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ABSTRACT

Automatic detection of fight behaviors in surveillance videos

is an important task for surveillance systems. In this work, we

propose a novel localization guided framework for detecting

fight actions in surveillance videos. Specifically, we exploit

optical flow maps to extract motion activation information,

which indicates the location of active regions. Then, a de-

tection guided alignment module is designed to adjust the lo-

calized active regions. This approach employs a two-stream

based 3D convolution network as the backbone network with

a novel motion acceleration representation on the temporal

stream. While most existing methods are still evaluated on

three benchmark datasets which were not originally collected

from surveillance scenarios, we present a novel Fight Action
Detection in Surveillance-videos (FADS) dataset for this pur-
pose. With a total of 1,520 video clips, the FADS is the largest

known dataset in terms of number of surveillance videos with

fight scenes. Experimental results on both the benchmark

datasets and the FADS show that our proposed localization

guided method outperforms state-of-the-art techniques.

Index Terms— fight detection, action localization and

recognition, surveillance dataset, group behavior analysis

1. INTRODUCTION

As monitoring of public violence become increasingly im-

portant for safety and security, surveillance systems are now

widely deployed in public infrastructure and places such as

schools, bars and prisons. However, many existing surveil-

lance systems still require human operators and manual in-

spection. Firstly, the number of well-trained security per-

sonnel is usually insufficient; it is common to find a small

group of supervisors monitoring tens to hundreds of video

feeds with alert systems of minimal functionality. Also, hu-

mans are prone to distractions and fatigue after long periods

of watching the monitors. Therefore, there is an increasing

need today for automatic violence detection systems. In this

work, we focus on the task of fight action detection, and aim

to design a framework that can automatically detect fight be-

haviors from surveillance videos in an effective manner.

A naive approach [1, 2] to fight action detection is to ex-

tract different types of hand-crafted visual descriptors from

Fig. 1. Detection and recognition of fight behaviors in videos
captured by surveillance cameras.

local regions or from the whole frame, and proceed to gener-

ate a set of visual words by Bag-of-Words (BoW) approach

for classification. Nievas et al. [1] attempted to detect fight

action with two spatial-temporal descriptors, Space-Time In-

terest Points and Motion SIFT. In [2], a novel motion fea-

ture called Motion Co-Occurrence Feature (MCF) for accu-

rate fight detection was proposed. However, the computa-

tional cost of extracting these features is large, making it in-

tractable for real-time applications. To reduce computational

time, some researchers focus their attention on finding more

efficient feature representations for fight detection. Among

them, [3] proposed a motion analysis method which evaluates

the size, count, and direction of motion regions. In [4], a sim-

ple fast fight detection method extracted motion blobs from

the absolute difference of consecutive frames. Despite the fast

speed, its detection capability is also severely compromised.

In fact, for uncontrolled outdoor environments, most of these

features also encode background noise, thus degrading their

recognition performance.

In recent years, video action recognition has received

increasing attention while achieving very promising perfor-

mances by taking advantage of the incredible robustness of

Convolutional Neural Networks (CNN). Inspired by the suc-

cess of deep learning approaches in object detection [5], many

works [6, 7] utilize object detectors, especially person de-

tectors, to localize regions-of-interest in each frame for ac-

tion localization. Such methods typically include three sub-

modules: person detection, tracking or linking, and action

classification. However, there are several challenges in such

approaches. Firstly, since fight events always involve multiple
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persons, person-person interaction should also be considered

during the procedure. Secondly, as prerequisite phases, ex-

isting detection and tracking algorithms still struggle in real-

world, cluttered outdoor environments.

To address these problems, we propose a new localization

guided fight action detection framework for realistic surveil-

lance videos. First, to localize all potential active regions

where fight actions might occur, several activation boxes are

extracted from a motion activation map, which measures the

activity level at each position. Then, we cluster all local-

ized proposals around the extracted active regions based on

the spatial relation between each pair of human proposals and

activation boxes. In this way, we model person-person inter-

action as a group aggregation problem. An interesting aspect

of our method is that failures in the human detector can be

circumvented by the availability of regions obtained from ac-

tivation boxes. In the recognition phase, we adopt the 3D

Convolution Network [8] as our backbone using a two-stream

framework [9] to fuse visual appearance features and tempo-

ral motion features. For the temporal stream, we opt to use the

magnitude difference of optical flow maps, which produces

better performance compared to primitive optical flow.

Our main contributions are summarized as follows:

1. We introduce a newly established dataset, the FADS
dataset, for fight action detection on real-world surveil-

lance scenarios. The FADS dataset provides realistic

fight events captured in 1,520 video clips, and we hope

to contribute towards advancing research in this area.

2. We propose a novel localization guided fight action de-

tection framework which is robust and accurate for real-

world surveillance systems.

3. We introduce a motion activation map, which is a re-

liable characterization of velocity information, which

can help address common problems in group aggrega-

tion and action localization.

2. FIGHT ACTION DETECTION FRAMEWORK

In this section, a novel framework for fight action detection is

introduced in detail. As shown in Fig. 2, the overall frame-

work comprises of two branches. Given a video V containing

m frames, the localization branch takes every T consecutive

frames as input to localize multiple active regions of interest.

The recognition branch predicts the action categories of each

localized region using a two-stream convolution network.

2.1. Group activity recognition

Since fight event involves multiple persons, it can be consid-

ered as a group activity detection and recognition problem.

Currently, two popular approaches [10, 11] towards group ac-

tivity recognition are illustrated in Fig. 3. However, both ap-

proachces are not very suitable for fight action detection task.

The hierarchical LSTM model [10] (Fig. 3a) uses a per-

son pooling module to aggregate features of all individual

Fig. 2. An illustration of the proposed framework. The upper
part is the region localization branch while the bottom part is

the action recognition branch. The c active regions (marked
by yellow boxes) from the localization branch are fed into a

ROI Pooling layer in the two-stream action recognition net-

work. Each region is expressed as a 4-dimensional vector, in-

dicating the coordinates of top left point(x1, y1) and bottom
right point(x2, y2). Best viewed in color.

(a) (b) (c)

Fig. 3. Illustration of three different group activity recog-

nition models. (a) Hierarchical LSTM model. (b) Distance

based group clustering model. (c) Our motion activation map

based group aggregation model.

persons into one global feature. However, such high-level

pooling strategy discards all spatial relations between the in-

dividual persons, which are essential for representing person-

person interactions. Another related approach [11] (Fig. 3b)

used a human detector to detect human positions and pro-

ceeds to apply clustering strategies (such as K-means) to ag-

gregate individual humans into several groups, based on the

distance, shape or other metrics. Their approach tends to pro-

duce blurred silhouettes caused by quick movements under

low resolutions, which is detrimental to clustering.

2.2. Active region localization

Considering the limitations mentioned above, we introduce

a motion guided active region localization model, which im-

proves region detection as well as group aggregation process.

Optical flow based activation boxes. As the velocity

magnitude of fight action is usually larger than of non-fight

action, we can infer a fight event based on high response areas

in the motion velocity map. With this idea, we utilize optical
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flow to extract a motion activation map from T consecutive

frames. Specifically, the motion activation map is calculated

by averaging the sum of magnitude of optical flow maps. In

order to reduce noises caused by illumination changes, we re-

move all regions with very few fragmented pixels from the

map. After that, activation boxes are obtained from the mo-

tion activation map by extracting its high response areas.

Detection guided alignment module. In our framework,
activation boxes serve as the centers of active action areas.

Since motion activation map contains only pixel-level repre-

sentation and no semantic information, the extracted activa-

tion boxes may depict only the moving parts of human bod-

ies. To accurately adjust the active regions to include whole

human bodies and to aggregate humans around these regions,

a novel detection guided alignment module is designed. As is

shown in Fig. 2, the alignment module takes activation boxes

and human proposals as inputs and outputs several aligned

regions of interest, which are then fed into the ROI pooling

layers of the recognition branch. Formally, let c be the num-
ber of activation boxes from T consecutive frames and d the

number of detected human proposals. An affinity factor δij is
calculated as the IoU (Intersection over Union) between every

pair of Bi and Pj , where Bi is the i-th activation box and Pj

is the j-th human proposals. For each activation box Bi, hu-

man proposals with a high affinity factor with it are preserved

and their unions are marked as Qi. The final active region Bi

is then calculated as the union of Qi and Bi:

Si = {j | δij > 0.6} (1)

Qi =
⋃

j∈Si

Pj (2)

Bi = Bi ∪Qi (3)

Therefore, for each activation center, the detection guided

alignment module will generate an aligned active region. A

total of c active regions are generated.
Discussions. We argue that compared to other group ac-

tivity recognition methods (see Fig. 3), by introducing motion

based active region localization, our proposed fight action de-

tection framework has three advantages:

1. When the human detector fails to detect some “hard”

proposals, the optical flow based activation maps are

still able to obtain their regions-of-interest, avoiding

potential missed targets (see Fig. 4a).

2. The activation boxes can be naturally treated as the ag-

gregation center of action areas. Such group aggre-

gation strategy is better than distance or shape based

clustering methods since it utilizes both appearance and

temporal motion information (see Fig. 4b).

3. Since human proposals with little intersection with all

activation boxes are usually non-fight targets which will

be eliminated during the localization phase, there is no

need to infer action labels on these proposals. As a

result, the overall computational cost is reduced.

(a) When the detector fails to detect

small-size or occluded persons, the

activation guided method is still able

to identify the correct active regions.

(b) Motion activation boxes can be

naturally treated as the aggregation

center of group activities.

Fig. 4. Characteristics of the proposed motion based active
region localization method.

Fig. 5. Left: Original RGB frame. Middle: Optical flow

map. Right: Motion acceleration map.

2.3. Fight Action Recognition

For fight action recognition, we choose the popular 3D Con-

volution Networks (C3D) [8] as our backbone network, for its

good performance and efficiency. Besides, two-stream frame-

works [9] have also shown to yield significant improvements

in video action recognition. In this work, we leveraged on

both ideas, constructing a two-stream C3D network.

Instead of directly using optical flow as the temporal

stream, we use an acceleration module to extract motion ac-

celeration information for the temporal stream. Motivated by

the Violence Flow (ViF) [12] representation, we propose the

use of motion acceleration information, which emphasizes the

drastic changes of actions. Formally, the magnitude map of

t-th optical flow is denoted asM(t). The motion acceleration
map A(t) (as shown in Fig. 5) is calculated as follows:

δ(t) = M(t)−M(t− 1) (4)

A(t) = δ(t) + 255

2
(5)

Eq. (5) linearly normalizes the difference in optical flowmaps

to [0, 255]. With T consecutive frames, the two-stream C3D

network simultaneously extracts features from T RGB frames

and T-2 temporal acceleration frames. An ROI pooling layer
is inserted between layers conv5a and conv5b to focus at-
tention to the active regions found. At the end of the branch,

a late fusion strategy is adopted to fuse predictions from both

streams. The output c final scores represent the fight action

possibilities of each c-th region.

2.4. Implementation Details

In our implementation, we use the pre-trained FlowNet 2.0

network [13] to estimate optical flow and the pre-trained SSD
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(a) Movies (b) Hockey (c) UCF101 (d) FADS

Fig. 6. Sample ”fighting” frames from the four datasets.

network [5] (VGG-16 backbone) to detect human propos-

als. Weights of both the two pre-trained networks are fixed.

To train a two-stream C3D network, active regions extracted

from the localization branch are labeled as fight and non-fight

actions. In the evaluation phase, when at least one active re-

gion is recognized as a fight, the whole video clip will be

classified as a fight scene. The C3D network is optimized by

SGD with an initial learning rate of 0.0002 and a weight de-

cay of 0.0005. The learning rate decays by 0.1 every 10,000

iterations (until maximum of 50,000 iterations). Considering

the duration of a fight action, we set T as 16. Besides, to better

detect fight events, we use a temporal sliding window strategy

with an overlap of 4 frames in our experiments.

3. EXPERIMENTS

This section is organized in accordance to the steps in our

experiments. Firstly, we describe the four datasets that are

evaluated in our experiments. Secondly, we compare our pro-

posed method with several state-of-the art methods. To bet-

ter verify the effectiveness of our method, we also divide our

methods into localization and recognition parts and evaluate

the influence of each module independently.

3.1. Datasets

We evaluate our proposed method on four datasets of differ-

ent characteristics. The first two datasets (Movies and Hockey

dataset) [1] were designed particularly for fight action detec-

tion. The UCF101 [14] is a large dataset of realistic action

videos collected from YouTube. Among its categories, two

actions (“Punch” and “SumoWrestling”) are representative of

fight actions and we used these samples for our evaluation.

It must be mentioned that these three datasets are not col-

lected from real surveillance video footages. Another crowd

violence dataset called Violent-Flows dataset [12] has been

proposed for the purpose of detecting violent crowd behav-

ior. However, most videos in this dataset were taken by hand

with very sharp camera jitters. Thus, we find its samples not

consistent with real surveillance-type videos.

In order to evaluate on real surveillance scenarios,

we present the newly collected Fight Action Detection in
Surveillance-videos (FADS) dataset. We collected surveil-

lance based fight video clips from the UCF-Crime [15] dataset

and from YouTube. Most of the original videos have a dura-

tion of several minutes but contain only several seconds with

fight events. From all these videos, we temporally trim 1,520

video clips by reporting the starting and ending timestamps.

All clips are captured at 30 fps and lasts about 3.5 seconds on
average, with a resolution of 320× 240 pixels. Among them,
756 clips are manually labeled as fight and 764 clips are la-

beled as non-fight– a fairly balanced distribution. Our FADS

dataset can be considered a “crowd” fight action dataset as

the number of people involved could be quite large in most

cases, covering a wide range of commonly seen fighting in-

cidences from various scenarios. Compared to the aforemen-

tioned three datasets, our FADS dataset is much more chal-

lenging. A statistical analysis and comparison between the

four datasets is presented in Table 1 and we show some sam-

ple ”fighting” frames from each of the four datasets in Fig. 6.

3.2. Quantitative Comparison with Prior Methods

We first compare our proposed approach against several state-

of-the art methods. Table 2 reports the classification ac-

curacy values of the competing methods for the Movies,

Hockey, UCF101 and FADS datasets. For our newly created

FADS dataset, the accuracy results of some existing methods

[12, 16, 4, 17] are obtained by implementations following the

original version in their respective works. From Table 2, we

observe that our proposed method is able to outperform ex-

isting algorithms in the Hockey, UCF101 fight dataset and

FADS dataset. As for the Movies dataset, our classification

accuracy (99.8%) is very close to the existing best results

(100%) achieved by ConvLSTM [17] and FightNet [18].

The advantages of our proposed method are most sig-

nificantly reflected in the classification results on the FADS

dataset. Compared to other competing approaches, our pro-

posed method exceeded the accuracy of the next best method

by∼ 7%. As mentioned earlier, video clips from the Movies,

Hockey and UCF101 datasets are mainly trimmed and less

complex; hence, existing methods can already approach near-

perfect results. But for the more complex FADS dataset,

where most of the fight events occur only in a small, specific

localized area in the frame, the reported detection accuracy

vary greatly across the board. Existing algorithms fail to deal

with such crowded environments because the extracted frame-

level features contain substantial background noises while the

precise action information is not well-emphasized. Our pro-

posed method overcomes these shortcomings by encoding the

motion in localized regions and performing recognition on the

aggregated grouping of people.

3.3. Analysis of the proposed method

In this section, we aim to verify the effectiveness of our pro-

posed architecture by evaluating the performance of each in-

dependent module. In real-world setting, a major portion of

surveillance videos contains non-fight events. It is crucial for

571



Table 1. Comparison between the four datasets
Descriptions Movies Hockey UCF1011 FADS

Fighting scenarios
action theme

movies
ice hockey rink

boxing arena, sumo

site

bar, yard, prison,

street, hospital,

supermarket, room,

platform, corridor

and carriages

# fight/non-fight videos 100 / 100 500 / 500 276 / 2762 756 / 764

Video resolution 720 x 576 360 x 288 320 x 240 320 x 240

Average video duration 1.8s 1.64s 9.6s 3.5s

Is it temporally trimmed? � � � �
Is it crowd dataset? × × × �
Is it from a CCTV footage? × × × �
1Only “Punch” and “SumoWrestling” actions from UCF101 are used for fight action evaluation.
2The non-fight videos are randomly chosen from videos of all remaining 99 action categories

Table 2. Mean accuracy values (%) of competing methods

Method Movies Hockey UCF101 FADS
MoSIFT [1] 86.5 89.5 - -

ViF [12] 91.3 82.9 84.7 77.2

ViF+OViF [16] - 87.5 86.6 81.4

Deniz et al. [19] 98.9 90.1 92.4 -

Fast Fight [4] 97.8 82.4 83.5 79.5

STIFV [20] 99.5 93.7 - -

ConvLSTM [17] 100.0 97.1 93.1 86.5

FightNet [18] 100.0 97.0 - -

Ours 99.8 98.6 96.2 93.3

the false alarm rate to be as low as possible. Thus, using the

challenging FADS dataset, we evaluate our proposed method

based on three metrics: TPR (True Positive Rate), FPR (False

Positive Rate) and AUC (Area Under Curve). The values of

TPR and FPR are calculated using a threshold of 0.8. We con-

duct these ablation experiments by evaluating the localization

and recognition branches separately.

3.3.1. Evaluation of localization branch

For the evaluation of localization branch, we design four sub-

experiments to validate the feasibility of various localization

techniques: 1) using the whole frame for action recognition,

i.e. no localization applied; 2) using human detector and

a distance based K-means clustering algorithm to aggregate

groups of human; 3) using the activation boxes without align-

ment module; 4) using the proposed alignment guided mod-

ule. For all the four sub-experiments, we use the same two-

stream C3D network for the recognition step.

Table 3 and Fig. 7 gives the comparative results and ROC

curves of the four localization sub-experiments on FADS

dataset. As shown, it is obvious that applying the proposed lo-

calization module achieves higher TPR and lower FPR. Sev-

eral details can be observed from Table 3. Firstly, recognition

without localization leads to very poor results for such clut-

tered videos. Secondly, the performance of “detector + clus-

Table 3. Comparison of different localization method
Localization method TPR(%) FPR(%) AUC
whole frame 69.4 9.43 0.72

detector + clustering 83.1 5.10 0.82

activation w/o alignment 89.5 2.32 0.87

activation w/ alignment 91.5 1.43 0.91

Fig. 7. ROC curves for various localization methods.

tering” method is actually worse than using activation boxes

without alignment module. The main reason is likely that

many fast moving or small-size human targets are not clear in

the FADS videos and therefore this is extremely challenging

even to a pre-trained human detector. This indicates that the

motion and temporal information should be utilized to help

improve performance in action localization.

3.3.2. Evaluation of recognition branch

For the evaluation of recognition branch, we use the same lo-

calization result for ROI Pooling layer and compare the clas-

sification results of different feature streams. We first eval-

uate the impact of the proposed motion acceleration module

in the temporal stream. Besides, since there are many newer

3D CNN architectures than the C3D, it is interesting to see

how much boost in performance can the acceleration module

attain on these advanced architectures. For that, we also con-

duct experiments using the recently introduced 3DMulti-fiber
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Table 4. comparison of different temporal streams
Recognition method TPR(%) FPR(%) AUC
C3D (flow) 84.3 3.45 0.84

C3D (flowAcc) 86.3 3.01 0.85

C3D (RGB + flow) 87.2 3.21 0.86

C3D (RGB + flowAcc) 91.5 1.43 0.91

MF-Net (flow) 90.3 2.33 0.90

MF-Net (flowAcc) 91.6 1.87 0.91

MF-Net (RGB + flow) 92.7 1.95 0.92

MF-Net (RGB + flowAcc) 94.9 0.86 0.95

Network (MF-Net) [21], which has achieved state-of-the-art

performance on many action classification datasets.

The results shown in Table 4 demonstrate that in the case

of both C3D and MF-Net networks, as well as for both single-

and two-stream cases, the replacement of optical flow (‘flow’)

with the accelerated optical flow maps (‘flowAcc’) in the tem-

poral stream saw an improvement of 1%∼4% in TPR and a

reduction of 0.5%∼ 1.8% in FPR. This shows that when iden-

tifying fight action scenes, the motion acceleration can be a

better representation than primitive optical flow (motion).

4. CONCLUSION

This paper presents several new advances in the task of fight

action detection. A novel FADS dataset is constructed , which
is the largest in terms of size and variety, with challenging

crowded conditions. To detect fight events under such sce-

narios, we propose a novel localization guided framework

which produces well-aligned active regions that also aggre-

gates adjacent humans into groupings. To recognize fight ac-

tions upon localizing them, we use a two-stream architecture

which takes in the localized active regions fed via an addi-

tional ROI Pooling layer. We find that motion acceleration

provides a better representation than conventional optical flow

particularly for identifying fight actions. Experimental results

show that our method outperforms state-of-the-art techniques.
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