
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression

Jian-Hao Luo1, Jianxin Wu1, and Weiyao Lin2

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2Shanghai Jiao Tong University, Shanghai, China

luojh@lamda.nju.edu.cn, wujx2001@nju.edu.cn, wylin@sjtu.edu.cn

Abstract

We propose an efficient and unified framework, namely

ThiNet, to simultaneously accelerate and compress CNN

models in both training and inference stages. We focus on

the filter level pruning, i.e., the whole filter would be dis-

carded if it is less important. Our method does not change

the original network structure, thus it can be perfectly sup-

ported by any off-the-shelf deep learning libraries. We for-

mally establish filter pruning as an optimization problem,

and reveal that we need to prune filters based on statistics in-

formation computed from its next layer, not the current layer,

which differentiates ThiNet from existing methods. Experi-

mental results demonstrate the effectiveness of this strategy,

which has advanced the state-of-the-art. We also show the

performance of ThiNet on ILSVRC-12 benchmark. ThiNet

achieves 3.31× FLOPs reduction and 16.63× compression

on VGG-16, with only 0.52% top-5 accuracy drop. Similar

experiments with ResNet-50 reveal that even for a compact

network, ThiNet can also reduce more than half of the param-

eters and FLOPs, at the cost of roughly 1% top-5 accuracy

drop. Moreover, the original VGG-16 model can be further

pruned into a very small model with only 5.05MB model

size, preserving AlexNet level accuracy but showing much

stronger generalization ability.

1. Introduction

In the past few years, we have witnessed a rapid develop-

ment of deep neural networks in the field of computer vision,

from basic image classification tasks such as the ImageNet

recognition challenge [18, 28, 11], to some more advanced

applications, e.g., object detection [7], semantic segmenta-

tion [24], image captioning [16] and many others. Deep

neural networks have achieved state-of-the-art performance

in these fields compared with traditional methods based on

manually designed visual features.

In spite of its great success, a typical deep model is hard

to be deployed on resource constrained devices, e.g., mobile

phones or embedded gadgets. A resource constrained sce-

nario means a computing task must be accomplished with

limited resource supply, such as computing time, storage

space, battery power, etc. One of the main issues of deep

neural networks is its huge computational cost and storage

overhead, which constitute a serious challenge for a mobile

device. For instance, the VGG-16 model [28] has 138.34 mil-

lion parameters, taking up more than 500MB storage space,1

and needs 30.94 billion float point operations (FLOPs) to

classify a single image. Such a cumbersome model can easily

exceed the computing limit of small devices. Thus, network

compression has drawn a significant amount of interest from

both academia and industry.

Pruning is one of the most popular methods to reduce

network complexity, which has been widely studied in the

model compression community. In the 1990s, LeCun et

al. [20] had observed that several unimportant weights can

be removed from a trained network with negligible loss in

accuracy. A similar strategy was also explored in [2]. This

process resembles the biological phenomena in mammalian

brain, where the number of neuron synapses has reached the

peak in early childhood, followed by gradual pruning during

its development. However, these methods are mainly based

on the second derivative, thus are not applicable for today’s

deep model due to expensive memory and computation costs.

Recently, Han et al. [10] introduced a simple pruning

strategy: all connections with weights below a threshold are

removed, followed by fine-tuning to recover its accuracy.

This iterative procedure is performed several times, gener-

ating a very sparse model. However, such a non-structured

sparse model can not be supported by off-the-shelf libraries,

thus specialized hardwares and softwares are needed for effi-

cient inference, which is difficult and expensive in real-world

applications. On the other hand, the non-structured random

connectivity ignores cache and memory access issues. As

indicated in [32], due to the poor cache locality and jumping

memory access caused by random connectivity, the practical

acceleration is very limited (sometimes even slows down),

even though the actual sparsity is relatively high.

To avoid the limitations of non-structured pruning men-

11 MB= 2
20 ≈ 1.048 million bytes, and 1 million is 106.

5058

tioned above, we suggest that the filter level pruning would

be a better choice. The benefits of removing the whole unim-

portant filter have a great deal: 1) The pruned model has

no difference in network structure, thus it can be perfectly

supported by any off-the-shelf deep learning libraries. 2)

Memory footprint would be reduced dramatically. Such

memory reduction comes not only from model parameter

itself, but also from the intermediate activation, which is

rarely considered in previous studies. 3) Since the pruned

network structure has not be damaged, it can be further com-

pressed and accelerated by other compression methods, e.g.,

the parameter quantization approach [33]. 4) More vision

tasks, such as object detection or semantic segmentation, can

be accelerated greatly using the pruned model.

In this paper, we propose a unified framework, namely

ThiNet (stands for “Thin Net”), to prune the unimportant

filters to simultaneously accelerate and compress CNN mod-

els in both training and test stages with minor performance

degradation. With our pruned network, some important trans-

fer tasks such as object detection or fine-grained recognition

can run much faster (both training and inference), especially

in small devices. Our main insight is that we establish a well-

defined optimization problem, which shows that whether a

filter can be pruned depends on the outputs of its next layer,

not its own layer. This novel finding differentiates ThiNet

from existing methods which prune filters using statistics

calculated from their own layer.

We then compare the proposed method with other state-

of-the-art criteria. Experimental results show that our ap-

proach is significantly better than existing methods, espe-

cially when the compression rate is relatively high. We

evaluate ThiNet on the large-scale ImageNet classification

task. ThiNet achieves 3.31× FLOPs reduction and 16.63×
compression on VGG-16 model [28], with only 0.52% top-5

accuracy drop. The ResNet-50 model [11] has less redun-

dancy compared with classic CNN models. ThiNet can still

reduce 2.26× FLOPs and 2.06× parameters with roughly

1% top-5 accuracy drop. To explore the limits of ThiNet, we

show that the original VGG-16 model can even be pruned

into 5.05MB, but still preserving AlexNet level accuracy.

In addition, we also explore the performance of ThiNet

in a more practical task, i.e., transfer learning on small-scale

datasets. Experimental results demonstrate the excellent

effectiveness of ThiNet, which achieves the best trade-off

between model size and accuracy.

The key advantages and major contributions of this paper

can be summarized as follows.

• We propose a simple yet effective framework, namely

ThiNet, to simultaneously accelerate and compress

CNN models. ThiNet shows significant improvements

over existing methods on numerous tasks.

• We formally establish filter pruning as an optimization

problem, and reveal that we need to prune filters us-

ing statistics information computed from its next layer,

not the current layer, which differentiates ThiNet from

existing methods.

• In experiments, the VGG-16 model can be pruned into

5.05MB, showing promising generalization ability on

transfer learning. Higher accuracy could be preserved

with a more accurate model using ThiNet.

2. Related work

Many researchers have found that deep models suffer

from heavy over-parameterization. For example, Denil et

al. [4] demonstrated that a network can be efficiently recon-

structed with only a small subset of its original parameters.

However, this redundancy seems necessary during model

training, since the highly non-convex optimization is hard to

be solved with current techniques [5, 13]. Hence, there is a

great need to reduce model size after its training.

Some methods have been proposed to pursuit a balance

between model size and accuracy. Han et al. [10] proposed

an iterative pruning method to remove the redundancy in

deep models. Their main insight is that small-weight con-

nectivity below a threshold should be discarded. In practice,

this can be aided by applying ℓ1 or ℓ2 regularization to push

connectivity values becoming smaller. The major weakness

of this strategy is the loss of universality and flexibility, thus

seems to be less practical in the real applications.

In order to avoid these weaknesses, some attention has

been focused on the group-wise sparsity. Lebedev and Lem-

pitsky [19] explored group-sparse convolution by introduc-

ing the group-sparsity regularization to the loss function,

then some entire groups of weights would shrink to zeros,

thus can be removed. Similarly, Wen et al. [32] proposed

the Structured Sparsity Learning (SSL) method to regularize

filter, channel, filter shape and depth structures. In spite of

their success, the original network structure has been de-

stroyed. As a result, some dedicated libraries are needed for

an efficient inference speed-up.

In line with our work, some filter level pruning strate-

gies have been explored too. The core is to evaluate neuron

importance, which has been widely studied in the commu-

nity [34, 27, 21, 14, 23]. A simplest possible method is based

on the magnitude of weights. Li et al. [21] measured the

importance of each filter by calculating its absolute weight

sum. Another practical criterion is to measure the sparsity of

activations after the ReLU function. Hu et al. [14] believed

that if most outputs of some neurons are zero, these activa-

tions should be expected to be redundant. They compute

the Average Percentage of Zeros (APoZ) of each filter as its

importance score. These two criteria are simple and straight-

forward, but not directly related to the final loss. Inspired

by this observation, Molchanov et al. [23] adopted Taylor

expansion to approximate the influence to loss function in-

duced by removing each filter.

5059

prune weak filters

* … …*
Original

Model

* * ……
Pruned

Model

input of

layer � filters of

layer � input of

layer �+1

filters of

layer �+1

input of

layer �+2

fine-tuning

* * ……
Fine-tuned

Model

Figure 1. Illustration of ThiNet. First, we focus on the dotted box

part to determine several weak channels and their corresponding

filters (highlighted in yellow in the first row). These channels

(and their associated filters) have little contribution to the overall

performance, thus can be discarded, leading to a pruned model.

Finally, the network is fine-tuned to recover its accuracy. (This

figure is best viewed in color.)

Beyond pruning, there are also other strategies to obtain

small CNN models. One popular approaches is parameter

quantization [8, 3, 33, 9]. Low-rank approximation is also

widely studied [5, 29]. Note that these methods are com-

plementary to filter pruning, which can be combined with

ThiNet for further improvement.

3. ThiNet

In this section, we will give a comprehensive introduc-

tion to our filter level pruning approach: ThiNet. First, the

overall framework will be presented. Next, a more detailed

description of our selection algorithm would be presented.

Finally, we will show our pruning strategy, which takes both

efficiency and effectiveness into consideration.

3.1. Framework of ThiNet

Pruning is a classic method used for reducing model

complexity. Although vast differences exist (such as differ-

ent criteria in selecting what should be pruned), the overall

framework is similar in pruning filters inside a deep neural

network. It can be summarized in one sentence: evaluate the

importance of each neuron, remove those unimportant ones,

and fine-tune the whole network.

This framework is illustrated in Figure 1. In the next sub-

section, we will focus on the dotted box part to introduce our

data-driven channel selection method, which determines the

channels (and their associated filters) that are to be pruned

away.

Given a pre-trained model, it would be pruned layer by

layer with a predefined compression rate. We summarize our

framework as follows:

1. Filter selection. Unlike existing methods that use layer

i’s statistics to guide the pruning of layer i’s filters, we

use layer i + 1 to guide the pruning in layer i. The

key idea is: if we can use a subset of channels in layer

(i+ 1)’s input to approximate the output in layer i+ 1,

the other channels can be safely removed from the input

of layer i+ 1. Note that one channel in layer (i+ 1)’s
input is produced by one filter in layer i, hence we can

safely prune the corresponding filter in layer i.

2. Pruning. Weak channels in layer (i + 1)’s input and

their corresponding filters in layer i would be pruned

away, leading to a much smaller model. Note that, the

pruned network has exactly the same structure but with

fewer filters and channels. In other words, the original

wide network is becoming much thinner. That is why

we call our method “ThiNet”.

3. Fine-tuning. Fine-tuning is a necessary step to recover

the generalization ability damaged by filter pruning.

But it will take very long for large datasets and complex

models. For time-saving considerations, we fine-tune

one or two epochs after the pruning of one layer. In

order to get an accurate model, more additional epochs

would be carried out when all layers have been pruned.

4. Iterate to step 1 to prune the next layer.

3.2. Data­driven channel selection

We use a triplet 〈Ii,Wi, ∗〉 to denote the convolution

process in layer i, where Ii ∈ R
C×H×W is the input tensor,

which has C channels, H rows and W columns. AndWi ∈
R

D×C×K×K is a set of filters with K×K kernel size, which

generates a new tensor with D channels.

Our goal is to remove some unimportant filters in Wi.

Note that, if a filter in Wi is removed, its corresponding

channel in Ii+1 andWi+1 would also be discarded. How-

ever, since the filter number in layer i + 1 has not been

changed, the size of its output tensor, i.e., Ii+2, would be

kept exactly the same. Inspired by this observation, we

believe that if we can remove several filters that has little

influence on Ii+2 (which is also the output of layer i+ 1), it

would have little influence on the overall performance too.

In other words, minimizing the reconstruction error of Ii+2

is closely related to the network’s classification performance.

3.2.1 Collecting training examples

In order to determine which channel can be removed safely,

a training set used for importance evaluation would be col-

lected. As illustrated in Figure 2, an element, denoted by y,

is randomly sampled from the tensor Ii+2 (before ReLU).

A corresponding filter Ŵ ∈ R
C×K×K and sliding window

x ∈ R
C×K×K (after ReLU) can also be determined accord-

ing to its location. Here, some index notations are omitted for

a clearer presentation. Normally, the convolution operation

can be computed with a corresponding bias b as follows:

y =
C∑

c=1

K∑

k1=1

K∑

k2=1

Ŵc,k1,k2
× xc,k1,k2

+ b. (1)

5060

 the sliding :ݔ

window
෡�: the corresponding filter

 a random :ݕ

sampled data

input of layer �+1 filters of layer �+1 input of layer �+2

* =...

Figure 2. Illustration of data sampling and variables’ relationship.

Now, if we further define:

x̂c =
K∑

k1=1

K∑

k2=1

Ŵc,k1,k2
× xc,k1,k2

, (2)

Eq. 1 can be simplified as:

ŷ =

C∑

c=1

x̂c, (3)

in which ŷ = y − b. It is worthwhile to keep in mind that x̂
and ŷ are random variables whose instantiations require fixed

spatial locations indexed by c, k1 and k2. A key observation

is that channels in x̂ = (x̂1, x̂2, . . . , x̂C) is independent: x̂c

only depends on xc,:,:, which has no dependency relationship

with xc′,:,:, if c′ 6= c.

In other words, if we can find a subset S ⊂ {1, 2, . . . , C}
and the equality

ŷ =
∑

c∈S

x̂c (4)

always holds, then we do not need any x̂c if c /∈ S and these

variables can be safely removed without changing the CNN

model’s result.

Of course, Eq. 4 cannot always be true for all instances

of the random variables x̂ and ŷ. However, we can manually

extract instances of them to find a subset S such that Eq. 4

is approximately correct.

Given an input image, we first apply the CNN model in

the forward run to find the input and output of layer i + 1.

Then for any feasible (c, k1, k2) triplet, we can obtain a C-

dimensional vector variable x̂ = {x̂1, x̂2, . . . , x̂C} and a

scalar value ŷ using Eq. 1 to Eq. 3. Since x̂ and ŷ can be

viewed as random variables, more instances can be sampled

by choosing different input images, different channels, and

different spatial locations.

3.2.2 A greedy algorithm for channel selection

Now, given a set of m (the product of number of images

and number of locations) training examples {(x̂i, ŷi)}, the

original channel selection problem becomes the following

Algorithm 1 A greedy algorithm for minimizing Eq. 6

Input: Training set {(x̂i, ŷi)}, and compression rate r
Output: The subset of removed channels: T
1: T ← ∅; I ← {1, 2, . . . , C};
2: while |T | < C × (1− r) do

3: min value← +∞;
4: for each item i ∈ I do

5: tmpT ← T ∪ {i};
6: compute value from Eq. 6 using tmpT ;
7: if value < min value then

8: min value← value; min i← i;
9: end if

10: end for

11: move min i from I into T ;
12: end while

optimization problem:

argmin
S

m∑

i=1


ŷi −

∑

j∈S

x̂i,j




2

s.t. |S| = C × r, S ⊂ {1, 2, . . . , C}.

(5)

Here, |S| is the number of elements in a subset S, and r
is a pre-defined compression rate (i.e., how many channels

are preserved). Equivalently, let T be the subset of removed

channels (i.e., S ∪ T = {1, 2, . . . , C} and S ∩ T = ∅), we

can minimize the following alternative objective:

argmin
T

m∑

i=1


∑

j∈T

x̂i,j




2

s.t. |T | = C × (1− r), T ⊂ {1, 2, . . . , C}.

(6)

Eq. 6 is equivalent to Eq. 5, but has faster speed because |T |
is usually smaller than |S|. Solving Eq. 6 is still NP hard,

thus we use a greedy strategy (illustrated in algorithm 1).

We add one element to T at a time, and choose the channel

leading to the smallest objective value in the current iteration.

Obviously, this greedy solution is sub-optimal. But the

gap can be compensated by fine-tuning. We have also tried

some other sophisticated algorithms, such as sparse coding

(specifically, the homotopy method [6]). However, our sim-

ple greedy approach has better performance and faster speed

according to our experiments.

3.2.3 Minimize the reconstruction error

So far, we have obtained the subset T such that the n-th

channel in each filter of layer i+ 1 can be safely removed

if n ∈ T . Hence, the corresponding filters in the previous

layer i can be pruned too.

5061

Now we will further minimize the reconstruction error

(c.f . Eq. 5) by weighing the channels, which can be defined

as:

ŵ = argmin
w

m∑

i=1

(ŷi −wTx̂∗
i)

2, (7)

where x̂∗
i indicates the training examples after channel se-

lection. Eq. 7 is a classic linear regression problem, which

has a unique closed-form solution using the ordinary least

squares approach: ŵ = (XTX)−1XTy.

Each element in ŵ can be regarded as a scaling factor of

corresponding filter channel such thatW:,i,:,: = ŵiW:,i,:,:.

From another point of view, this scaling operation provides

a better initialization for fine-tuning, hence the network is

more likely to reach higher accuracy.

3.3. Pruning strategy

There are mainly two types of different network archi-

tectures: the traditional convolutional/fully-connected archi-

tecture, and recent structural variants. The former is repre-

sented by AlexNet [18] or VGGNet [28], while the latter

mainly includes some recent networks like GoogLeNet [30]

and ResNet [11]. The main difference between these two

types is that more recent networks usually replace the

FC (fully-connected) layers with a global average pooling

layer [22, 34], and adopt some novel network structures like

Inception in GoogLeNet or residual blocks in ResNet.

We use different strategies to prune these two types of net-

works. For VGG-16, we notice that more than 90% FLOPs

exist in the first 10 layers (conv1-1 to conv4-3), while the

FC layers contribute nearly 86.41% parameters. Hence, we

prune the first 10 layers for acceleration consideration, but

replace the FC layers with a global average pooling layer.

Although the proposed method is also valid for FC layers,

we believe removing them is simpler and more efficient.

For ResNet, there exist some restrictions due to its special

structure. For example, the channel number of each block

in the same group needs to be consistent in order to finish

the sum operation (see [11] for more details). Thus it is hard

to prune the last convolutional layer of each residual block

directly. Since most parameters are located in the first two

layers, pruning the first two layers is a good choice, which is

illustrated in Figure 3.

4. Experiments

We empirically study the performance of ThiNet in this

section. First, a comparison among several different fil-

ter selection criteria would be presented. Experimental re-

sults show that our method is significantly better than others.

Then, we would report the performance on ILSCVR-12 [26].

Two widely used networks are pruned: VGG-16 [28] and

ResNet-50 [11]. Finally, we focus on a more practical sce-

nario to show the advantages of ThiNet. All the experiments

64×256×1×1

64×64×3×3

256×64×1×1

+

relu

relu

ReLU

256-d

32×256×1×1

32×32×3×3

256×32×1×1

+

relu

relu

256-d

prune 50%

256-d 256-dReLU

Figure 3. Illustration of the ResNet pruning strategy. For each

residual block, we only prune the first two convolutional layers,

keeping the block output dimension unchanged.

are conducted within Caffe [17].

4.1. Different filter selection criteria

There exist some heuristic criteria to evaluate the impor-

tance of each filter in the literature. We compare our selec-

tion method with two recently proposed criteria to demon-

strate the effectiveness of our evaluation criterion. These

criteria are briefly summarized as follows:

• Weight sum [21]. Filters with smaller kernel weights

tend to produce weaker activations. Thus, in this strat-

egy the absolute sum of each filter is calculated as its

importance score: si =
∑
|W(i, :, :, :)|.

• APoZ (Average Percentage of Zeros) [14]. This

criterion calculates the sparsity of each channel in

output activations as its importance score: si =
1

|I(i,:,:)|

∑∑
I(I(i, :, :) == 0), where |I(i, :, :)| is

the elements number in i-th channel of tensor I (af-

ter ReLU), and I(·) denotes the indicator function.

To compare these different selection methods, we evalu-

ate their performance on the widely used fine-grained dataset:

CUB-200 [31], which contains 11,788 images of 200 differ-

ent bird species (5994/5794 images for training/test, respec-

tively). Except for labels, no additional supervised informa-

tion (e.g., bounding box) is used.

Following the pruning strategy in Section 3.3, all the FC

layers in VGG-16 are removed, and replaced with a global

average pooling layer, and fine-tuned on new datasets. Start-

ing from this fine-tuned model, we then prune the network

layer by layer with different compression rate. Each prun-

ing is followed by one epoch fine-tuning, and 12 epochs

are performed in the final layer to improve accuracy. This

procedure is repeated several times with different channel

selection strategies. Due to the random nature of ThiNet, we

repeated our method 4 times and report the averaged result.

For a fair comparison, all the settings are kept the same,

except the selection method.

Figure 4 shows the pruning results on the CUB bird

dataset. We also evaluated the performance of random se-

lection with the same pruning strategy. In addition, another

5062

100% 80% 60% 40% 20% 0%
FLOPs Reduction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
To

p-
1

Ac
cu

ra
cy

Random
Weight sum
APoZ
ThiNet w/o w
ThiNet

Figure 4. Performance comparison of different channel selection

methods: the VGG-16-GAP model pruned on CUB-200 with dif-

ferent compression rates. (This figure is best viewed in color and

zoomed in.)

version of ThiNet without least squares (denoted by “ThiNet

w/o ŵ”) is also evaluated to demonstrate the effectiveness of

least squares in our method. Obviously, ThiNet achieves con-

sistently and significantly higher accuracy compared with

other selection methods.

One interesting result is: random selection shows pretty

good performance, even better than heuristic criteria in some

cases. In fact, according to the property of distributed repre-

sentations (i.e., each concept is represented by many neurons;

and, each neuron participates in the representation of many

concepts [12, 1]), randomly selected channels may be quite

powerful in theory. However, this criterion is not robust. As

shown in Figure 4, it can lead to very bad result and the

accuracy is very low after all layers are compressed. Thus,

random selection is not applicable in practice.

Weight sum has pretty poor accuracy on CUB-200. This

result is reasonable, since it only takes the magnitude of ker-

nel weights into consideration, which is not directly related

to the final classification accuracy. In fact, small weights

could still have large impact on the loss function. When we

discard a large number of small filters at the same time, the

final accuracy can be damaged greatly. For example, if we

removed 60% filters in conv1-1 using the small weight crite-

rion, the top-1 accuracy is only 40.99% (before fine-tuning),

while random criterion is 51.26%. By contrast, our method

(ThiNet w/o w) can reach 68.24%, and even 70.75% with

least squares (ThiNet). The accuracy loss of weight sum is

so large that fine-tuning cannot completely recover it from

the drop.

In contrast, our method shows much higher and robust

results. The least squares approach does indeed aid to get a

better weight initialization for fine-tuning, especially when

the compression rate is relatively high.

4.2. VGG­16 on ImageNet

We now evaluate the performance of the proposed ThiNet

method on large-scale ImageNet classification task. The

ILSCVR-12 dataset [26] consists of over one million train-

ing images drawn from 1000 categories. We randomly select

10 images from each category in the training set to comprise

our evaluation set (i.e., collected training examples for chan-

nel selection). And for each input image, 10 instances are

randomly sampled with different channels and different spa-

tial locations as described in section 3.2.1. Hence, there are

in total 100,000 training samples used for finding the optimal

channel subset via Algorithm 1. We compared several dif-

ferent choices of image and location number, and found that

the current choice (10 images per class and 10 locations per

image) is enough for neuron importance evaluation. Finally,

top-1 and top-5 classification performance are reported on

the 50k standard validation set, using the single-view testing

approach (central patch only).

During fine-tuning, images are resized to 256× 256, then

224× 224 random cropping is adopted to feed the data into

network. Horizontal flip is also used for data augmentation.

At the inference stage, we center crop the resized images

to 224 × 224. No more tricks are used here. The whole

network is pruned layer by layer and fine-tuned in one epoch

with 10−3 learning rate. Since the last layer of each group

(i.e., conv1-2, conv2-2, conv3-3) is more important (pruning

these layers would lead to a big accuracy drop), we fine-tune

these layers with additional one epoch of 10−4 learning rate

to prevent accuracy drop too much. When pruning the last

layer, more epochs (12 epochs) are adopted to get an accurate

result with learning rate varying from 10−3 to 10−5. We use

SGD with mini-batch size of 128, and other parameters are

kept the same as the original VGG paper [28].

We summarize the performance of the ThiNet approach

in Table 1. Here, “ThiNet-Conv” refers to the model in

which only the first 10 convolutional layers are pruned with

compression rate 0.5 (i.e., half of the filters are removed

in each layer till conv4-3) as stated above. Because some

useless filters are discarded, the pruned model can even

outperform the original VGG-16 model. However, if we

train this model from scratch, the top-1/top-5 accuracy are

only 67.00%/87.45% respectively, which is much worse

than our pruned network. Then the FC layers are removed,

replaced with a GAP (global average pooling) layer and fine-

tuned in 12 epochs with the same hyper-parameters, which

is denoted by “ThiNet-GAP”. The classification accuracy

of GAP model is slightly lower than the original model,

since the model size has been reduced dramatically. Further

reduction can be obtained with a higher compression rate

(denoted by “ThiNet-Tiny”), which would be discussed later.

The actual speed-up of ThiNet is also reported. We test

the forward/backward running time of each model using

the official “time” command in Caffe. This evaluation is

5063

Table 1. Pruning results of VGG-16 on ImageNet using ThiNet.

Here, M/B means million/billion (106/109), respectively; f./b. de-

notes the forward/backward timing in milliseconds tested on one

M40 GPU with batch size 32.
Model Top-1 Top-5 #Param. #FLOPs1 f./b. (ms)

Original2 68.34% 88.44% 138.34M 30.94B 189.92/407.56

ThiNet-Conv 69.80% 89.53% 131.44M 9.58B 76.71/152.05

Train from scratch 67.00% 87.45% 131.44M 9.58B 76.71/152.05

ThiNet-GAP 67.34% 87.92% 8.32M 9.34B 71.73/145.51

ThiNet-Tiny 59.34% 81.97% 1.32M 2.01B 29.51/55.83

SqueezeNet[15] 57.67% 80.39% 1.24M 1.72B 37.30/68.62

1 In this paper, we only consider the FLOPs of convolution operations,

which is commonly used for computation complexity comparison.
2 For a fair comparison, the accuracy of original VGG-16 model is eval-

uated on resized center-cropped images using pre-trained model as

adopted in [10, 14]. The same strategy is also used in ResNet-50.

Table 2. Comparison among several state-of-the-art pruning meth-

ods on the VGG-16 network. Some exact values are not reported

in the original paper and cannot be computed, thus we use ≈ to

denote the approximation value.
Method Top-1 Acc. Top-5 Acc. #Param. ↓ #FLOPs ↓

APoZ-1 [14] -2.16% -0.84% 2.04× ≈ 1×

APoZ-2 [14] +1.81% +1.25% 2.70× ≈ 1×

Taylor-1 [23] – -1.44% ≈ 1× 2.68×

Taylor-2 [23] – -3.94% ≈ 1× 3.86×

ThiNet-WS [21] +1.01% +0.69% 1.05× 3.23×

ThiNet-Conv +1.46% +1.09% 1.05× 3.23×

ThiNet-GAP -1.00% -0.52% 16.63× 3.31×

conducted on one M40 GPU with batch size 32 accelerated

by cuDNN v5.1. Since convolution operations dominate

the computational costs of VGG-16, reducing FLOPs would

accelerate inference speed greatly, which is shown in Table 1.

We then compare our approach with several state-of-the-

art pruning methods on the VGG-16 model, which is shown

in Table 2. These methods also focus on filter-level pruning,

but with totally different selection criteria.

APoZ [14] aims to reduce parameter numbers, but its

performance is limited. APoZ-1 prunes few layers (conv4,

conv5 and the FC layers), but leads to significant accuracy

degradation. APoZ-2 then only prunes conv5-3 and the FC

layers. Its accuracy is improved but this model almost does

not reduce the FLOPs. Hence, there is a great need for

compressing convolution layers.

In contrast, Molchanov et al. [23] pay their attention to

model acceleration, and only prune the convolutional layers.

They think a filter can be removed safely if it has little influ-

ence on the loss function. But the calculating procedure can

be very time-consuming, thus they use Taylor expansion to

approximate the loss change. Their motivation and goals are

similar to ours, but with totally different selection criterion

and training framework. As shown in Table 2, the ThiNet-

Conv model is significantly better than Taylor method. Our

model can even improve classification accuracy with more

FLOPs reduction.

As for weight sum [21], they have not explored its perfor-

mance on VGG-16. Hence we simply replace our selection

method with weight sum in the ThiNet framework, and re-

port the final accuracy denoted by “ThiNet-WS”. All the

parameters are kept the same except for selection criterion.

Note that different fine-tuning framework may lead to very

different results. Hence, the accuracy may be different if Li

et al. [21] had done this using their own framework. Because

the rest setups are the same, it is fair to compare ThiNet-WS

and ThiNet, and ThiNet has obtained better results.

To explore the limits of ThiNet, we prune VGG-16 with

a larger compression rate 0.25, achieving 16× parameters

reduction in convolutional layers. The conv5 layers are also

pruned to get a smaller model. As for conv5-3, which is

directly related to the final feature representation, we only

prune half of the filters for accuracy consideration.

Using these smaller compression ratios, we train a very

small model. Denoted as “ThiNet-Tiny” in Table 1, it only

takes 5.05MB disk space (1MB=220 bytes) but still has

AlexNet-level accuracy (the top-1/top-5 accuracy of AlexNet

is 57.2%/80.3%, respectively). ThiNet-Tiny has exactly the

same level of model complexity as the recently proposed

compact network: SqueezeNet [15], but showing high accu-

racy. Although ThiNet-Tiny needs more FLOPs, its actual

speed is even faster than SqueezeNet because it has a much

simpler network structure. SqueezeNet adopts a special

structure, namely the Fire module, which is parameter ef-

ficient but relies on manual network structure design. In

contrast, ThiNet is a unified framework, and higher accuracy

would be obtained if we start from a more accurate model.

4.3. ResNet­50 on ImageNet

We also explore the performance of ThiNet on the re-

cently proposed powerful CNN architecture: ResNet [11].

We select ResNet-50 as the representative of the ResNet

family, which has exactly the same architecture and little

difference with others.

Similar to VGG-16, we prune ResNet-50 from block

2a to 5c iteratively. Except for filters, the corresponding

channels in batch-normalization layer are also discarded.

After pruning, the model is fine-tuned in one epoch with

fixed learning rate 10−4. And 9 epochs fine-tuning with

learning rate changing from 10−3 to 10−5 is performed at

the last round to gain a higher accuracy. Other parameters

are kept the same as our VGG-16 pruning experiment.

Because ResNet is a recently proposed model, the liter-

ature lack enough works that compress this network. We

report the performance of ThiNet on pruning ResNet-50,

which is shown in Table 3. We prune this model with 3

different compression rates (preserve 70%, 50%, 30% fil-

ters in each block respectively). Unlike VGG-16, ResNet is

more compact. There exists less redundancy, thus pruning

a large amount of filters seems to be more challenging. In

spite of this, our method ThiNet-50 can still prune more than

5064

Table 3. Overall performance of pruning ResNet-50 on ImageNet

via ThiNet with different compression rate. Here, M/B means

million/billion respectively, f./b. denotes the forward/backward

speed tested on one M40 GPU with batch size 32.
Model Top-1 Top-5 #Param. #FLOPs f./b. (ms)

Original 72.88% 91.14% 25.56M 7.72B 188.27/269.32

ThiNet-70 72.04% 90.67% 16.94M 4.88B 169.38/243.37

ThiNet-50 71.01% 90.02% 12.38M 3.41B 153.60/212.29

ThiNet-30 68.42% 88.30% 8.66M 2.20B 144.45/200.67

half of the parameters with roughly 1% top-5 accuracy drop.

Further pruning can also be carried out, leading to a much

smaller model at the cost of more accuracy loss.

However, reduced FLOPs can not bring the same level

of acceleration in ResNet. Due to the structure constraints

of ResNet-50, non-tensor layers (e.g., batch normalization

and pooling layers) take up more than 40% of the inference

time on GPU. Hence, there is a great need to accelerate these

non-tensor layers, which should be explored in the future.

In this experiment, we only prune the first two layers of

each block in ResNet for simplicity, leaving the block output

and projection shortcuts unchanged. Pruning these parts

would lead to further compression, but can be quite difficult,

if not entirely impossible. And this exploration seems to be

a promising extension for the future work.

4.4. Domain adaptation ability of the pruned model

One of the main advantages of ThiNet is that we have

not changed network structure, thus a model pruned on Ima-

geNet can be easily transfered into other domains.

To help us better understand this benefit, let us consider

a more practical scenario: get a small model on a domain-

specific dataset. This is a very common requirement in the

real-world applications, since we will not directly apply

ImageNet models in a real application. To achieve this goal,

there are two feasible strategies: starting from a pre-trained

ImageNet model then prune on the new dataset, or train a

small model from scratch. In this section, we argue that it

would be a better choice if we fine-tune an already pruned

model which is compressed on ImageNet.

These strategies are compared on two different domain-

specific dataset: CUB-200 [31] for fine-grained classifica-

tion and Indoor-67 [25] for scene recognition. We have

introduced CUB-200 in section 4.1. As for Indoor-67, we

follow the official train/test split (5360 training and 1340

test images) to organize this dataset. All the models are

fine-tuned with the same hyper-parameters and epochs for a

fair comparison. Their performance is shown in Table 4.

We first fine-tune the pre-trained VGG-16 model on the

new dataset, which is a popular strategy adopted in numer-

ous recognition tasks. As we can see, the fine-tuned model

has the highest accuracy at the cost of huge model size and

slow inference speed. Then, we use the proposed ThiNet

approach to prune some unimportant filters (denoted by “FT

Table 4. Comparison of different strategies to get a small model on

CUB-200 and Indoor-67. “FT” stands for “Fine Tune”.
Dataset Strategy #Param. #FLOPs Top-1

CUB-200

VGG-16 135.07M 30.93B 72.30%

FT & prune 7.91M 9.34B 66.90%

Train from scratch 7.91M 9.34B 44.27%

ThiNet-Conv 128.16M 9.58B 70.90%

ThiNet-GAP 7.91M 9.34B 69.43%

ThiNet-Tiny 1.12M 2.01B 65.45%

AlexNet 57.68M 1.44B 57.28%

Indoor-67

VGG-16 134.52M 30.93B 72.46%

FT & prune 7.84M 9.34B 64.70%

Train from scratch 7.84M 9.34B 38.81%

ThiNet-Conv 127.62M 9.57B 72.31%

ThiNet-GAP 7.84M 9.34B 70.22%

ThiNet-Tiny 1.08M 2.01B 62.84%

AlexNet 57.68M 1.44B 59.55%

& prune”), converting the cumbersome model into a much

smaller one. With small-scale training examples, the accu-

racy cannot be recovered completely, i.e., the pruned model

can be easily trapped into bad local minima. However, if

we train a network from scratch with the same structure, its

accuracy can be much lower.

We suggest to fine-tune the ThiNet model, which is first

pruned using the ImageNet data. As shown in Table 4, this

strategy gets the best trade-off between model size and clas-

sification accuracy. It is worth noting that the ThiNet-Conv

model can even obtain a similar accuracy as the original

VGG-16, but is smaller and much faster.

We also report the performance of ThiNet-Tiny on these

two datasets. Although ThiNet-Tiny has the same level of

accuracy as AlexNet on ImageNet, it shows much stronger

generalization ability. This tiny model can achieve 3% ∼ 8%
higher classification accuracy than AlexNet when transferred

into domain-specific tasks with 50× fewer parameters. And

its model size is small enough to be deployed on resource

constrained devices.

5. Conclusion

In this paper, we proposed a unified framework, namely

ThiNet, for CNN model acceleration and compression. The

proposed filter level pruning method shows significant im-

provements over existing methods.

In the future, we would like to prune the projection short-

cuts of ResNet. An alternative method for better channel

selection is also worthy to be studied. In addition, extensive

exploration on more vision tasks (such as object detection

or semantic segmentation) with the pruned networks is an

interesting direction too. The pruned networks will greatly

accelerate these vision tasks.

Acknowledgements

This work was supported in part by the National Natural

Science Foundation of China under Grant No. 61422203.

5065

References

[1] Y. Bengio, A. Courville, and P. Vincent. Representation

learning: A review and new perspectives. TPAMI, 35(8):1798–

1828, 2013. 6

[2] G. Chechik, I. Meilijson, and E. Ruppin. Synaptic pruning in

development: A computational account. Neural computation,

10(7):1759–1777, 1998. 1

[3] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.

Compressing neural networks with the hashing trick. In ICML,

pages 2285–2294, 2015. 3

[4] M. Denil, B. Shakibi, L. Dinh, and N. de Freitas. Predicting

parameters in deep learning. In NIPS, pages 2148–2156, 2013.

2

[5] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.

Exploiting linear structure within convolutional networks for

efficient evaluation. In NIPS, pages 1269–1277, 2014. 2, 3

[6] D. L. Donoho and Y. Tsaig. Fast solution of ℓ1-norm mini-

mization problems when the solution may be sparse. IEEE

Trans. Information Theory, 54(11):4789–4812, 2008. 4

[7] R. Girshick. Fast R-CNN. In ICCV, pages 1440–1448, 2015.

1

[8] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing

deep convolutional networks using vector quantization. In

arXiv preprint arXiv:1412.6115, pages 1–10, 2014. 3

[9] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quan-

tization and huffman coding. In ICLR, pages 1–14, 2016.

3

[10] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In NIPS, pages

1135–1143, 2015. 1, 2, 7

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 1, 2,

5, 7

[12] G. Hinton. Learning distributed representations of concepts.

In CogSci, pages 1–12, 1986. 6

[13] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors. In arXiv preprint

arXiv:1207.0580, pages 1–18, 2012. 2

[14] H. Hu, R. Peng, Y. W. Tai, and C. K. Tang. Network trimming:

A data-driven neuron pruning approach towards efficient deep

architectures. In arXiv preprint arXiv:1607.03250, pages 1–9,

2016. 2, 5, 7

[15] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. SqueezeNet: AlexNet-level accuracy

with 50× fewer parameters and <0.5 MB model size. In

arXiv preprint arXiv:1602.07360, pages 1–13, 2016. 7

[16] X. Jia, E. Gavves, B. Fernando, and T. Tuytelaars. Guiding the

long-short term memory model for image caption generation.

In ICCV, pages 2407–2415, 2015. 1

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Learning distributed

representations of concepts. In ACM MM, pages 675–678,

2014. 5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012. 1, 5

[19] V. Lebedev and V. Lempitsky. Fast convnets using group-wise

brain damage. In CVPR, pages 2554–2564, 2016. 2

[20] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain

damage. In NIPS, pages 598–605, 1990. 1

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient ConvNets. In ICLR, pages 1–13,

2017. 2, 5, 7

[22] M. Lin, Q. Chen, and S. Yan. Network in network. In arXiv

preprint arXiv:1312.4400, pages 1–10, 2013. 5

[23] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

transfer learning. In ICLR, pages 1–17, 2017. 2, 7

[24] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In ICCV, pages 1520–1528,

2015. 1

[25] A. Quattoni and A.Torralba. Recognizing indoor scenes. In

CVPR, pages 413–420, 2009. 8

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,

and F.-F. Li. ImageNet large scale visual recognition chal-

lenge. IJCV, 115(3):211–252, 2015. 5, 6

[27] R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,

and D. Batra. Grad-CAM: Visual explanations from deep

networks via gradient-based localization. In arXiv preprint

arXiv:1610.02391, pages 1–24, 2016. 2

[28] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, pages

1–14, 2015. 1, 2, 5, 6

[29] V. Sindhwani, T. Sainath, and S. Kumar. Structured trans-

forms for small-footprint deep learning. In NIPS, pages 3088–

3096, 2015. 3

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In CVPR, pages 1–9, 2015. 5

[31] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD birds-200-2011 dataset. Technical Report

CNS-TR-2011-001, California Institute of Technology, 2011.

5, 8

[32] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In NIPS, pages

2074–2082, 2016. 1, 2

[33] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

convolutional neural networks for mobile devices. In CVPR,

pages 4820–4828, 2016. 2, 3

[34] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.

Learning deep features for discriminative localization. In

NIPS, pages 2921–2929, 2016. 2, 5

5066

