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Macroblock Classification Method for Video
Applications Involving Motions
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Wei Li, and Bing Zhou

Abstract—In this paper, a macroblock classification method is
proposed for various video processing applications involving mo-
tions. Based on the analysis of the Motion Vector field in the com-
pressed video, we propose to classify Macroblocks of each video
frame into different classes and use this class information to de-
scribe the frame content. We demonstrate that this low-computa-
tion-complexity method can efficiently catch the characteristics of
the frame. Based on the proposed macroblock classification, we
further propose algorithms for different video processing appli-
cations, including shot change detection, motion discontinuity de-
tection, and outlier rejection for global motion estimation. Exper-
imental results demonstrate that the methods based on the pro-
posed approach can work effectively on these applications.

Index Terms—MB classification, motion information.

I. INTRODUCTION AND RELATED WORK

V IDEO processing techniques such as video compression
and video content analysis have been widely used in

various applications [1]–[17]. In many of these techniques
and applications, motion-based features play an important role
since they are closely related to the ‘dynamic’ nature of videos
[1]–[17].

There have been many researches which use the mo-
tion-based or motion-related features for video processing.
Efros et al. [4] and Chaudhry et al. [5] use optical flow to detect
human and recognize their activities in video. Lin et al. [6]
and Chen et al. [7] analyze the video contents by first tracking
and extracting the motions of objects and humans. However, in
many applications, video processing steps are often integrated
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with the video compression module, for example, analyzing
video contents for facilitating rate control [8], detecting gradual
shot changes for applying weighted motion prediction [9] for
improving video compression efficiency, segmenting irreg-
ular motion regions for improving global motion estimation
efficiency, and labeling shot change or motion discontinuity
places during video compression for further editing. Most of
these applications require the video processing algorithms to
have low complexity such that few computation overheads are
introduced to the computation-intensive video compression
module. From this point of view, many of the above mentioned
algorithms have high computation complexity and are not
suitable for these applications.

Furthermore, many works also extract motion features from
the Motion Vector (MV) information which is already avail-
able in many compressed-domain videos. Akutsu et al. [10] and
Shu et al. [11] detect the shot changes based on the informa-
tion of MV motion smoothness. However, their methods have
limitations in differentiating shot changes and motion disconti-
nuities. Porikli et al. [12] and Yoon et al. [13] utilize the com-
pressed-domain MV field for object segmentation or event de-
tection. Su et al. [14] utilize the MV field information to speed
up the global motion estimation. Although these methods can
create satisfying results, their complexities are still high when
integrated with the computation-intensive video compression
module. Furthermore, although some other MV-feature-based
methods are proposed which try to improve the video processing
performance with reduced complexity [15]–[17], most of their
motion features only focus on one specific application and are
often unsuitable when applied on other applications.

In this paper, a new Macroblock (MB) classification method
is proposed which can be used for various video processing ap-
plications. According to the analysis of the MV field, we first
classify the Macroblocks of each frame into different classes and
use this class information to describe the frame content. Based
on the proposed approach, we further propose algorithms for
various video processing applications including shot change de-
tection, motion discontinuity detection, and outlier rejection for
global motion estimation. Experimental results demonstrate that
algorithms based on the proposed approach can work efficiently
and perform better than many existing methods. Since the pro-
posed MB class information is extracted from the information
readily available in the Motion Estimation (ME) process [2],
[18] or from the compressed bit-stream, its computation over-
head is low. It can easily be implemented into most existing
video coding systems without extra cost.

The rest of the paper is organized as follows: Section II
describes our proposed MB classification method. Based on
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the proposed approach, Section III proposes three algorithms
for shot change detection, motion discontinuity detection, and
outlier rejection for global motion estimation applications,
respectively. The experimental results are given in Section IV.
Section V discusses some possible extensions, and Section VI
summarizes the paper.

II. MB CLASSIFICATION METHOD

In most practical applications, videos are processed and
stored in the compressed domain where ME is performed
during the compression process to remove the temporal redun-
dancy. Since ME is a process to match similar areas between
frames, much information related to frame content correlation
and object motion are already available from the ME process.
The compressed video provides the MV information which
can be directly extracted from the bitstream. Therefore, in this
section, we propose to use MV information to classify MBs.

Without loss of generality, the MB classification method can
be described in (1).

(1)

where is the current MB, is the initial
matching cost value calculated based on the motion informa-
tion of spatial or temporal neighboring MBs, is a threshold,

is the Predictive Motion Vector of the current
MB [18], is the final Motion Vector of
the co-located MB in the previous frame, and is another
threshold checking the closeness between and

. Using (1), MBs with small values
will be classified as Class 1. MBs will be classified as Class 3 if
their PMVs are close to the final MVs of their collocated MBs in
the previous frame. Otherwise, MBs will be classified into Class
2. The motivation of using (1) is that the variables involved are
all readily available from most of the ME processes.

The motivations of classifying MBs according to (1) can be
summarized as follows:

1) According to (1), MBs in Class 1 have two features: (a)
their MVs can be predicted accurately (i.e.,
is calculated based on the motion information of spatial
or temporal neighboring MBs). This means that the mo-
tion patterns of these MBs are regular (i.e., can be pre-
dicted) and smooth (i.e., coherent with the previous-frame
motions). (b) They have small matching cost values. This
means that these MBs can find good matches from the pre-
vious frames. Therefore, the Class 1 information can be
viewed as an indicator of the content correlation between
frames.

2) According to (1), Class 2 includes MBs whose motion
cannot be accurately predicted by their neighboring in-
formation and their previous motion information

. This means that the motion patterns of
these MBs are irregular and unsmooth from those of the

Fig. 1. (a, e) Original frames and the distributions of (b, f) Class 1, (c, g)
Class 2, and (d, h) Class 3 MBs for ������ ��� and 	
� ��� using Eqn. (1).

previous frames. Therefore, the Class 2 information can
be viewed as an indicator of the motion unsmoothness be-
tween frames.

3) According to (1), Class 3 includes MBs whose are
close to the and whose matching cost values are
large. Therefore, Class 3 MBs will include areas with com-
plex textures but similar motion patterns to the previous
frames.

Fig. 1 shows two example classification results for two
sequences using (1). The experimental setting is the same as
that described in Section IV. Fig. 1(a) and (e) are the original
frames. Blocks labeled gray in (b) and (f) are MBs belonging to
Class 1. Blocks labeled black in (c) and (g) and blocks labeled
white in (d) and (h) are MBs belonging to Class 2 and Class 3,
respectively.

Several observations can be drawn from Fig. 1 as follows:
From Fig. 1(b) and (f), we can see that most Class 1 MBs

include backgrounds or flat areas that can find good matches in
the previous frames. From Fig. 1(c) and (g), we can see that our
classification method can effectively detect irregular areas and
classify them into Class 2 (for example, the edge between the
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Fig. 2. (a) Original frames and the distributions of (b) Class 1, (c) Class 2, and
(d) Class 3 MBs for ������ ��� using (2).

calendar and the background as well as the bottom circling ball
in (c), and the running bus as well as the down-right logo in (g)).
From Fig. 1(d) and (h), we can see that most complex-texture
areas are classified as Class 3, such as the complex background
and calendar in (d) as well as the flower area in (h).

Since is only available in the ME process, (1)
is more suitable for applications where video coding and other
video processing are performed at the same time, such as global
motion estimation, rate control, computation control coding [8],
as well as labeling shot changes in the process of compressing
videos [2]. However, it should be noted that (1) is only an im-
plementation example of the proposed classification method.
The idea of the proposed MB classification is general and it
can be easily extended to other forms for different applications.
For example, for some compressed-domain video processing
applications (i.e. processing already-compressed videos where

is not readily available), (1) can be extended to (2):

(2)

where is the absolute sum of the decoded residual of
the current MB [19]. Fig. 2 shows the classification results using
(2) where and are set to be the same as in Fig. 1. We
can see from Fig. 2 that (2) can result in similar classification
results as (1). In the following, we will perform discussion and
experiments according to (1) in the rest of the paper.

With the proposed MB class information, we can develop
various algorithms for different applications. Since our pro-
posed method is directly defined based on the information
readily available from the ME process or from the compressed
video bitstream, it is with low computational complexity and
is applicable to various video applications, especially for those

Fig. 3. Example of an abrupt shot change.

Fig. 4. MB distributions at the abrupt shot change frame from 	
� ��� to
������ ��� . (a) Original frame. (b) Class 1. (c) Class 2. (d) Class 3.

with low-delay and low-cost requirements. In the following
section, we will propose algorithms for the three example appli-
cations: shot change detection, motion discontinuity detection,
and outlier rejection for global motion estimation.

III. USING THE MB CLASS INFORMATION

FOR VIDEO APPLICATIONS

A. Shot Change Detection

In this paper, we define a ‘shot’ as a segment of continuous
video frames captured by one camera action (i.e., a continuous
operation of one camera), and a ‘shot change’ as the boundary of
two shots [2]. Fig. 3 shows an example of an abrupt shot change.

From the discussions in the previous section, we can outline
the ideas of applying our approach to shot change detection as
follows:

Since shot changes (including abrupt, gradual, fade-in or
fade-out) [2] always happen between two uncorrelated video
shots, the content correlation between frames at shot changes
will be low. Therefore, we can use the information of Class
1 as the primary feature to detect shot changes. Furthermore,
since the motion pattern will also change at shot changes, the
information of Class 2 and Class 3 can be used as additional
features for shot change detection.

Fig. 4 shows an example of the effectiveness in using our
class information for shot change detection. More results will
be shown in the experimental results. Fig. 4(b)–(d) show the
MB distributions of three classes at the abrupt shot change from

to . We can see that the information of
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Class 1 can effectively indicate the low content correlation be-
tween frames at the shot change (i.e., no MB is classified as
Class 1 in Fig. 4(b)). Furthermore, a large number of MBs are
classified as Class 2. This indicates the rapid motion pattern
change at the shot change.

Based on the above discussions, we can propose a Class-
Based Shot Change detection (CB-Shot) algorithm. It is de-
scribed as in (3) (shown at the bottom of the page) where is
the frame number and is a flag indicating whether a
shot change happens at the current frame or not.
will equal to 1 if there is a shot change and will equal to 0 else.

is the number of intra-coded MBs at frame ,
is the number of intra-refresh MBs in the current frame

(i.e., forced intra-coding MBs [20]). ,
and are the total number of Class 1, Class 2 and
Class 3 MBs in the current frame , respectively. , , and

are the thresholds for deciding the shot change. In this paper,
are calculated by (4).

(4)

where is the total number of MBs of all classes in the
current frame.

It should be noted that in (3) the Class 1 information is the
main feature for detecting shot changes (i.e.,
and in (3)). The intuitive of using the Class 1
information as the major feature is that it is a good indicator of
the content correlation between frames. The Class 2 and Class
3 information is used to help detect frames at the beginning of
some gradual shot changes where a large change in motion pat-
tern has been detected but the number of Class 1 MBs has not
yet decreased to a small number. The intra-coded MB infor-
mation can help discard the possible false alarm shot changes
due to the MB misclassification. From, (3) and (4), we can also
see that when intra-refresh functionality is enabled (i.e., when

), our algorithm can be extended by simply ex-
cluding these intra-refreshed MBs and only performing shot
change detection based on the remaining MBs.

Furthermore, note that (3) is only one implementation of
using our class information for shot change detection. We can
easily extend (3) by using more sophisticated methods such
as cross-validation [6] to decide the threshold values in an
automatic way. Besides, other machine learning models can
also be used to decide the shot detection rules and to take the
place of the manually-set rules in (3). For example, we can train
a support vector machine (SVM) or a Hidden Markov Model
(HMM) based on our class information for detecting shot
changes [21], [22]. By this way, we can avoid the tediousness

Fig. 5. Example of motion discontinuity.

of manually tuning multiple thresholds simultaneously. This
point will be further discussed in the experimental results.

B. Motion Discontinuity Detection

We define motion discontinuity as the boundary between two
Smooth Camera Motions (SCMs), where SCM is a segment of
continuous video frames captured by one single motion of the
camera (such as zooming, panning, or tilting) [2], [11]. For ex-
ample, in Fig. 5, the first several frames are captured when the
camera has no or little motion. Therefore, they form the first
SCM (SCM1). The second several frames form another SCM
(SCM2) because they are captured by a single camera motion
of rapid rightward. Then, a Motion Discontinuity (MD) can be
defined between these two SCMs. It should be noted that the
major difference between shots and SCMs is that a shot is nor-
mally composed of multiple SCMs.

Basically, motion discontinuity can be viewed as motion un-
smoothness or the change of motion patterns. The detection of
motion discontinuity can be very useful in video content anal-
ysis or video coding performance improvement [9], [23]. Since
our class information, especially Class 2 information, can effi-
ciently reflect the irregular motion patterns, it can be easily used
for motion discontinuity detection.

The ideas of applying our MB class information into motion
discontinuity detection can be outlined as follows:

Since MD happens between different camera motions, the
motion smoothness will be disrupted at the places of MDs.
Therefore, we can use the Class 2 information as the primary
feature to detect MDs. Furthermore, since frames at MDs
belong to the same camera action (i.e., the same shot), their
content correlation will not decrease. Therefore, the informa-
tion of Class 1 can be used to differentiate shot changes from
MDs.

Fig. 6 shows an example of the effectiveness in using our class
information in MD detection. Fig. 6(b)–(d) show the MB dis-
tributions of a Motion Discontinuity frame in
when the camera starts to move rightward rapidly. The large
number of Class 2 MBs indicates the motion unsmoothness due
to the MD. Furthermore, the big number of Class 1 MBs indi-
cates the high content correlation between frames, which im-
plies that it is not a shot change.

(3)
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Fig. 6. MB distributions at a motion discontinuity frame in ������� �	
 .
(a) Original frame. (b) Class 1. (c) Class 2. (d) Class 3.

Therefore, we can propose a Class-Based Motion Disconti-
nuity Detection (CB-MD) algorithm. It is described as in (5):

(5)
where is an indicator. will equal to 1 if is true, and
0 if is false. (5) means that an will be detected only if
the number of Class 2 MBs is larger than a threshold for

consecutive frames. This is based on the assumption that an
obvious camera motion change will affect several frames rather
than one. By including the information of several frames, the
false alarm rate can be reduced. Furthermore, similar to shot
change detection, the decision rules in (5) can also be extended
to avoid the manual setting of thresholds.

C. Outlier Rejection for Global Motion Estimation

Global motion estimation is another useful application of our
class information. Since a video frame may often contain var-
ious objects with different motion patterns and directions, mo-
tion segmentation is needed to filter out these irregular motion
regions before estimating the global motion parameters of the
background. Since our class information can efficiently describe
the motion patterns of different MBs, it is very useful in filtering
out the irregular motion areas (outliers). For example, we can
simply filter out Class-2 or Class-2 Class-3 MBs and perform
global motion estimation based on the remaining MBs.

Based on the MB class information, the proposed global mo-
tion estimation algorithm can be described as follows:

Step 1: Use our class information to get a segmentation of the
irregular motion MBs, as shown in (6):

(6)

where and are the number of Class 2
and Class 3 MBs in , and is a threshold.

Step 2: Estimate the global motion parameters based on
the remaining background MVs. In this paper, we use the
6-parameter model as the global motion model, as described
in (7).

(7)

where is the 6-parameter

model. and represent the pixel’s original and
global-motion-compensated location, respectively. There
are many ways to estimate . In this paper, we use the
Least-Square method [17] which searches parameters in that
minimizes a given cost function (mean-square error), as in (8).

(8)

where and are the MV
terminate coordinates for pixel .

Fig. 7 shows some results of using our class information for
irregular motion region segmentation. From Fig. 7(a) and (b),
we can see that our class information can efficiently locate the
foreground object regions. However, from Fig. 7(c), we can also
see that our algorithm more focuses on detecting the “irregular
motion regions” instead of the foreground object. In Fig. 7(c),
since only the person’s left hand is moving while the other parts
of the person keep unchanged, only those blocks corresponding
to the left hand are identified as irregular motion regions.

Note that although our class information is focused on de-
tecting irregular motion regions in this paper, it can also be ex-
tended to detect real foreground objects by combining with tex-
ture information such as DC and AC coefficients [12].

IV. EXPERIMENTAL RESULTS

In this section, we perform experiments for the proposed
methods in Section III. The algorithms are implemented on
the H.264/MPEG-4 AVC reference software JM10.2 version
[20]. The picture resolutions for the sequences are CIF and
SIF. For each of the sequences, the picture coding structure
was IPPP . In the experiments, only the 16 16 partition
was used with one reference frame coding for the P frames.
The QP was set to be 28, the search range was 32 pixels,
and the frame rate was 30 frame/sec. The motion estimation is
based on our proposed Class-based Fast Termination method
[18]. Note that our MB classification method is general regard-
less of the ME algorithms used. It can easily be extended to
other ME algorithms [24], [25]. Furthermore, we disable the
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Fig. 7. Examples of using our class information for irregular motion region
segmentation for global motion estimation (Left column: original frames; right
column: segmented frames). (a) Dancer_cif. (b) Stefan_cif. (c) Silent_cif.

intra-refresh functionality [20] in the experiments in this paper
in order to focus on our class information. However, from our
experiments, the shot detection results will not differ by much
when intra-refresh is enabled.

A. Experimental Results for Shot Change Detection

We first perform experiments for shot change detection. Four
shot change detection algorithms are compared.

1) Detect shot changes based on the number of Intra MBs
[26], [27] (Intra-based in Table I). A shot change will be
detected if the number of Intra MBs in the current frame is
larger than a threshold.

2) Detect shot changes based on motion smoothness [10],
[11] (MV-Smooth-based in Table I). The motion smooth-
ness can be calculated by the Square of Motion Change
[11], as in (9):

(9)

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS IN DETECTING THE

SHOT CHANGES IN THE EXTENDED TRACVID DATASET

where is the value of the Square of Motion
Change at frame . and are the and
component of the motion vector for Macroblock of frame
, respectively. From (9), we can see that is just

the ‘sum of squared motion vector difference’ between
co-located MBs of neighboring frames. Based on (9), a
shot change can be detected if is larger than a
threshold at frame .

3) Detect shot changes based on the combined informa-
tion of Intra MB and motion smoothness [11] (

in Table I). In this method, the Intra-MB
information is included into the Square of Motion Change,
as in (10).

(10)

where is the Square of Motion
Change with Intra-MB information included.
is defined as (11) where is the MB number, is a
large fixed number. In the experiment of this paper,
we set to be 500. From (10) and (11), we can see
that the method is similar to
the MV-Smooth-based method except that when MB

is intra-coded, a large value will be used instead
of the squared motion vector difference. It should be
noted that when the number of intra MBs is low, the

method will be close to the
MV-Smooth-based method. If the number of intra MBs is
high, the method will be close
to the Intra-based method.

4) The proposed Class-Based shot change detection algo-
rithm which uses the Class 1 information as the major fea-
ture for detection, as in (3) (
in Table I).

It should be noted that we choose Method (I)-(III) as the refer-
ence algorithms to compare with our methods because they are
all computationally efficient methods (with the average opera-
tion time less than 5 ms). Thus, they are suitable for the appli-
cation of shot change detection for video coding. More compar-

(11)
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Fig. 8. Feature curves of a gradual shot change sequence.

TABLE II
PERFORMANCE COMPARISON BY USING DIFFERENT FEATURES

IN THE EXTENDED TRACVID DATASET WHEN SVN IS

USED FOR SHOT CHANGE DETECTION

isons with other methods will also be provided in the experiment
of Table II.

Fig. 8 shows the curves of features that are used in the above
algorithms. Since all the algorithms perform well in detecting
abrupt shot changes, we only show the curves of a gradual shot
change in Fig. 8.

Fig. 8(a) and (e) are the feature curves of a gradual shot
change sequence as in Fig. 9(a). In this sequence, the first 5
frames are , the last 5 frames are , and
the middle 20 frames are the period of the gradual shot change.
Fig. 8(a) is the ground-truth for the shot change sequence;
Fig. 8(b) shows the curve of the number of Intra MBs in each
frame; Fig. 8(c) shows the curve of ; Fig. 8(d) shows
the curve of ; and Fig. 8(e) shows the
curve of the number of Class 1 MBs in each frame. It should be
noted that we reverse the -axis of Fig. 8(e) so that the curve
has the same concave shape as others.

Fig. 8 shows the effectiveness of using our class information
for shot change detection. From Fig. 8(e), we can see that the
number of Class 1 MBs suddenly decreases to 0 when a shot
change happens and then quickly increases to a large number
right after the shot change period. Therefore, our proposed al-
gorithms can effectively detect the gradual shot changes based
on the Class 1 information. Compared to our class informa-
tion, the method based on the Intra MB number, and

have low effectiveness in detecting the

gradual shot changes. We can see from Fig. 8(b)–(d) that the
Intra MB number, and have
similar values for frames inside and outside the shot change pe-
riod. This makes them very difficult to differentiate the gradual-
shot-change frames. Fig. 8(c) shows that is the least
effective. This implies that only using motion smoothness in-
formation cannot work well in detecting shot changes. Our ex-
periments show that the effectiveness of will be fur-
ther reduced when both of the sub-sequences before and after
the shot change have similar patterns or low motions. In these
cases, the motion unsmoothness will not be so obvious at the
shot change.

Table I compares the rate, the False Alarm rate, and
the total error frame rate (TEFR) [6] for different algorithms in
detecting the shot changes in an extended TRECVID dataset.
The extended TRECVID dataset has totally 60 sequences
which include both the sequences from the public TRECVID
dataset [28], [29] and the sequences that we create. There are
totally 16 abrupt shot change sequences and 62 gradual shot
change sequences with different types (gradual transfer, fade-in
and fade-out) and with different length of shot-changing period
(e.g., 10 frames, 20 frames, and 30 frames). The example
sequences of the dataset are shown in Fig. 9. The rate
is defined by , where is the total number
of mis-detected shot change frames in sequence and is
the total number of shot change frames in sequence . The
False Alarm rate is defined by , where is the
total number of false alarmed frames in sequence and
is the total number of non-shot-change frames in sequence

. We calculate the rate and the False Alarm rate for
each sequence and average the rates. The Total Error Frame
Rate (TEFR) rate is defined by , where
is the total number of mis-detected shot change frames for
all sequences and is the total number of frames in the
dataset. The rate reflects the overall performance of the
algorithms in detecting all sequences.

In order to have a fair comparison, we also list the results of
only using Class 1 information for detection (i.e., detect a shot
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Fig. 9. Example sequences in the extended TRACVID dataset. (a) Example sequence that we created. (b) Example sequence from TRECVID dataset [28].

change frame if , Proposed-Class 1 only in
Table I). In the experiments of Table I, the thresholds for de-
tecting shot changes in Method (1) (Intra-based), Method (2)
(MV-Smooth-based) and Method (3)
are set to be 200, 2000 and 105000, respectively. These thresh-
olds are selected based on the experimental statistics.

From Table I, we can see that the performances of
our proposed algorithms (Proposed-Class 1 only and

) are better than the other
methods.

Furthermore, several other observations can be drawn from
Table I as follows:

1) Basically, our Class 1 information, the Intra MB informa-
tion [26], [27] and the residue information [30] can all be
viewed as the features to measure the content correlation
between frames. However, from Table I, we can see that the
performance of our Proposed-Class 1 only method is obvi-
ously better than the Intra-based method. This is because
the Class 1 information includes both the residue informa-
tion and the motion information. Only those MBs with both
regular motion patterns (i.e., MV close to PMV or (0,0)
MV) and low-matching-cost values are classified as Class
1. We believe that these MBs can reflect more efficiently
the nature of the content correlation between frames. In our
experiment, we found that there are a large portion of MBs
in the gradual-shot-change frames where neither intra nor
inter prediction can perform well. The inter/intra mode se-
lections for these MBs are quite random, which affects the
performance of the Intra-based method. Compared to the
Intra-based method, our algorithm can work well by simply
classifying these MBs outside Class 1 and discarding them
from the shot change detection process.

2) The performance of the
method can further improve the performance from the Pro-
posed-Class 1 only method. This implies that including
Class 2 and Class 3 can help detect those frames that cannot
be easily differentiated by only using the Class 1 informa-
tion at the boundary of the shot change period. Further-
more, the reduced FA rate of the

method also implies that including the intra-coded
MB information can help discard false alarm frames due to
MB misclassification.

For further demonstrating the effectiveness of our class infor-
mation, we conduct another experiment by utilizing the linear
support vector machine (linear SVM) [22] for shot change de-
tection (i.e., extracting features for each frame and then using

TABLE III
COMPARISON OF GLOBAL-MOTION-COMPENSATED MSE

RESULTS FOR DIFFERENT GME METHODS

SVM to detect shot changes). As mentioned, the advantage for
using SVM is that the decision rules can be automatically ob-
tained from the training process instead of using the manually
set rules in (3) [21]. In this experiment, we compare our class in-
formation with three recently proposed features for shot change
detection. They are as follows:

1) Inter prediction mode information [21]. (
in Table II)

2) Local indicators [16] ( in Table II)
3) Color feature and reliable MV proportions [31] (

in Table II)
4) Our proposed class information and Intra information

( in Table II)
Note that in order to have a fair comparison, only the features

are borrowed from the reference works [16], [21], [31] while all
the decision rules are obtained by training the SVM. The shot
change detection results and the average operation time (AOT,
the average operation time for performing shot change detection
on each frame) is shown in Table II.

Several observations can be obtained from Table II: (a) Com-
paring Table II with Table III, we can see that the performance of
our class information
is improved. It demonstrates that SVM can achieve more so-
phisticated decision rules than our manually set rules in
(3). (b) Using inter prediction mode information only (i.e.,

) have less satisfactory results since
they do not include MV information. Similarly, although
local indicator features can effec-
tively detect abrupt changes, they are less effective in gradual
shot changes due to the lack of MV information. Compared
to these two methods, the reliable MV proportion method

as well as our proposed class
information can achieve better
shot detection results. (c) Although the reliable MV propor-
tion method has the best performance, its complexity is high.
Compared to this, our proposed class information can achieve
similar performance while with obviously low complexities.
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Fig. 10. Feature curves for the MD detection in ������ ��� .

B. Experimental Results for Motion Discontinuity Detection

In this section, we perform experiments for MD detection.
The following four methods are compared. Method (1)–(3) are
the same as the previous section.

1) Detect MD based on the number of Intra MBs
(Intra-based).

2) Detect MD based on motion smoothness (MV-Smooth-
based).

3) Detect MD based on the combined information of Intra MB
and motion smoothness .

4) Our proposed MD detection algorithm as in (5) (Proposed).
Fig. 10 shows the curves of features that are used in the above

algorithms for sequence. Fig. 10(a) shows the
ground truth segment of Smooth Camera Motions. In Fig. 10(a),
the segments valued 0 represent SCMs with low or no camera
motion and the segments with value 1 represent SCMs with
high or active camera motion. For example, the segment be-
tween frame 177 and 199 represents an SCM where there is a
rapid rightward of the camera; and the segment between frame
286 and 300 represents an SCM of a quick zoom-in of the
camera. The frames between SCMs are the Motion Discon-
tinuity frames that we want to detect. The ground truth MD
frames are labeled as the vertical dashed lines in Fig. 10(b)–(e).
It should be noted that most MDs in Fig. 10 include several
frames instead of only one. Fig. 10(b)–(e) show the curves of
the number of Intra MBs, , ,
and the number of Class 2 MBs, respectively.

Several observations can be drawn from Fig. 10(b)–(e) as
follows:

1) Our Class 2 information is more effective in detecting the
MDs. For example, in Fig. 10(e), we can see that our Class
2 information has strong response when the first three MDs
happen. Comparatively, the other features in –(d) have low
or no response. This implies that Method (I)–(III) will
easily miss these MDs.

2) Our Class 2 information has quicker and sharper response
to MDs. For example, the value of our Class 2 information
increases quickly at the places of the fourth (around frame

175) and sixth (around frame 220) MDs, while the other
features response much slower or more gradual.

3) Fig. 10 also demonstrates that our Class 2 information is a
better measure of the motion unsmoothness. Actually the
largest camera motion in takes place in the
segment between frame 222 and frame 278. However, we
can see from Fig. 10(e) that the values of the Class 2 in-
formation are not the largest in this period. This is because
although the camera motion is large, the motion pattern is
pretty smooth during the period. Therefore, a big number
of MBs will have regular and predictable motions and will
not be classified as Class 2. In most cases, our Class 2 in-
formation will have the largest responses when the motion
pattern changes or the motion smoothness disrupts. Com-
pared to our Class 2 information, other features are more
sensitive to the ‘motion strength’ rather than the ‘motion
unsmoothness’. Furthermore, although can also be
viewed as a measure of the motion smoothness, we can see
from Fig. 10 that our Class 2 information is obviously a
better measure for motion unsmoothness.

Fig. 11(b) shows the MD detection result of the proposed
method based on the Class 2 information in Fig. 10(e), where ,

and in (5) are set to be 4, 50 and 100, respectively.
From Fig. 11, we can see that: (a) the proposed method can
detect most MDs except the one at frame 200. The frame-200
MD is missed because we use a large window size of 5 frames
(i.e., in (5)). This MD can also be detected if we se-
lect a smaller window size. (b) Since the proposed method de-
tects MDs based on the information of several frames, some
delay may be introduced. We can see that the MDs detected in
Fig. 11(b) have a delay of a couple of frames from the ground
truth in Fig. 11(a). (c) There are also some false alarms such
as the period between frame 180 and 190. This is because the
camera motions in these periods are too rapid. In these cases, the
motion prediction accuracy will be decreased and some irregular
global motions will be included. These factors will prevent the
number of Class 2 MBs from decreasing after the MD finish. In
these cases, some post-processing steps may be needed to dis-
card these false alarms.
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Fig. 11. Detection result of the proposed algorithm in ������ ��� .

Fig. 12. Feature curves for the MD detection in �	�
����� ��� .

As another example, Fig. 12 shows the feature curves for
the sequence, respectively. In this sequence,
there are four obvious MDs: the first two belongs to a rapid
upward of the camera and the second two belong to the small
shakes of the camera. From Fig. 12, we can further see the ef-
fectiveness of our MB class information: our Class 2 informa-
tion can effectively detect the two camera-shake MDs while the
other methods will easily miss them. This is because when the
magnitude of camera shake is small, the MV difference between
frames will also be small, thus resulting in a small SMC. Fur-
thermore, since the motion compensation still perform well in
case of small camera shakes, the number of Intra MBs will also
change little. However, our Class 2 information will effectively
respond to these small camera shakes by classifying a large
number of motion-unpredictable MBs into Class 2.

C. Experimental Results for Global Motion Estimation

We compare the following four GME algorithms. For all of
the methods, we use the same 6-parameter model for estimating
the global motions, as in (7)

1) Do not discard the foreground MBs and directly use the
Lease-Square method [17] to estimate the global model
parameters (LS-6)

TABLE IV
COMPARISON OF AVERAGE MSE AND AVERAGE OPERATION TIME FOR

DIFFERENT GME METHODS (NOTE: THE OPERATION TIME FOR THE

OBJECT SEGMENTATION PART FOR P-SEG IS TAKEN FROM [12])

2) Use the MPEG-4 VM global motion estimation method
[32] (MPEG-4)

3) Use the method in [17] for global motion estimation. In
[17], an MV histogram is constructed for parameter esti-
mation to speed up the global motion estimation process
(MSU)

4) Use the method in [12] to segment and discard foreground
MBs and perform GME on the background MBs (P-Seg)

5) Use our MB class information to segment and discard fore-
ground MBs and perform GME on the background MBs,
as described in Section III-C (Proposed)

Table III compares the Mean Square Error (MSE) of the
global motion compensated results of the five algorithms. Nor-
mally, a small MSE value can be expected if the global motion
parameter is precisely estimated. Table IV compares the average
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Fig. 13. Subjective global-motion-compensated results of the four methods for
������ ��� . (a) LS-6. (b) MPEG-4. (c) MSU. (d) P-Seg. (e) Proposed.

MSE and the average operation time for different methods.
Furthermore, Fig. 13 also show the subjective global-motion-
compensated results for the five methods.

Some observations can be drawn from Tables III and IV and
Fig. 13 as follows:

a) Since the LS-6 method does not differentiate foreground
and background, it cannot estimate the global motion of
the background precisely. We can see from Table III that
the LS-6 method has larger MSE values. Furthermore,
Fig. 13(a) also shows that there are obvious background
textures in the compensated frame.

b) Compared to the LS-6 method, the other four methods
will segment and discard the foreground MBs before es-
timating the global motion for the background. We can
see that our proposed method can achieve similar perfor-
mance to the MEPG-4 and MSU methods.

c) Since the MEPG-4 algorithm uses a three-layer method
to find the outlier (foreground) pixels, its computation
complexity is high. Although the MSU and the P-Seg
algorithms reduce the complexity by constructing his-
tograms or performing volume growth for estimating
the foreground area, they still requires several steps of
extra computations for estimating the global parameters.
Compared with these two methods, our proposed method
segments the foreground based on the readily available
class information, the extra computation complexity is
obviously minimum. Note that this operation time re-
duction will become very obvious and important when
the GME algorithms are integrated with the computa-
tion-intensive video compression module for real-time
applications.

d) Although P-Seg can create good object segmentation re-
sults, its GME performance is not as good as our method.
This is because our proposed algorithm focuses on de-
tecting and filtering the “irregular motion” blocks while
P-Seg more focuses on segmenting a complete object. By
using our algorithm, blocks which do not belong to the
foreground but have irregular motions will also be filtered

from the GME process. This further improves the GME
performance.

V. DISCUSSION AND ALGORITHM EXTENSION

In this section, we discuss some additional advantages and
possible extensions of the algorithm. They are described in the
following.

1) It should be noted that we only discuss some example
applications of our MB class information in this paper.
We believe that our proposed class information can be
used in many other video processing applications. For ex-
ample, the MB class information can be used for rate con-
trol where the total number of MBs in each class can be
used for frame-level bit allocation and the class label of
each MB can be used for MB-level bit allocation. Similarly,
we can also use the proposed MB class information for
computation control motion estimation or rate control [8].

2) As mentioned, the idea of our MB class information is gen-
eral and it can be easily extended in different ways. For ex-
ample, we can define more classes instead of three to have
a more precise description of the frame content. We can
also extend our MB class information to multiple partition
sizes or multiple reference frame cases [1].

VI. SUMMARY

In this paper, a new MB class information is proposed for
various video processing applications. We first propose to clas-
sify Macroblocks of each frame into different classes and use
this class information to describe the frame content. Based on
the proposed method, we further propose several algorithms for
various video processing applications including shot change de-
tection, motion discontinuity detection and global motion esti-
mation. Experimental results demonstrate that methods based
on the proposed class information can work efficiently and per-
form better than many of the existing methods.
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