imageÞ þ RegionB

ð17Þ

where KA and KB are the estimated kernels for the blurred
regions A and B. Finally, after we get the deblurred images
from the fused images in Eq. (17), we can fuse these
deblurred images with the sharp background image to



Fig. 13. Spatially-variant deblurring: (a) original image with foreground focused, (b) deblurring result by Chan and Nguyen [19], (c) our final deblurring
result, (d) zoomed details in (b), and (e) zoomed details in (c) (best view in color).

Table 3
Comparison of RMSEs and time complexity between the deblurring
results by [19] and our approach.

Image
number

Image
size

RMSE Time (s)

[19] Our
method

[19] Our
method

1 800�565 0.0217 0.0177 47.05 48.94
2 800�646 0.0270 0.0241 45.03 49.28
3 800�5800 0.0386 0.0271 49.60 45.28
4 800�620 0.0207 0.0199 48.98 44.25
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create the final debluring result

Final¼MAPA⋅Deblurred_imageA
þMAPB⋅Deblurred_imageB
þð1�MAPA�MAPBÞ⋅Original_image ð18Þ

From Eqs. (16)–(18), we can see that when there are
multiple blur regions in an image, we can simply extend
our algorithm by processing each region separately. When
processing each region, we can view this region as the
foreground and the remaining part of the image as the
background. Finally, these deblurred regions can be fused
to created the final deblurring result. Some experimental
results of using our algorithm on multiple blurring regions
are shown in Fig. 15. The estimated blur kernels of the
blurring regions are also shown in Fig. 15(b) and (d). Fig. 15
shows that our algorithm is also effective in handling
multiple blurring regions.
3.3. Limitations of the algorithm

From our experiments, we observe that our algorithm
has the following limitations:

Firstly, the saliency detection results may affect the
performance of our spatially-variant deblurring algorithm.
For example, in Fig. 16, since the saliency detection results
in (c) and (f) are less accurate, the deblurring results in (b)
and (e) include some unnatural effects (e.g., there are
unnatural effects on the coat of the bear in (e)). This
problem can be improved by introducing other more
accurate region extraction/segmentation methods or com-
bining them with saliency detection [18,19,26]. For exam-
ple, we can first use saliency detection to achieve the
initial salient region, then graph cut segmentation [26] can
be applied based on the saliency detection results to
achieve a more accurate region extraction result.

Secondly, the deblurring results will also be less
obvious for small blurry regions (e.g., when the blurred
foreground object is very small). This is because when the
blurry regions are small, the information is insufficient to
achieve reliable blur kernels, making the final results less
satisfactory. One possible solution may be developing
some method to diffuse the blurry effect to the sharp



Fig. 14. Spatially-variant deblurring: (a, c) original spatially variant blur image, and (b, d) deblurring result by our approach.

Fig. 15. Debluring images with two blurred foregrounds: (a, c) original blur image, and (b, d) deblurring result by our approach (best view in color).
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regions to create a larger “blurry” region for kernel
estimation. And this will be one of our future works.

Thirdly, although our algorithm is less sensitive to the
parameter settings with the introduction of the adaptive
deconvolution scheme, the results by our algorithm are
still relatively varying with different parameter values.
This is a common problem for most of the existing
deblurring algorithms [8–16]. And it will be another part



Fig. 16. Results with less accurate saliency detection results. (a) Original image, (b) Deblurred image, (c) Saliency part, (d) Original image, (e) Deblurred
image and (f) Saliency part
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of our future works to further improve the robustness to
parameters or develop new schemes to adaptively decide
the optimal parameters.
4. Conclusion

In this paper, we propose a new algorithm to effectively
address the spatially variant blur problem. Firstly, the
proposed algorithm addresses the spatially variant blur
problem by introducing a Saliency-based Deblurring
(SD) method and a compensate approach such that the
blur is locally removed whereas sharp components are
preserved. Secondly, we also propose a PDE-based deblur-
ring method which adopts anisotropic PDE model for edge
prediction as the initial step to estimate PSF. Thirdly, we
also employs an adaptive optimization constraint for
kernel estimation and deconvolution based on image
derivatives. Experimental results demonstrate effective-
ness of the proposed algorithm by comparing with the
state-of-the-art algorithms.
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