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Multiscale Semilocal Interpolation With Antialiasing
Kai Guo, Xiaokang Yang, Senior Member, IEEE, Hongyuan Zha, Weiyao Lin, and Songyu Yu

Abstract—Aliasing is a common artifact in low-resolution (LR)
images generated by a downsampling process. Recovering the
original high-resolution image from its LR counterpart while at
the same time removing the aliasing artifacts is a challenging
image interpolation problem. Since a natural image normally
contains redundant similar patches, the values of missing pixels
can be available at texture-relevant LR pixels. Based on this, we
propose an iterative multiscale semilocal interpolation method
that can effectively address the aliasing problem. The proposed
method estimates each missing pixel from a set of texture-relevant
semilocal LR pixels with the texture similarity iteratively mea-
sured from a sequence of patches of varying sizes. Specifically, in
each iteration, top texture-relevant LR pixels are used to construct
a data fidelity term in a maximum a posteriori estimation, and a
bilateral total variation is used as the regularization term. Ex-
perimental results compared with existing interpolation methods
demonstrate that our method can not only substantially alleviate
the aliasing problem but also produce better results across a
wide range of scenes both in terms of quantitative evaluation and
subjective visual quality.

Index Terms—Antialiasing, image interpolation, iterative multi-
scale, semilocal.

I. INTRODUCTION

I MAGE INTERPOLATION addresses the problem of ob-
taining a high-resolution (HR) image from its low-resolu-

tion (LR) counterpart. It is fundamental to many real-world ap-
plications, such as biometrics, surveillance, and security, where
the resolution of the captured images tend to be very low and
the apparent aliasing effects often appear due to the limited
number of charge-coupled-device pixels used in commercial
digital cameras. Based on the Nyquist–Shannon sampling the-
orem [1], [2], if the sampling frequency is smaller than twice
the maximum frequency of HR image, all the image informa-
tion above half the sampling frequency are removed. Then, the
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Fig. 1. Comparison of different methods on the image “Sail” [5]. (a) Observed
LR image. (b) Bicubic interpolation. (c) NEDI method [6]. (d) Method in [7].
(e) SAI method [8]. (f) Our method. (g) Ground-truth HR image.

LR image is corrupted by aliasing [3] (such as the mast and jib
occurred in the image “Sail” in [see Fig. 1(a)].

Commonly used linear interpolation methods such as the
bicubic method [4] perform interpolation based on the homoge-
neous assumption and are therefore not capable of adapting to
various image structures, often producing blurred edges. This
motivates many scene-adaptive image interpolation methods
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that try to explore dominant image structures and edge informa-
tion of the LR image. Here, we mention a few examples: Jensen
and Anastassiou [9] directly estimated the edge orientation to
regularize the interpolated image pixels. Li and Orchard [6]
assumed the geometric duality between the LR and HR images
and used it to guide the interpolation of missing pixels from a
weighted combination of neighboring pixels of the LR image.
Zhang and Wu [7] proposed to interpolate the missing pixels
along multiple directions first and then fuse them by minimizing
mean square error. Zhang and Wu [8] estimated the missing
pixels using a 2-D piecewise autoregressive model, which is
adaptively learned from the local neighborhood of the LR
image. Generally, those edge-directed methods can work well
when the edge information of LR image is correctly estimated.
However, for observed LR image with aliasing artifacts, these
methods cannot recover ground-truth content well [such as the
mast and jib occurred in the image “Sail” in Fig. 1(b)–(e)], and
may often interpolate overfitting artifacts, particularly at fine
textures. Furthermore, other researchers tried to perform image
superresolution using training database of LR and HR patch
pairs [10]–[12]. However, since these methods are based on an
ideal assumption that there are almost no aliasing artifacts in LR
images, they still cannot efficiently handle aliasing problems.

Natural images often contain various redundant similar
patches, even within a single image; thus, intuitively, patches
of corrupted observed images can be restored from a set of
similar candidates. This observation has been widely adopted
in some applications such as image restoration and denoising
[13]–[16]. For example, the nonlocal mean method adaptively
estimates image pixel values using the weighted average of the
pixel values whose centered regions are similar to the region
centered by the pixel being estimated [17]. Inspired by nonlocal
means, improvements also consider iteratively increasing the
neighborhood size [18] and using varying neighborhood sizes
[19] for denoising. The success of those methods very much
depend on the observation that there exist redundant similar
patches within a single image.

The focus of this paper is to develop image interpolation
methods that can effectively address the aliasing problem. Since
a natural image normally contains redundant similar patches,
the values of missing pixels can be available at texture-rele-
vant LR pixels. Based on this basic idea, we propose to recover
each missing pixel with antialiasing from a set of texture-rele-
vant LR pixels within its neighborhood, whose pixel-centered
patches are similar to the corresponding patch centered by the
missing pixel. Compared with the nonlocal idea, finding the
similar patches within a neighborhood substantially reduces the
computational complexity [17], and this type of methods are
generally known as semilocal methods [20].

Specifically, we propose an iterative multiscale interpolation
method to estimate each missing pixel from a set of texture-rel-
evant semilocal LR pixels, where the texture similarity is mea-
sured from large to small patch sizes iteratively. The similarity
measurement with large patch sizes can alleviate the influence
of aliasing artifacts of the LR image, whereas the measurement
with small patch sizes can avoid overfitting effects for fine and
dense textures. To further enhance performance, the outputs of
all previous iterations are grouped together as inputs for the

Fig. 2. Generation of an LR image from an HR image by downsampling. (Solid
dots) LR image pixels � and (circles) missing HR pixels �.

next smaller scale interpolation: This can not only inherit the
advantages of using large-scale patches but also filter out in-
accurate results of previous outputs and gradually recover the
finer details. In each iteration, top texture-relevant semilocal LR
pixels are selected to construct a data fidelity term in a max-
imum a posteriori (MAP) estimation, and a bilateral total vari-
ation (TV) [21] is used as the regularization term. Experimental
results compared with existing interpolation methods verify that
our method can alleviate aliasing artifacts substantially, and at
the same time, it also outperforms other methods both in terms
of quantitative evaluation and subjective visual quality across a
wide range of images.

The rest of this paper is organized as follows: Section II
introduces the basic idea for antialiasing. Section III presents
the semilocal interpolation method in single scale and single
iteration. Section IV describes proposed iterative multiscale
semilocal interpolation method. Section V describes the ex-
perimental results and comparisons with existing methods.
Conclusions are drawn in Section VI.

II. BASIC IDEA FOR ANTIALIASING

There are many downsampling processes that can potentially
generate an observed LR image [22]–[24]. In this paper, to focus
on the aliasing problem, we assume that the LR image is gener-
ated by direct downsampling from the ground-truth HR image.1

LR image is assumed to be directly downsampled from
ground-truth HR image , as illustrated in Fig. 2. Let
and be the pixels of image and the missing pixels
in image that need to be interpolated, respectively. Let
represent the missing area.

After downsampling, aliasing artifacts appear in the area of
high frequencies, where the content and edges are distorted
compared with the ground truth, as shown in Fig. 3(a). Since
a natural image normally contains redundant similar patches,
the values of missing pixels can be available at texture-relevant
LR pixels. As shown in Fig. 3(b), the value of missing pixel
is available at LR pixel , where the patch centered by is
texture relevant, with the patch centered by . Based on this,
we can try to interpolate the missing pixels with antialiasing
from a set of texture-relevant semilocal LR pixels. That is, we
try to recover each missing pixel based on a set of LR pixels

, where the textures of the neighborhood patches centered
by are similar or relevant to that of the neighborhood patch
centered by .

1As will be demonstrated later in the experimental part, our proposed algo-
rithm, to some extent, can be also applied to some real-world LR images gener-
ated with more complicated downsampling process.
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Fig. 3. Illustration of the idea for antialiasing. (Solid dots) Pixels of the ob-
served LR image and (solid square) the pixel-centered patch. (a) Observed LR
image with aliasing. (b) Ground-truth HR image. The value of missing pixel �
is available at LR pixel � , where � is texture relevant with � . (c) Bicubic
interpolation with aliasing artifacts. The interpolated value at pixel � greatly
differs from the ground truth, but we can still find LR pixel � as the texture-rel-
evant pixel for � through pixel-centered patch matching.

Since all pixels are missing, initial interpolation is
needed to start this process. Under the ideal but unrealistic
assumption that is the same as ground truth , each missing
pixel can be filled by its most similar LR pixel . However,
obtaining very accurate initial interpolation from scratch is
difficult. Instead, we use bicubic interpolation as initial in-
terpolation because it can recover the missing area of low
frequencies well [4]. Unfortunately, the aliasing artifacts oc-
curred in the area of high frequencies still remain. As illustrated
in Fig. 3(c), the interpolated value at pixel greatly differs
from the ground truth.

To jointly tackle the aliasing problem and the inaccuracy
of initial interpolation , we propose an iterative multiscale
semilocal interpolation method that explores texture-relevant
semilocal LR pixels in an iterative multiscale way. This method
has two main ideas:

• Pixel-centered patch matching. For each missing pixel,
neighboring pixels within a patch centered by the cur-
rent missing pixel can be used as the reference to find
texture-relevant LR pixels. Since most natural images
have an exponentially decaying power spectrum [25],
the aliasing artifacts only appear in a small proportion of
pixels in high-frequency areas. Additionally, most image
pixels in low-frequency areas can be interpolated well
through initial bicubic interpolation. With the appropriate
patch size, the neighboring low-frequency pixels can
overcome the influence of aliasing artifacts when finding
texture-relevant LR pixels. As an intuitive illustration in
Fig. 3(c), the ground-truth value at pixel can be found
from pixel , where the texture relevance is measured
using a pixel-centered patch.

• Iterative multiscale interpolation. From the antialiasing
standpoint, it is desirable to prefer larger patch sizes so

that more neighboring pixels can be used as the reference
to find texture-relevant LR pixels. On the other hand, fine
textures in a natural image require smaller patch sizes to
avoid mismatching. However, it is difficult to determine
the suitable patch size from the observed LR image with
aliasing. Hence, an iterative multiscale interpolation pro-
cedure is proposed to integrate advantages from both the
large- and small-scale patch matching.

III. SEMILOCAL INTERPOLATION IN SINGLE SCALE AND

SINGLE ITERATION

Based on the observation that natural image has redundant
similar patches and the analysis of antialiasing in Section II,
we propose an iterative multiscale semilocal interpolation pro-
cedure for antialiasing and recovering high-quality HR image.
Here, we will introduce semilocal interpolation of only a single
iteration and a single patch scale. In the following, we will first
describe the way to measure patch similarity, followed by the
MAP estimation for missing pixel value calculation.

A. Measuring of Patch Similarity

As mentioned, the aliasing artifacts still remain in the ini-
tially interpolated HR image . Our task is to find reliable tex-
ture-relevant LR pixels for each missing pixel by pixel-cen-
tered patch matching on the HR grid. In this paper, in order to
decrease the influence of initially inaccurate interpolation, we
extend the distance and propose a masked distance. In the
masked distance, we introduce mask and only calculate the

distance between the LR pixels in patch and the corre-
sponding pixels in patch (as shown in Fig. 4), where
represents pixel-centered patch operator on the HR grid. Mask

is determined by patch and defined as follows:

otherwise
(1)

where index represents the pixel position in mask . If the
pixel in patch belongs to the observed LR image , the
value of mask at this position is set as 1. Otherwise, the
corresponding value of is set as 0. After applying mask ,
and together with the Gaussian weighting, the weight value of
semilocal neighboring LR pixel for the missing pixel is
calculated as follows:

(2)

where operates the element-by-element product. is a
Gaussian kernel with standard deviation . is the standard
deviation of . allows one to restrict the search
space of texture-relevant LR pixels for each missing pixel

. can be as large as the whole image; this will find
all possible appropriate LR pixels. In practice, in view of
time complexity, we restrict the search space in the semilocal
neighborhood. Based on the experimental results, we set the
search window size as 17 17 that measured on the HR grid.

Standard deviation takes into account the distance be-
tween the central pixel and other pixels within a patch when
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Fig. 4. Illustration of the similarity measurement between missing pixel
� -centered patch and LR pixel � -centered patch. (Solid square) The
pixel-centered patch and (dot circle) the valid pixel to measure patch similarity.

performing patch matching. In this paper, we set as the linear
function of the patch size. Basically, the spatially closer pixels
are more dependent, and the pixels closer to the center pixel
should have larger weights. In addition, as subsequently de-
scribed, we will calculate masked distance with multiscale
patch sizes. In order to give full play of the multiscale, we set
as the linear function of the patch size. Assume that the patch
size is , and is set as based on the experimental
results.

Standard deviation refines the influence of masked dis-
tance on final weight . In our algorithm, is set to be adaptive
with patch size . For each missing pixel , works as
a soft Gaussian threshold to distinguish the texture-relevant LR
pixels from all the neighboring LR pixels. Normally, the ini-
tially interpolated values of missing pixels are inaccurate and
will bring the disturbance into the calculation of the masked
distance. For the sake of analysis, we assume the difference be-
tween the initially interpolated value of and the ground-truth
one to obey a Gaussian distribution with the mean zero and
standard variance . Then, the masked distance between
two similar patches and obeys a noncentral chi-
square distribution with mean , where is
the ground-truth distance between and , and is a
constant value. In addition, as the patch size increases, the patch
similarities within a local area will decrease, and between
similar patches will increase. Based on the above analysis,
can be set as the linear function of . In this paper, based on
the experimental results, is set as .

From (2), we can see that masked patch is used
as the standard patch, independent of the initial interpolation.
All interpolated semilocal masked patches are com-
pared with the standard patch. As described later in our mul-
tiscale procedure, to incorporate the advantages of both large-
and small-scale semilocal interpolation, we group the outputs
of all previous iterations together as inputs for the next smaller
scale iteration. The interpolated values of missing pixels among
the inputs are different. Masked patch contains only
LR pixels and is constant; hence, can be used as the
standard patch to compare with all neighboring masked patches

, no matter which input they are from.

B. MAP Estimation

After the patch similarity is calculated, pixels
with the largest weights will be selected as the

texture-relevant candidates for interpolating missing pixel .
In the following, we will first describe two different terms for
interpolating and then describe the combination of these two
terms in a MAP framework for a final interpolating in a single
iteration.

1) Data Fidelity Term: As mentioned, we select top
pixels as the texture-relevant candidates for
missing pixel and expect that the pixel value of can agree
with selected candidates . In general, this process can be
modeled as the data fidelity term used in the MAP estimation,
defined as

(3)

where is the normalized weight of candidate and the cal-
culation is . Note that the error norm is
critical for final solution. For example, the norm will lead
the reconstructed pixel value toward the median of candidate
pixels, and it is verified to be robust with respect to outliers
and noise [21]. In our paper, pixels do
not exactly have the same value with the ground truth of
and always slightly fluctuate around the ground truth. There-
fore, the norm is adopted to lead to the mean value of

. defines the number of texture-relevant
candidates for each missing pixel in the data fidelity term. To
achieve the smoothness of fluctuations, cannot be small. On
the other hand, the number of similar fragments is limited within
the semilocal neighborhood; thus, cannot be large. Based on
the experimental results, we set as 8 in this paper.

2) Regularization Term: Given an inaccurate initial input,
texture-relevant LR pixels for all missing pixels do not always
exist. If the candidate values for one missing pixel fluctuate
too much, the data fidelity term at this position is not credible.
Therefore, it is desirable to adopt a regularization or prior term
that worked on a local neighborhood to help this pixel toward
stable solution. In addition, we also want to keep the sharp edges
through the regularization term.

In order to meet with these properties, we employ the bilateral
TV [21] as the regularization term. The gradient of bilateral TV
works as a weighted median filter. This can not only preserve
sharp edges but also alleviate unwanted artifacts. The regular-
ization term is represented as

(4)
where and matrices and shift by
and pixels in horizontal and vertical directions, respectively.
Operator extract the pixel value at original position from
shifted image . Coefficient is the spa-
tially decaying factor. For pixel , the bilateral TV term is actu-
ally the weighted sum of absolute difference between and its
local neighboring pixels. The gradient of bilateral TV works as
a weighted median filter. determines the local working area
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size of the bilateral TV regularization, and the size of its local
working area is . cannot be large, oth-
erwise the median filter will remove the fine textures. We set
as 2 in this paper so that it can achieve the ideal results.

3) MAP Estimation Combining Both Terms: After rewriting
the data fidelity and regularization term into a matrix form,
we can reconstruct the HR image by minimizing the following
energy:

(5)

where and are the matrix form of the th candidates for
missing pixels and their corresponding normalized weights,
respectively. Operator is the element-by-element product of
two matrices. is the tradeoff parameter to tune the ratio of
the data fidelity term and the regularization term. The bilateral
TV term serves as supplements to the data fidelity term, such as
sharpening edges and leading the unexpected pixel value toward
stable solution. It cannot be given a large weight, otherwise it
will remove the fine details within its local working area

. Based on the experimental results, we set as
0.002 in this paper. We use gradient descent to carry out the
optimization, and the desired interpolated HR image is updated
as

(6)

where is the mask that sets the energy to zero for noninter-
polated pixels. If the pixel belongs to the observed LR image ,
the value of mask at the corresponding position is set as 0.
Otherwise, the value of mask at the corresponding position is
set as 1. controls the step size in the direction of the gradient.

is the identity matrix. and transpose and shift in the
opposite direction as matrices and , respectively.

IV. ITERATIVE MULTI-SCALE SEMI-LOCAL INTERPOLATION

From the antialiasing standpoint, it is desirable to prefer
larger patch sizes so as to find more reliable LR pixels. The
larger the patch size, the more neighboring pixels are used as the
reference to find ground-truth texture-relevant LR pixels and
further alleviate the influence of aliasing artifacts. On the other
hand, the fine textures in the natural image require smaller patch
sizes to recover vivid dense details. Otherwise, the pectination

artifacts will appear caused by patch mismatching. However,
it is difficult to determine the suitable patch size based on the
observed LR image with aliasing. In this paper, considering
these two opposite items, we propose an iterative multiscale
interpolation procedure that repeat the semilocal interpolation
from large to small patch size iteratively.

Algorithm 1 Iterative Multiscale Semilocal Interpolation

Input LR image .

Initialize semilocal neighborhood radius ; maximum
and minimum patch sizes and ,
respectively; and total iteration number ,

for iteration to do

if , then

Initial bicubic interpolation .

Set the patch size to .

else

Group and outputs of previous iterations
as inputs of current iteration.

Set the patch size to .

end if

Calculate the weights of semilocal LR pixels from
all inputs for each missing pixel (Equation (2)):

.

Select top texture-relevant LR pixels that are located
at different positions of the LR image.

Obtain HR image through MAP estimation (5).

end for

Output final HR image .

In this procedure, the semilocal interpolation is repeated from
large to small patch sizes iteratively. It should be noted that the
outputs of all previous iterations are grouped together as inputs
for the next smaller scale iteration, which is different from tradi-
tional iterative procedure. In each iteration, given the patch size
and inputs that covered the outputs of all previous iterations,
each interpolated semilocal masked patch centered
by LR pixel , no matter which input they are from, is com-
pared with missing pixel centered masked patch .
As mentioned, contains the LR pixels only and is
constant, it works as a standard to measure the texture relevance
of neighboring LR pixels from all the inputs. Furthermore, the
most texture-relevant LR pixels located at different positions of
the LR image are selected. Meanwhile, the irrelevant ones are
filtered out. Then, the MAP estimation, as mentioned, is used to
recover the HR image of current iteration. As iteration increases,
the number of inputs will increase. However, the patch size that
measures the texture relevance will decrease. This can not only
guarantee that the robustness of antialiasing from large-scale



620 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 2, FEBRUARY 2012

Fig. 5. Block diagram of iterative multiscale semilocal interpolation. (a) Ini-
tialization. (b) Iteration �.

semilocal interpolation is inherited but also gradually recover
the dense and fine textures.

The whole process of the proposed method is described in
Fig. 5 and Algorithm 1. More specifically, in the first iteration,
bicubic interpolation is used as the input . Then, the semilocal
interpolation is executed with maximum patch size
to overcome the aliasing artifacts of , and the output is repre-
sented as . In the second iteration, and are used as inputs,
and the same semilocal interpolation is executed with patch size

. In the following iterations, the in-
puts include the outputs of all previous iterations and , and
the patch size gradually decreases. In final iteration , the top
texture-relevant LR pixels measured with patch size
are selected from inputs , and output

is regraded as the final recovered HR image.
In our multiscale procedure, defines the max-

imum patch size. As mentioned, from the antialiasing stand-
point, it is desirable to prefer larger patch sizes so as to alleviate
the influence of aliasing more. On the other hand, as the patch
size increases, the chance to find exactly the same patches within
a semilocal neighborhood will decrease. Considering these two
aspects and the time complexity, we set the maximum patch size
as 16 16. Additionally, it is difficult to determine the exact
patch size for each missing pixel to achieve a good tradeoff
between alleviating the influence of aliasing and guaranteeing
the existence of similar patches within the semilocal neighbor-
hood. Therefore, in our multiscale procedure, we perform the
semilocal interpolation at each scale between the maximum and
minimum patch sizes. defines the minimum patch
size in our multiscale procedure. Given patch size , the
number of valid pixels for patch matching is between

and . To avoid the loss of patch rep-
resentation ability in the minimum scale, we set the minimum
patch size as 6 6. Then, the total number of iterations in our
algorithm is 11.

In order to give an intuitive impress about the necessity of
adopting multiscale procedure, we set up an experiment on an
LR image that is downsampled with factor 2 from the image
“Butterfly” of Berkeley Segmentation Database (BSD) [5]. In
the experiment, we perform both our multiscale algorithm and
our algorithm with only one iteration at patch size 7 7. The
experimental results are shown in Fig. 6. We can see that the
semilocal interpolation with only one iteration at medium patch
size can only recover sharper edges than bicubic interpolation,
but it does not alleviate aliasing. On the other hand, the multi-
scale interpolation can recover the ground truth well from the

Fig. 6. Simulation results of different methods on the image “Butterfly.”
(a) Bicubic interpolation. (b) Our method with only one iteration at patch size
7 � 7. (c) Our multiscale method. (d) Ground-truth HR image.

Fig. 7. Average PSNR value as the function of the step size of scale.

LR image with aliasing, such as the stripe in the image “But-
terfly” [as shown in Fig. 6(c)].

In order to illustrate the necessity of computing each scale be-
tween the maximum patch size and the minimum
patch size , we set up another experiment. We first
randomly select 80 images from BSD [5]. The channel of

color space of these images are separated and downsam-
pled with factor 2 to get the LR images. Then, we perform our
algorithm with different step sizes of scale between 16 16 and
6 6. For example, as the step size is 1, 5, and 6, the scales that
we performed will be (16, 15, 14, , 7, 6), (16, 11, 6) and (16,
6), respectively. At last, we compute the average PSNR values
of the results at each step size, respectively. The average PSNR
curve as the function of the step size is plotted in Fig. 7. We can
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Fig. 8. Simulation results of different methods on the image “Vase.” (a) Bicubic
interpolation. (b) Our method with Tikhonov regularization. (c) Our method
with bilateral TV regularization. (d) Ground-truth HR image.

see that the PSNR value decreases as the step size increases.
Therefore, to get the best visual quality, the step size is set as 1.

In our algorithm, to reduce the time complexity, we only
apply the procedure on the highly activated areas, whereas the
values in smooth areas are obtained by bicubic interpolation. To
guarantee the completeness of antialiasing, the pixels near the
highly activated areas are also similarly handled by our algo-
rithm. The time complexity of our algorithm is roughly about
twice that of new edge-directed interpolation (NEDI) method
[6]. One possible improvement, as mentioned, is that we may
perform our multiscale algorithm with scale step size 2, instead
of 1, at a little expense of performance, and the time complexity
can be potentially reduced by half.

V. EXPERIMENTS

Here, we first conduct experiments of our method with
different types of regularizer so as to justify the necessity of
adopting the bilateral TV regularization. Then, we compare
the proposed method with existing interpolation methods on
synthetic LR images that are downsampled from corresponding
HR images with factors 2 and 4 to justify the capabilities
of the proposed method in relieving aliasing effects. At last,
we compare the proposed method with existing interpolation
methods on real-world images to validate the effectiveness of
the proposed method on the LR images with a more compli-
cated downsampling process.

In the first experiment, we apply our algorithm with bilateral
TV and Tikhonov regularization [26] to the synthetic LR im-
ages, respectively. The LR image is obtained by downsampling
from the image “Vase” of BSD [5] with factor 2. The experi-
mental results are shown in Fig. 8. Fig. 8(a) shows a local re-

Fig. 9. Eight images in the test set. (From left to right in top row) Butterfly,
Sail, Dragonfly, and Vase. (Bottom row) Woman, Plane, Church, and Penguin.

Fig. 10. Comparison of different methods on the image “Dragonfly.”
(a) Bicubic interpolation. (b) NEDI method in [6]. (c) Method in [7]. (d) SAI
method in [8]. (e) Our method. (f) Ground-truth HR image.

gion of the LR image after bicubic interpolation, which has se-
vere aliasing artifacts. Fig. 8(b) shows the result of our method
with Tikhonov regularization. We can see that the shape of the
image structure is recovered well, but the edges are blurred, and
the LR pixels stand out against the interpolated pixels. This is
because the Tikhonov regularization forces the spatial smooth-
ness, and this blurring accumulates in our multiscale procedure.
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TABLE I
PSNR AND SSIM COMPARISON OF DIFFERENT METHODS. FOR OUR ALGORITHM, ITS GAIN OVER THE SECOND-BEST METHOD IS ALSO GIVEN

Fig. 11. Comparison of different methods on the image “Plane.” (a) Bicubic
interpolation. (b) NEDI method in [6]. (c) Method in [7]. (d) SAI Method in
[8]. (e) Our method. (f) Ground-truth HR image.

Then, the LR pixels stand out against the blurred interpolated
ones. Fig. 8(c) shows the result of our method with bilateral
TV regularization. The clear structures and sharp edges testify
the advantage of our method with bilateral TV regularization.
Fig. 8(d) shows the ground-truth HR image.

In the second experiment, we compare the performance of the
multiscale semilocal interpolation algorithm proposed in this
paper with the existing image interpolation methods as follows:

Fig. 12. Comparison of different methods on the image “Woman.” (a) Bicubic
interpolation. (b) NEDI method in [6]. (c) Method in [7]. (d) SAI Method in [8].
(e) Our method. (f) Ground-truth HR image.

1) the bicubic interpolation [4]; 2) the NEDI method [6]; 3)
the weighted directional interpolation method [7]; and 4) the
soft-decision adaptive interpolation (SAI) method [8]. Note that
the last three methods are state-of-the-art methods to date. The
code of three edge-directed methods were downloaded from au-
thor homepages, and their available parameter values were best
selected based on the experimental results. The comparisons are
conducted on BSD about natural scenes [5]. Fig. 9 lists eight ex-
ample images in our test set. We work with channel of
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Fig. 13. Comparison of different methods on the downsampled image “Lena,”
with magnification factor 4. (a) Bicubic interpolation. (b) NEDI method in [6].
(c) Method in [7]. (d) SAI Method in [8]. (e) Our method. (f) Ground-truth HR
image.

color space because humans are more sensitive to the bright-
ness information. In our experiments, the observed LR images
are obtained by downsampling from HR images with factor 2.

Table I lists the PSNR and the structural similarity (SSIM)
index [27] values of these five different methods when applied to
the eight test images in Fig. 9. In all instances, the proposed mul-
tiscale semilocal interpolation method outperforms other ones.
Furthermore, for images with rich similar fragments, such as
the image “Woman,” the proposed algorithm exceeds the PSNR
values of the second best method by 4 dB or more. The advan-
tage of our algorithm measured with SSIM is not so significant
as the one with the PSNR measurement. The main reason is that
SSIM pays less attention to aliasing artifacts.

Figs. 1 and 10–12 compare the results of the five different
image interpolation methods on test images “Sail,” “Dragonfly,”
“Plane,” and “Woman,” respectively. From these figures, we can
see that these methods exhibit different visual characteristics,
particularly around the edge areas and the fine textures. Particu-
larly, it is observed that the proposed method has obviously re-
duced aliasing artifacts and significantly recovered ground-truth
content, such as the mast and jib in the image “Sail,” the tail

Fig. 14. Comparison of different methods on the image “Euphonium.” (a) LR
image. (b) Bicubic interpolation. (c) NEDI method in [6]. (d) Method in [7].
(e) SAI Method in [8]. (f) Our method.

and leg in the image “Dragonfly,” the wing and empennage in
the image “Plane,” and the net and hair in the image “Woman.”
Furthermore, the proposed method can not only produce visu-
ally more pleasant HR images with sharp edges but also avoid
lots of visual overfitting artifacts that usually exist in the other
methods (e.g., the ground in the image “Plane” and the hair and
sweater in the image “Woman”). This is because the large-scale
semilocal interpolation is robust for antialiasing. This robust-
ness can be inherited into the following smaller scale iterations,
and these smaller scale iterations can further filter out the incor-
rectness caused by large-scale interpolation.

In the third experiment, we apply the multiscale semilocal in-
terpolation algorithm proposed in this paper to a synthetic LR
image that is downsampled from the image “Lena” with factor
4, to show the capabilities of the proposed method in relieving
aliasing artifacts. In addition, we compare the result with the
ones of four existing interpolation methods as mentioned. All
of these methods are performed twice so as to get the HR image
with magnification factor 4. After downsampling with factor 4,
the severe aliasing artifacts appear in the LR image, and plenty
of details are lost. Fig. 13 shows the results of these five different
image interpolation methods. Compared with other interpola-
tion methods, our method can recover more correct structures
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and edges from the severe aliased LR images, such as the hat
and the hair in Fig. 13(e).

The final experiment is conducted on a real-world LR image
with aliasing artifacts to further validate the effectiveness of our
method. We compare our method with four exiting interpola-
tion methods, as mentioned on the image “Euphonium” from
Caltech 101 image database [28]. The image “Euphonium” has
severe aliasing artifacts, slight blurring, and noise. Therefore,
we adopt the 3-D transform-domain collaborative filtering [29]
to do denoising and sharpening on the LR image before per-
forming these five interpolation methods. Fig. 14 shows the re-
sults of these five methods. Compared with other methods, our
method can not only recover the correct structures and edges
well from the aliased LR input but also avoid lots of overfitting
artifacts, such as the edges of pipes and the trumpet. This ex-
ample demonstrates that our algorithm can be readily extended
on LR images generated by a more complicated downsampling
process.

VI. CONCLUSION

In this paper, we have proposed an iterative multiscale
semilocal interpolation method to recover high-quality HR
images from texture-relevant LR pixels. This procedure can
not only recover high-quality edges and structures in the image
but also alleviate aliasing artifacts of LR images substantially.
Experimental results validate the effectiveness of our proposed
method.

There are still some drawbacks of our method. For example,
under severe aliasing artifacts, the corresponding ground-truth
content is still not fully recovered. The reason is that the reliable
texture-relevant LR pixels are not found in the semilocal neigh-
borhood. One approach to address this would extend the search
space so as to increase the chance to find the texture-relevant LR
pixels. However, it is time consuming and not practical. Hence,
as a future work, it would be desirable to have a way of effec-
tively improving the computational efficiency of our algorithm
so as to comprise much larger search space for antialiasing.
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