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Abstract— In the past few decades, we have witnessed the
success of bag-of-features (BoF) models in scene classification,
object detection, and image segmentation. Whereas it is also
well acknowledged that the limitation of BoF-based methods
lies in the low-level feature encoding and coarse feature pooling.
This paper proposes a novel scene classification method, which
leverages several semantic codebooks learned in a multitask
fashion for robust feature encoding, and designs a context-aware
image representation for efficient feature pooling. Apart from
conventional universal codebook learning approaches, the pro-
posed method encodes each class of local features with a unique
semantic codebook, which captures the distinct distribution of
different semantic classes more effectively. Instead of learning
each semantic codebook separately, we learn a compact global
codebook, of which each semantic codebook is a sparse subset,
with a two-stage iterative multitask learning algorithm. While
minimizing the clustering divergence, the semantic codeword
assignment is solved by submodular optimization simultaneously.
Built upon the global and semantic codebooks, a context-aware
image representation is further developed to encode both global
and semantic features in image representation via contextual
quantization, semantic response computation, and semantic pool-
ing. Extensive experiments have been conducted to validate
the effectiveness of the proposed method on various public
benchmarks with several popular local features.

Index Terms— Scene classification, multitask learning,
bag-of-features, submodular optimization, clustering.

I. INTRODUCTION

IN THE past few decades, bag-of-features (BoF) models
[1]–[7] have shown much success in many tasks in com-

puter vision, including scene classification, object detection
and image segmentation, due to their efficiency in imple-
mentation and invariance to rotation, occlusion and scaling.
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In general, the pipeline of BoF-based scene classification
works as follows. First, local features, e.g., SIFT [8], HOG [9]
and LBP [10], will be extracted from images, which depict the
visual appearance of local patches. Subsequently, a codebook
consisting of several codewords is learned with clustering tech-
niques, such as k-means and spectral clustering, to quantize
the local features into discrete values. Eventually, the image
is represented by the distribution of codewords collected at
multiple scales and positions in images.

It is well recognized that, however, the major limitations
of BoF-based methods are the low-level feature encoding
and coarse feature pooling. Specifically, in order to depict
the scenes, which usually refer to places or activities (e.g.,
beach, street and parade), most of conventional BoF-based
methods [1]–[6], [11], [12] utilize a universal codebook to
encode the local features of different semantic classes, which
are the basic visual elements (e.g., sky, water and sand) that
compose the scenes. The universal codebook only captures the
global distribution of the local features, and lacks of semantic
interpretations. To improve feature encoding in semantic level,
the proposed method not only models the distribution of
local features through codebook learning, but also explores
the distinct structures of different semantic classes, which
provides a richer understanding of the scene categories. Recent
approaches, e.g., [13], [14], also learn multiple codebooks to
characterize different visual concepts. Nevertheless, they learn
each codebook separately, which is incapable of capturing the
intrinsic relation across classes. Furthermore, the codebooks
learned in this manner contain a large number of redundant
codewords, which is inefficient in representation.

On the other hand, pooling local features globally often
compromises the discriminative capability of the BoF-based
models, since the spatial and semantic information of the
local features is not fully utilized. To address this problem,
various spatial and semantic pooling approaches have been
proposed. Pyramid matching approaches pool the local fea-
tures in the spatial domain to accurately match two sets
of local features. Pyramid matching kernel [4] divides the
feature space of the local features into grids of different
scales, and the features falling into the same grid will be com-
peted accordingly. Typically, various spatial pyramidal pooling
methods [2], [3], [15], [16] were designed, which subdi-
vide the image into multiple spatial grids to pool the local
features. Hence, the spatial distribution of the local features
can be preserved to some extent in image representation.
Acknowledgedly, spatial pooling is often blamed to be inflex-
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Fig. 1. The proposed method encodes the local features of each semantic
class, e.g., beach, sea and sky, with a distinct semantic codebook, which is
composed of a sparse subset of the global codebook, as illustrated in the
top-right image. The image is represented in a context-aware manner by
the distributions of the global and semantic codewords, as illustrated in the
bottom-right image.

ible since the local features are pooled over the manually-
defined spatial grids, which results in coarse and sub-optimal
correspondence. In semantic pooling approaches [1], [7], [17],
the pooling region of the local features is not defined spatially
but semantically, such as parts [18], objects [7], and visual
concepts [1]. However, semantic pooling inevitably brings
about the problem of semantic scene parsing [19], [20], which
is far more challenging than the task of scene classification
itself.

This paper makes two technical contributions to address
the problem of low-level feature encoding and inflexible
feature pooling in conventional BoF-based scene classification
methods, as illustrated in Fig. 1.

The first contribution is to propose a multitask codebook
learning approach to learn a compact representation of multi-
ple semantic codebooks, which aims to distinctively encode
the local features of various semantic classes. Unlike con-
ventional BoF-based methods that encode all types of local
features with a universal codebook, the proposed method lever-
ages a unique semantic codebook to encode the local features
of each semantic class, which is more efficient in capturing
features of color, shape and texture of the semantic class.
In particular, rather than learning each semantic codebook
separately, which would result in a huge quantity of redundant
codewords, we learn a compact global codebook, of which
each semantic codebook is a sparse subset. On the one hand,
a common codeword can be shared by many semantic classes,
which captures the intrinsic correlation among them. On the
other hand, each semantic class may possess some unique
codewords, which reflects the distinctiveness of the specific
class. Note that this global constraint brings all the individual
codebook learning tasks together into a joint framework, and
an effective solution is designed to optimize this problem by
iteratively minimizing the clustering divergence via convex
optimization and optimizing the semantic codeword assign-
ment via submodular minimization.

The second contribution of the paper is to design a context-
aware image representation for scene modeling based on the
learned global and semantic codebooks, which can be per-
formed via contextual quantization, semantic response com-
putation and semantic pooling. To be concrete, in contextual

quantization, each local feature is quantized into a global
codeword from the global codebook and multiple semantic
codewords from the semantic codebooks, so that the local
features can be encoded more discriminatively and robustly
with multiple context-specific distributions as opposed to the
universal codebook. In semantic pooling, the quantized local
features are pooled semantically, and the image is represented
by the global and semantic distributions of the codewords.
In particular, each local feature casts a vote for the global
codeword histogram with unit weight and a vote for each
semantic codeword histogram with weight proportional to
the corresponding semantic response. In this sense, the local
features contribute more to the relevant semantic classes, and
less to the irrelevant classes, embedding the relative semantic
strength in image representation.

The rest of the paper is organized as follows. Section II
reviews the related literatures. Section III presents the overall
framework of the proposed method. Section IV reveals the
multitask learning of semantic codebooks, while Section V
illustrates the context-aware image representation for scene
classification. Section VI shows the experimental results.
Finally, Section VII concludes the paper.

II. RELATED WORK

The success of BoF models in many tasks of computer
vision, such as object detection, scene categorization and face
recognition, relies on the delicate design of local features that
depict different aspects of visual appearance. Among all the
local features, SIFT [8] is presumably the most successful
and widely-adopted choice for the past few decades due to its
invariance to translation, illumination, and scaling. Since the
original SIFT descriptor is not color invariant, many color-
based variants have been designed, such as HSV-SIFT [21],
Hue-SIFT [22], opponent-SIFT [23] and CSIFT [24].
A comprehensive evaluation of the color descriptors can be
found in [23]. Histogram of oriented gradients (HOG) [9]
and its variants [18], [25] also characterize the distribution
of the gradient orientations, but spread more sophisticated
normalization schemes. Felzenszwalb et al. [18] designed a
low-dimensional alternative of the HOG descriptor, which
pools the original 36-dimensional HOG descriptor along the
18 directed orientation bins, 9 undirected bins and 4 spatial
cells, generating a 13-dimensional descriptor that captures
the same information. Satpathy et al. [25] suggested an
extended HOG to address the problem of high contrast and
the confusion of opposite orientations in HOG. In addition
to the SIFT- and the HOG-based features, quite a few novel
local features have also been put forward in recent years.
Margolin et al. [26] developed a local descriptor named Ori-
ented Texture Curves (OTC), which depicts an image patch
with curves in multiple orientations while maintaining robust-
ness to illumination changes, geometric distortions and local
contrast differences. Dubey et al. [27] derived an interleaved
order based local descriptor that considers local neighbors
of a pixel as a set of interleaved neighbors and constructs
the descriptor over each set separately. Although the local
features carry distinct information of the images, in practice,
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a combination of multiple local features [1], [13] often yields
better performance for image representation.

Most of existing BoF-based image classification methods
encode local features with a single universal codebook, which
is learned with local features all over the images. In [1] and [2],
vector quantization (VQ) is used to map a local feature to a
single codeword by hard assignment, or multiple codewords
by soft assignment based on a universal codebook. Instead
of vector quantization, Yang et al. [6] represented the local
features with the coefficients of sparse coding, which approx-
imate the features more accurately than k-means quantiza-
tion. Wang et al. [5] reconstructed the feature with its closest
neighbors instead of the entire feature space. Zhou et al. [28]
presented the super-vector coding of local features, which is
a piece-wise linear approximation to the features and thus
achieves a lower approximate error than VQ. Ji et al. [11]
compressed a high-dimensional universal codebook into a
compact one by learning a compression function with a
supervised sparse coding model. Lu et al. [12] refined the BoF
based representation by the universal codebook by supervised
sparse coding. An alternative strategy to encode the local
features emerges, by separately learning multiple codebooks.
For instance, [13] learned multiple codebooks from the web
images, each of which is trained individually for a visual
concept. Wu et al. [14] learned a unique codebook separately
for each object category based on semantics-preserving dis-
tance metric. Nevertheless, learning multiple codebooks sepa-
rately will generate a large quantity of redundant codewords,
which is inefficient in representation and storage.

After feature encoding, all the encoded local features will
be pooled to form an image-level feature vector. However,
a global histogram only reflects the holistic distribution of
codewords, and the information about the spatial layout and
semantic attributes is lost, which could be important cues
for scene classification. To take advantage of spatial infor-
mation into feature matching, a pyramid matching kernel is
proposed in [4]. Local features are mapped to multi-resolution
histograms based on their distribution in the feature space.
Spatial pooling is not only limited to the feature space but
also applied in the image space. The most prevailing spatial
pooling algorithm is the spatial pyramid matching (SPM) from
Lazebnik et al. [2]. SPM repeatedly divides an image into
grids of different scales and computes a codeword histogram in
each spatial grid. By concatenating the histograms with proper
weights, the spatial correspondence of local features can be
preserved in the image descriptor. Rather than using absolute
spatial arrangement, Yang et al. [3] proposed the spatial
pyramid co-occurence algorithm that captures both relative
and absolute layout of image. In addition to partitioning the
images, Harada et al. [29] tried to find the optimal weights of
the spatial histograms that offer more discriminative power.

In addition to the spatial pooling schemes, a few approaches
pool the local features based on the mid-level visual cues,
such as the semantic category, the objectness, and the fore-
ground/background segmentation, to alleviate the ambiguity of
local features. Russakovsky et al. [7] pooled the local features
separately in the object region and the background region.
However, their method requires accurate object localization

and is incapable of handling multiple objects. Su and Jurie [1]
considered the semantic contexts of the local features during
pooling. A codeword is only collected within a certain context
for a specific scene category, which has the most distinct
distribution. Obviously, its performance is highly dependent
on the accuracy of semantic segmentation, since the contexts
are hard-assigned. In view that representing each codeword
in a single semantic context can not characterize the visual
appearance of the image properly, Li et al. [13] collected
images from the Internet to learn visual concepts via multiple
instance learning. It remains in deficit by learning each visual
concept separately and fails to discover the relations and
connections among the concepts.

III. SYSTEM OVERVIEW

The general framework of the proposed method is illustrated
in Fig. 2, where the procedure of multitask learning of
semantic codebooks and context-aware image representation
is illustrated by the blue and red paths, respectively.

In multitask learning of semantic codebooks, local features
are densely extracted from the images, which are denoted by
X = {xi }N

i=1, where xi ∈ R
D , N and D is the number and

dimension of local features, respectively. Each local feature
xi is associated with a semantic label si ∈ {1, 2, · · · , M},
where M is the number of semantic classes. Hence, all local
features X can be grouped into M disjoint semantic bags
Xs = {xs

i }Ns
i=1, s = 1, · · · , M , where Ns is the number of

local features of the s-th semantic class. Based on the bags
of semantic features, M semantic codebooks will be learned
by the proposed multitask codebook learning algorithm by
simultaneously minimizing the clustering divergence and the
sparsity of the semantic codewords. It is worth mentioning
that the semantic codebooks are compactly represented by a
global codebook B = {bk}K

k=1, where bk ∈ R
D is the k-th

codeword, and K is the total number of codewords. Each
semantic codebook is a subset of the global one, and the
codeword indices of the s-th semantic codebook are denoted
by πs ⊆ {1, · · · , K }. A two-step iterative solution is developed
to solve the multitask codebook learning problem effectively.
In addition to the semantic codebooks, M semantic classifiers
will be learned based on the local features and the superpixels
of the images. Detail about the multitask learning of semantic
codebooks will be described in Section IV.

After the global and semantic codebooks and the semantic
classifiers are learned, a context-aware image representation is
devised, which consists of three steps: contextual quantization,
semantic response computation and semantic pooling. Follow-
ing the red path in Fig. 2, in the testing case, local features will
be extracted from the image in the first place. Then, contextual
quantization assigns each local feature with a global codeword
label and a semantic codeword label for each semantic class
based on the learned global and semantic codebooks. In the
meantime, semantic response of the local feature will be
computed by the semantic classifiers. In the next step, the
codeword labels attained from contextual quantization will
be pooled globally and semantically to form the final image
representation. To be specific, the global codewords are pooled
with unit weights, regularizing the image representation as
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Fig. 2. The general framework of the proposed approach. The multitask semantic codebook learning is illustrated by the blue path. The context-aware image
representation is illustrated by the red path.

a universal codebook. Furthermore, the semantic codeword
labels are weighted by the corresponding semantic responses,
introducing semantic distribution into the image representa-
tion. Detail about the context-aware image representation will
be described in Section V.

IV. MULTITASK LEARNING OF SEMANTIC CODEBOOKS

This section presents the proposed algorithm of multitask
learning of semantic codebooks, which is preceded by the
review of the single-task codebook learning.

A. A Retrospect of Single-Task Codebook Learning

Most of existing BoF-based image classification approaches
learn a universal codebook [2], [5], [6] or multiple codebooks
separately [13] in a single-task learning fashion.

To learn a single universal codebook from the images, such
as [2], [5], and [6], a codebook B = {bk}K

k=1 can be attained
from the local features X = {xi }N

i=1 extracted from the images
by solving

min
B

1

N

N∑

i=1

L(B|xi ), (1)

where L(B|x) measures the minimum distance of local fea-
ture x to the codebook B , which is commonly defined by the
L2 norm, i.e.,

L(B|x) = min
1≤k≤K

|x − bk |2. (2)

The solution of Eq. (1) can be obtained by the k-means
algorithm.

To learn multiple codebooks separately, such as [13],
Eq. (1) is independently solved for each class of local features:

min
Bs

1

Ns

Ns∑

i=1

L(Bs |xs
i ), s = 1, · · · , M, (3)

where Bs = {bs
k}Ks

k=1 is the codebook and Xs = {xs
i }Ns

i=1 is the
set of local features of the s-th semantic class, respectively.
However, the codebooks learned in this manner contain a large
number of codewords, which are very redundant and inefficient
in representation, because a codeword may have a couple of
duplicates in different codebooks.

B. Multitask Semantic Codebook Learning

To address the redundancy of learning multiple semantic
codebooks in single-task fashion, we learn a compact represen-
tation of multiple semantic codebooks, and develop a multitask
codebook learning algorithm to learn the semantic codebooks
efficiently. It is worth mentioning that the key difference of
single-task learning and multitask learning is the relation of
the learning tasks. In single-task learning, each learning task is
independent from the others, and therefore can be solved one
by one. However, in multitask learning, all learning tasks are
regularized by a global constraint, which is able to improve
the generalization capability of each individual learning task.
As a result, all learning tasks are solved simultaneously in a
joint framework in multitask learning.

To be concrete, multiple semantic codebooks {Bs}M
s=1 are

compactly represented by a global codebook B = {bk}K
k=1,

and each semantic codebook is composed of a subset of
the global codewords, i.e., Bs ⊆ B for s = 1, · · · , M .
With this representation, the proposed semantic codebooks are
more discriminative than a universal codebook, because they
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implicitly characterize the distributions of different semantic
classes. Also, the semantic codebooks can be represented
more efficiently than separately trained ones. On one hand,
many semantic classes can share a common codeword, which
effectively captures the intrinsic correlation across classes.
On the other hand, each semantic class may preserve some
unique codewords reflecting their distinctiveness.

To learn the global codebook B and the semantic code-
books {Bs}M

s=1, a multitask codebook learning algorithm is
formulated by solving

min
B,{Bs}M

s=1

1

N

M∑

s=1

Ns∑

i=1

L(Bs |xs
i ) + λ

1

M

M∑

s=1

|Bs|

s.t. Bs ∈ B, s = 1, 2, · · · , M.X (4)

where |Bs| is the number of elements in set Bs , and λ is a
parameter that controls the sparsity of the semantic codewords.
The larger the λ is, the sparser the semantic codebooks will
be. Note that the objective function of Eq. (4) is simply the
average clustering loss of the semantic classes. The constraint
of Eq. (4) combines the M individual codebook learning tasks
together into a unified formulation.

To simplify the notations in Eq. (4), the codeword assign-
ment of the s-th semantic codebook is denoted by πs ⊆
{1, 2, · · · , K }, so that Bs = {bπs (1), · · · , bπs (|πs |)}. Hence,
Eq. (4) can be converted to an unconstrained optimization
problem:

min
B,{πs}M

s=1

1

N

M∑

s=1

Ns∑

i=1

L(B, πs |xs
i ) + λ

1

M

M∑

s=1

|πs |, (5)

The first term in Eq. (5) measures the clustering divergence
of the local features by the semantic codebooks. The mini-
mization of this term aims at pursuing a close approximation
of the local features by the corresponding semantic codebooks.
Note that the clustering loss of local feature xs

i is only
measured by the s-th semantic codebook. In this way, the
class-specific feature distributions can be efficiently captured
by the semantic codebooks.

The second term in Eq. (5) measures the sparsity of the
semantic codewords, which is the average number of code-
words in the semantic codebooks. Obviously, without this
term, each semantic class will take all the codewords in
the global codebook to minimize the clustering divergence,
which degenerates to a universal codebook. In this case,
each semantic codebook is identical to the global one, thus
losing the distinctiveness of the semantic classes. On the
contrary, with the sparsity of semantic codebooks incorporated
in Eq. (5), semantic classes may share a common codeword if
the clustering loss is trivial, and a semantic class may preserve
some unique codewords for the class-specific feature encoding.

Optimizing Eq. (5) is non-trivial, because it simultaneously
optimizes continuous variables B = {bk}K

k=1 and discrete
variables {πs}M

s=1. To solve Eq. (5), we decompose the original
problem into two subproblems and develop a two-step iterative
scheme to solve them effectively. Specifically, the first sub-
problem optimizes the global codebooks with the assignment
of semantic codewords being fixed. Hence, this subproblem

aims at approximating the distribution of local features by the
codewords. The second subproblem optimizes the assignment
of semantic codewords with the global codebook being fixed.
In other words, this subproblem explores the class-specific
feature distribution of the semantic classes and the intra-
class correlations through codeword sharing. As follows, we
elaborate the details about the two-step iterative solution
of Eq. (5).

C. Optimizing Global Codebook

The first subproblem minimizes the clustering divergence
with respect to the global codebook B with the assignment
of the semantic codebooks, i.e., {πs}M

s=1, being fixed. Once
removing {πs}M

s=1 from Eq. (5), the objective function of the
first subproblem is

min
B

ED = 1

N

M∑

s=1

Ns∑

i=1

L(B|πs, xs
i ). (6)

Let As
i be the codeword label of xs

i in the global codebook,
i.e.,

As
i = πs(a

s
i ), (7)

where

as
i = argmin

1≤ j≤|πs|
|xs

i − bπs ( j )|2 (8)

is the codeword label of xs
i in the s-th semantic codebook.

Then, Eq. (6) can be written as

min
B

ED = 1

N

M∑

s=1

Ns∑

i=1

|xs
i − bAs

i
|2. (9)

The optimal global codebook B can be solved analytically by

∂ ED

∂bk
= 0 ⇒

M∑

s=1

Ns∑

i=1

(bk − xs
i )1(As

i = k) = 0

⇒ bk =
∑M

s=1
∑Ns

i=1 xs
i 1(As

i = k)
∑M

s=1
∑Ns

i=1 1(As
i = k)

, (10)

where 1(condition) is a boolean function, which equals to 1
if the condition is true, otherwise 0.

Consequently, the optimal global codebook can be obtained
by updating B and As

i according to Eq. (7), Eq. (8) and
Eq. (10) iteratively.

D. Optimizing Semantic Codeword Assignment

The second subproblem optimizes the codeword assignment
of semantic codebooks, i.e., {πs}M

s=1, with the global code-
book B being fixed. Similarly, once removing B from Eq. (5),
the objective function of the second subproblem is

min
{πs}M

s=1

1

N

M∑

s=1

Ns∑

i=1

L(πs |B, xs
i ) + λ

1

M

M∑

s=1

|πs |. (11)
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Since Eq. (11) is irrelevant of B , the M tasks can be decoupled
and solved independently, i.e., for s = 1, · · · , M

min
πs

1

N

Ns∑

i=1

L(πs |B, xs
i ) + λ

M
|πs |, (12)

Moreover, we define

f (πs) = Nλ

M
|πs |, (13)

and

g(πs) = −
Ns∑

i=1

L(πs |B, xs
i ). (14)

Hence, Eq. (12) is equivalent to

min
πs

φ(πs) = f (πs) − g(πs)

= Nλ

M
|πs | −

(
−

Ns∑

i=1

L(πs |B, xs
i )

)
. (15)

As follows, we will prove that f (πs) and g(πs) are both
submodular functions so that Eq. (15) can be solved efficiently
by submodular-supermodular procedure [30]. For convenience,
the task label s is omitted in the proof without loss of
generality.

Theorem 1: f (π) in Eq. (13) is a submodular function.
Proof: ∀ π ⊆ π ′ ⊆ {1, 2, · · · , K } and q /∈ π ′:

(
f (π ∪ {q}) − f (π)

)
−

(
f (π ′ ∪ {q}) − f (π ′)

)

= −|π ∪ {q}| + |π | + |π ′ ∪ {q}| − |π ′|
= −|π | − 1 + |π | + |π ′| + 1 − |π ′|
= 0 ≥ 0 (16)

Thus f (π) is a submodular (modular) function by
definition. �

Theorem 2: g(π) in Eq. (14) is a submodular function.
Proof: ∀ π ⊆ π ′ ⊆ {1, 2, · · · , K } and q /∈ π ′

g(π ∪ {q}) − g(π)

=
N∑

i=1

−
(

min
(
L(π |B, xi ), |xi − bq |2

)
− L(π |B, xi )

)

=
N∑

i=1

− min
(

0, |xi − bq |2 − L(π |B, xi )
)

=
N∑

i=1

max
(

0,L(π |B, xi ) − |xi − bq |2
)
. (17)

Likewise,

g(π ′ ∪ {q}) − g(π ′)

=
N∑

i=1

max
(

0,L(π ′|B, xi ) − |xi − bq |2
)
. (18)

Since π ⊆ π ′, we have L(π |B, xi ) ≥ L(π ′|B, xi ), and

g(π ∪ {q}) − g(π) ≥ g(π ′ ∪ q) − g(π ′). (19)

Thus g(π) is a submodular function by definition. �

Fig. 3. The proposed context-aware image representation is computed via
contextual quantization and semantic pooling. It contains both global and
contextual distribution of codewords for representation.

As proved above, Eq. (15) aims at minimizing the difference
of two submodular functions, namely, f (π) and g(π), which
can be solved by the submodular-supermodular procedure.
We briefly present the algorithm as follows.

The submodular-supermodular procedure minimizes
Eq. (15) by finding a sequence π0, π1, · · · , πn ⊆ {1, · · · , K }
satisfying φ(π0) ≥ φ(π1) ≥ · · · ≥ φ(πn). At iteration n, a
modular function hn(π) is constructed, which satisfies:

1) hn(πn) = g(πn).
2) hn(π) ≤ g(π), for all π ⊆ {1, · · · , K }.
3) φn(π) = f (π) − hn(π) is submodular and can be

minimized efficiently.

where hn is named the modular approximation of g(πn).
In particular, the mathematical formulation of the mod-
ular approximation based on g and πn can be found
in [30, Sec. 3.2].

Subsequently, πn+1 can be obtained by

πn+1 = argmin
π⊆{1,··· ,K }

φn(π), (20)

which can be computed in time polynomial in K since φn is
submodular. Then we have

φ(πn+1) ≤ φn(πn+1) ≤ φn(πn) = φ(πn). (21)

Since φn is the tight upper bound of φ, the optimal solution
to Eq. (15) can be acquired accordingly. In practice, Eq. (15)
is solved with the SFO toolbox [31].

E. Implementation Details

The optimal solution of Eq. (5) can be obtained by iter-
atively optimizing Eq. (6) and Eq. (11), as described in
Section IV-C and Section IV-D. In particular, the global
codebook B is initialized by learning a universal codebook
with all local features as Eq. (1). Although it is a complicated
continuous- discrete- optimization problem, the proposed two-
step iterative solution effectively reduces the value of the
objective function in Eq. (5) in each iteration, and generally
converges in 5 ∼ 6 iterations in experiments.
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Fig. 4. Illustration of learning semantic classifiers. The input images are segmented into superpixels. The semantic label of a superpixel is determined by
the label purity of the local features. The visual feature of each superpixel is encoded by the global codeword histogram. Finally, semantic classifiers can be
obtained by learning linear SVM classifiers with the semantic labels and visual features of the superpixels.

V. CONTEXT-AWARE IMAGE REPRESENTATION

Leveraging the global codebook and semantic codebooks
learned in Section IV, a mid-level context-aware image rep-
resentation is evolved for scene classification, which incorpo-
rates both global and semantic information in scene modeling.
In general, the underlying image representation can be fulfilled
in three steps: contextual quantization, semantic response com-
putation and semantic pooling, which is illustrated in Fig. 3.
Specifically, each local feature is quantized into a global
codeword label and several semantic codeword labels during
contextual quantization. Then, the semantic responses of the
local features will be computed by the semantic classifiers,
which serve as the voting weights for feature pooling. Finally,
the codeword labels are pooled semantically to generate the
final image representation.

A. Contextual Quantization

Conventional methods utilizing a universal codebook would
quantize each local feature to a single codeword, which is
coarse in representation and weak for discrimination. On the
contrary, the proposed method quantizes a local feature to
a global codeword and M semantic codewords. With this
context-dependent quantization scheme, local features can be
represented in a more robust and discriminative way by the
global and semantic codebooks.

The global codeword label of a local feature x is the code-
word index of its closest neighbor in the global codebook B ,
i.e.,

A = argmin
1≤k≤K

|x − bk|2. (22)

Likewise, the s-th semantic codeword label of the local feature
is the codeword index of its closest neighbor in the s-th
semantic codebook, i.e.,

as = argmin
1≤k≤|πs |

|x − bπs (k)|2, s = 1, · · · , M. (23)

In this way, a local feature is quantized to M + 1 code-
word labels, namely, (A, a1, · · · , aM ), which satisfy A ∈
{1, · · · , K } and as ∈ {1, 2, · · · , |πs |} for s = 1, · · · , M .

B. Semantic Response Computation

Aside from the codeword labels, the semantic responses
of the local features will be computed, which serve as the
voting weights for feature pooling. To compute the semantic
responses of the local features, a set of semantic classifiers
will be learned during training, which is illustrated in Fig. 4.

Since a local feature alone does not contain sufficient
information for semantic discrimination, we perform scene
classification over the superpixels, which are large enough
to carry semantic meaning. To be specific, the images are
segmented into overlapping superpixels at multiple scales
by graph-based image segmentation [32]. Each superpixel
l = 1, · · · , L is represented by a semantic label cl ∈
{0, 1, · · · , M} and a visual feature zl ∈ R

K , where L is
the number of superpixels. In particular, the semantic label
of a superpixel is determined by the label purity of the local
features inside the superpixel, which is defined as

rl = max
j=1,··· ,M

1

Nl

Nl∑

i=1

1(si = j), (24)

where Nl and {si }Nl
i=1 is the number and semantic labels of

the local features in the superpixel, respectively. In other
words, the label purity depicts the percentage of the dominant
semantic class in the superpixel. Obviously, the superpixel can
be associated with the label of the dominant class if its label
purity is sufficiently large. Otherwise, the semantic label of
the superpixel is zero, which means the unknown class. In
practice, the threshold of label purity is 0.8, i.e.,

cl =

⎧
⎪⎪⎨

⎪⎪⎩

argmax
j=1,··· ,M

1

Nl

Nl∑

i=1

1(si = j), if rl ≥ 0.8

0, if rl < 0.8

(25)

Furthermore, the visual appearance of a superpixel is rep-
resented by the histogram of the global codeword labels of
the local features, which is denoted by z ∈ R

K . Finally, the
semantic classifiers are learned by training linear SVMs over
{(zi , ci )}L

i=1.
To predict the semantic response of the local features, we

also segmented an image into overlapping superpixels by
graph-based image segmentation, and represent each super-
pixel by the global codeword histogram. Subsequently, the
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TABLE I

SCENE CLASSIFICATION ACCURACY ON THE MSRC DATASET

classification score of a superpixel can be computed by the
semantic classifiers. Since the superpixels are overlapping,
a local feature may be contained in multiple superpixels.
Therefore, the semantic response of class s of a local feature
is the average classification score of the relevant superpixels,
which is denoted by p′

s . After normalization over classes, the
semantic response of a local feature is

ps = exp(p′
s)∑M

j=1 exp(p′
j )

. (26)

C. Semantic Pooling

Eventually, the codeword labels obtained in Section V-A
and the semantic responses obtained in Section V-B will
be pooled semantically to generate the context-aware image
representation.

Specifically, a global codeword histogram h0 ∈ R
K and

M semantic codeword histograms {hs ∈ R
|πs |}M

s=1 will be
calculated, each of which depicts the codeword distribution of
the corresponding codebook. Each local feature casts a vote for
the A-th bin in h0 and the as-th bin in hs for s = 1, · · · , M ,
where A and {as}M

s=1 are the global codeword label and the
semantic codeword labels, as defined in Eq. (22) and Eq. (23).

Each local feature casts a vote for the global codeword
histogram with unit weight. Therefore, the global codeword

histogram depicts the distribution of global codewords inde-
pendent of the semantic classes, as a universal codebook
does. To incorporate semantic information into image rep-
resentation, the voting weight of each local feature to the
s-th semantic codeword histogram is the semantic response ps .
Intuitively, a local feature is supposed to make more con-
tribution to the relevant semantic classes which have large
semantic responses, and less to the irrelevant semantic classes
which have small semantic responses. As a result, the
semantic codeword histograms depict not only the seman-
tic codeword distribution, but also the relative strength of
the semantic classes, which is informative in modeling a
scene.

Finally, by concatenating the global codeword histogram
and semantic codeword histograms collected in spatial grids
followed by L2 normalization, the final image representation
is achieved. It is worth mentioning that the global codeword
histogram and the semantic codeword histograms are normal-
ized separately, i.e.,

|h0|2 = 1 and |(h1, · · · , hM )|2 = 1, (27)

so that the relative semantic strength can be kept.
In summary, the algorithm of the proposed context-aware

image representation is described in Algorithm 1.
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Algorithm 1: Context-Aware Image Representation

VI. EXPERIMENTAL RESULTS

The proposed algorithm is validated on the MSRC
dataset [33] and the SIFT flow dataset [34], where pixel-wise
semantic annotations are available.

The MSRC dataset contains 591 images from 20 scene
categories, which are composed of 21 semantic classes: build-
ing, grass, tree, cow, sheep, sky, aeroplane, water, face, car,
bicycle, flower, sign, bird, book, chair, road, cat, dog, body
and boat. Besides, the SIFT flow dataset consists of 2688
images from 8 outdoor scene categories, namely, coast, forest,
highway, city, mountain, country, street and building, which
contains 33 semantic classes, including awning, balcony, bird,
boat, bridge, building, bus, car, cow, crosswalk, desert, door,
fence, field, grass, moon, mountain, person, plant, pole, river,
road, rock, sand, sea, sidewalk, sign, sky, staircase, streetlight,
sun, tree and window.

The proposed method is evaluated comprehensively with
four popular local features, namely,

1) 128-dimensional SIFT descriptor [8];
2) 31-dimensional HOG descriptor [9];
3) 58-dimensional local binary pattern (LBP) [10];
4) 185-dimensional Oriented Texture Curves (OTC) [26].

To be concrete, the local features are extracted from the images
with the VLFeat [35] package as follows. The image is evenly

TABLE II

SCENE CLASSIFICATION ACCURACY ON THE SIFT FLOW DATASET

divided into overlapping blocks at a stride of 8 pixels. In each
block, a local feature is computed in 2×2 spatial cells at three
scales by varying the cell sizes to 4, 6 and 8 pixels.

For each dataset, 60% of the images are used for training
and the rest for testing in each scene category. By default,
for the small-sized MSRC dataset, a global codebook of 500
codewords is learned, while for the mid-sized SIFT flow
dataset, a global codebook of 1000 codewords is learned.
The sparsity parameter λ is set to 0.003 via cross-validation.
Finally, a linear SVM classifier is trained upon the pro-
posed context-aware image features over the 3-level spatial
pyramid.

A. Comparison With BoF-Based Scene
Classification Methods

In the first experiment, we compare the performance of
the proposed method with six conventional BoF-based scene
classification methods, i.e.,

• Spatial pyramid matching (SPM) [2];
• Locality-constrained linear coding (LLC) [5];
• Linear SPM using sparse coding (ScSPM) [6];
• Context embedded image representation (CEIR) [1];
• Fisher vector (FV) [36];
• Vector of locally aggregated descriptors (VLAD) [37].
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Fig. 5. The spatial distribution of the top-5 most frequent codewords in each semantic class. Each semantic class is represented by a unique color, and each
codeword is represented by a unique symbol.

In addition to these BoF-based approaches, we also compare
the performance of the proposed method with the state-of-
the-art convolutional neural network (CNN). Specifically, each
image is represented by a 4096-dimensional features vector by
the CNN used in [38], and then predicted by a linear SVM
classifier.

The class-specific scene classification accuracy of the
MSRC dataset and the SIFT flow dataset is displayed in
Table I and Table II, respectively. In addition, we also test the
performance when all local features are concatenated, which
is represented by ALL in Table I and Table II.

Table I shows that, among the 20 scene classes in the
MSRC dataset, the proposed method achieves the highest
scene classification accuracy in 18 classes with SIFT, in
16 classes with HOG, in 15 classes with LBP, in 17 classes
with OTC, and in 19 classes with ALL. On the other hand, the
second best methods achieve the highest scene classification
accuracy only in 11, 12, 12, 12 and 11 out of 20 classes for
SIFT, HOG, LBP, OTC and ALL, respectively. In terms of
average accuracy, the proposed method achieves the highest
average accuracy with all local features, and outperforms the
second best ones by 21%, 12%, 11%, 13% and 19% for SIFT,
HOG, LBP, OTC and ALL, respectively.

Table II shows that, on the SIFT flow dataset, the proposed
method achieves the highest classification accuracy in all
scene classes for HOG, LBP, OTC and ALL. Meanwhile,
for SIFT, the proposed method performs best in 7 out of
8 scene categories, and ScSPM in 1 out of 8 scene category.
On average, the proposed method outperforms the second best
methods with SIFT, HOG, LBP, OTC and ALL by 4%, 10%,
7%, 6% and 4%, respectively.

Table I and Table II also indicate that although CNN is more
discriminative than other BoF methods, it is still outperformed
by the proposed method, because we explicitly incorporate
mid-level semantic information into image representation,
which is more characteristic of the scene classes.

In addition, the proposed method slightly outperforms CNN
in both the MSRC and the SIFT flow dataset. It should
also be noted that CNN achieves better performance than
other BoF-based methods in all types of local features, which
demonstrates the discriminative capability of deep neural net-
works in visual classification.

Furthermore, we visualize the spatial distribution of the
top-5 most frequent codewords for each semantic class
in Fig. 5, where each semantic class is represented by a unique
color, and each codeword is represented by a unique symbol.
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In conclusion, extensive experiments upon multiple datasets
with various local features demonstrate the effectiveness of the
proposed method in comparison with other BoF-based scene
classification approaches.

B. Evaluation of Multitask Codebook Learning

In this experiment, we evaluate the performance of the pro-
posed multitask codebook learning algorithm in comparison
with

1) Universal codebook learning: A universal codebook
of K codewords is learned with all local features,
which serves as the global codebook and the semantic
codebooks as well.

2) Separate codebook learning: Each semantic code-
book contains approximately K/M1 codewords, and is
learned separately with the corresponding local fea-
tures. The global codebook is composed of K semantic
codewords.

In particular, the semantic codeword distribution of the SIFT
descriptors on the SIFT flow dataset obtained by the universal
codebook learning, the separate codebook learning and the
proposed multitask codebook learning is illustrated in Fig. 13.
Each column represents a global codeword, and each row rep-
resents a semantic class. The codewords that a semantic class
selects as its semantic codewords will be highlighted with a
distinct color, while the unselected codewords will be in black.
It is clearly demonstrated that each semantic codebook learned
by the universal codebook learning is composed of all the
global codewords, and the semantic codebooks learned by the
separate codebook learning are mutually disjoint. Meanwhile,
the semantic codebooks learned by the proposed multitask
codebook learning algorithm are represented compactly via
sharing some codewords across classes.

First, we test the three codebook learning methods with the
same number of codewords. The average scene classification
accuracy of different codebook learning methods on the MSRC
dataset (K = 500) and the SIFT flow dataset (K = 1000) is
displayed in Fig. 6.

Fig. 6 indicates that training the semantic codebooks sepa-
rately obtains the worst result, because there are not sufficient
number of codewords in each semantic codebook, which is not
capable of characterizing the complicated distribution of local
features. The performance of the universal codebook learning
is much better than the separate codebook learning, but still
inferior than the proposed method, because the distinct feature
distribution of the semantic classes is not considered. The
proposed multitask codebook learning method achieves the
best results, which demonstrates the effectiveness of sharing
common codewords across semantic classes.

In the next experiment, we fix the number of codewords
for the proposed method, i.e., 500 for the MSRC dataset
and 1000 for he SIFT flow dataset, and increase the number
of codewords for universal codebook learning and separate
codebook learning to test how many codewords they require
to achieve similar performance as the proposed method.

1A random set of K − �K/M� · M semantic codebooks contain �K/M�
codewords, and the rest contain �K/M� + 1 codewords.

Fig. 6. Average scene classification accuracy of different codebook learning
methods. (a) MSRC dataset (K = 500). (b) SIFT flow dataset (K = 1000).

The average scene classification accuracy on the
MSRC dataset and the SIFT flow dataset is illustrated
in Fig. 7 and Fig. 8, respectively.

Fig. 7 and Fig. 8 demonstrate that the performance of both
the universal codebook leaning and the separate codebook
learning is improved as the number of codewords increases.
Specifically, the universal codebook learning requires approx-
imately double the number of codewords as the proposed
method to obtain similar performance, which proves that the
proposed method effectively leverages the structure of the
semantic features to distinguish scene classes. Whereas,
the performance of the separate codebook learning is sig-
nificantly lower than the universal codebook learning and
the multitask codebook learning, because a large number of
redundant codewords are learned by each semantic classes
individually.

In addition, we evaluate the number of common codewords
of the SIFT descriptors between separate codebook learning,
universal codebook learning and the proposed multitask code-
book learning. In practice, it hardly happens that two code-
words in different codebooks are exactly identical. Instead,
we consider that two codewords are common if and only
if their distance is smaller than half the minimum distance
of any two codewords in the multitask codebook. Thus, the
number of common codewords in (1) multitask codebook
learning and separate codebook learning, (2) multitask code-
book learning and separate codebook learning is illustrated
in Fig. 9.

From Fig. 9, we can draw two conclusions. First, the
proposed method shares a very small number of codewords
with separate codebook learning and universal codebook learn-
ing due to different codebook learning mechanisms. Second,
universal codebook learning has a larger number of common
codewords with the proposed method than separate codebook
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Fig. 7. Average scene classification accuracy of the universal codebook learning and the separate codebook learning with different number of codewords on
the MSRC dataset. The performance of the proposed multitask codebook learning with 500 codewords is illustrated with the dash line. (a) SIFT. (b) HOG.
(c) LBP. (d) OTC.

Fig. 8. Average scene classification accuracy of universal codebook learning and separate codebook learning with different number of codewords on the
SIFT flow dataset. The performance of the proposed multitask codebook learning with 1000 codewords is illustrated with the dash line. (a) SIFT. (b) HOG.
(c) LBP. (d) OTC.

learning, because separate codebook learning is highly redun-
dant.

C. Evaluation of Feature Pooling

In this experiment, we evaluate effectiveness of the proposed
context-aware image representation in comparison with the
following feature pooling schemes:

1) Hard assignment + unit voting: Each local feature
only casts a unit vote for the most likely semantic
class.

2) Soft assignment + unit voting: Each local feature casts
a unit vote for each semantic histogram.

3) Soft assignment + weighted voting: Each local feature
casts a weighted vote for each semantic histogram,
which is the proposed scheme.

Also, a global codebook of 500 codewords is learned for the
MSRC dataset, and a global codebook of 1000 codewords is
learned for the SIFT flow dataset by the proposed multitask
codebook learning algorithm. The average scene classifica-
tion accuracy of different feature pooling schemes is shown
in Fig. 10.

It could be observed from Fig. 10 that only voting to the
most likely semantic class obtains the worst result, because
the semantic response is not completely reliable, so that hard
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Fig. 9. The number of common codewords in multitask codebook learning
and separate codebook learning, multitask codebook learning and separate
codebook learning. (a) MSRC dataset. (b) SIFT flow dataset.

Fig. 10. Average scene classification accuracy of different pooling schemes.
(a) MSRC dataset. (b) SIFT flow dataset.

voting will introduce large bias to the image representation.
On the other hand, uniform voting to all semantic classes
works better than hard voting, because the contextual quantiza-
tion to multiple semantic codewords preserves more informa-
tion in feature encoding. The proposed method achieves the
best performance, because the relative strength of semantic
classes is preserved in the image representation, which is
important for scene classification.

Fig. 11. Average scene classification accuracy of (1) baseline codebook
learning + baseline image representation, (2) baseline codebook learning +
context-aware image representation, and (3) multitask codebook learning +
context-aware image representation. (a) MSRC dataset. (b) SIFT flow dataset.

D. Impact of Multitask Codebook Learning and
Context-Aware Image Representation

In this experiment, we analyze the gain of multitask code-
book learning and context-aware image representation. Specif-
ically, the baseline codebook learning scheme is universal
codebook learning, and the baseline image representation is a
global codeword histogram collected from the 3-level spatial
pyramid. The average scene classification accuracy of nolistsep

• baseline codebook learning + baseline image representa-
tion;

• baseline codebook learning + context-aware image rep-
resentation;

• multitask codebook learning + context-aware image rep-
resentation.

is illustrated in Fig. 11. It should be noted that learning the
semantic codebooks without using it for context-aware image
representation is meaningless, so that this situation is not
evaluated.

On average, the proposed context-aware image representa-
tion alone outperforms the baseline system by 35% for MSRC
dataset and 2% for the SIFT flow dataset. After incorporating
the multitask codebook learning, the proposed method out-
performs the baseline system by 42% for the MSRC dataset
and 11% for the SIFT flow dataset.

E. Sparsity of Semantic Codewords
In this experiment, we evaluate the influence of the sparsity

of the semantic codewords, which is controlled by λ in Eq. (5),
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Fig. 12. Average scene classification accuracy for λ =
0.001, 0.002, 0.003, 0.004, 0.005. (a) MSRC dataset. (b) SIFT flow dataset.

to the performance of scene classification. The average scene
classification accuracy for λ = 0.001, 0.002, 0.003, 0.004 and
0.005 is tested, and the result is shown in Fig. 12.

In general, for both datasets, the average scene classification
accuracy is improved as λ increases when λ < 0.003 and
drops quickly when λ > 0.003. Two conclusions can be drawn
from Fig. 12. First, the scene classification accuracy will be
low if the semantic codewords are too dense, because the
distinct feature distribution of semantic classes is not properly
modeled. Second, the scene classification accuracy will also
be low if the semantic codewords are too sparse, because a
small number of codewords are not capable of capturing the
complicated distribution of local features accurately.

Moreover, the semantic codeword distribution of the SIFT
descriptors for λ = 0.001 and 0.005 on the SIFT flow dataset
is visualized in Fig. 13 (c) and Fig. 13 (d). It is clearly
demonstrated in Fig. 13 that the distribution of semantic
codewords becomes sparser with λ getting larger.

F. Computational Complexity

Finally, we analyze the computational complexity of the
proposed method. In general, the computational complexity
of the proposed method is dependent on two factors: (1) the
dimension and number of the local descriptors, and (2) the
number of global codewords. We evaluate the time con-
sumption of the proposed method on the SIFT flow dataset,
where 1613 image are used for training. Approximately four
million 128-dimensional SIFT descriptors are then computed
from those images, from which one million local features
are randomly sampled to train the semantic codebooks. The
computation of the proposed method is mainly occupied
by three parts: (1) the learning of the semantic codebooks,
(2) the contextual quantization, and (3) semantic pooling.

Fig. 13. Semantic codeword distribution of the universal codebook learning,
the separate codebook learning and the multitask codebook learning on the
SIFT flow dataset (K = 1000, λ = 0.001, 0.005). Each column represents
a global codeword, and each row represents a semantic class. Codewords
selected by the semantic classes are marked in distinct colors, and the
unselected ones are marked in black. (a) Universal codebook learning.
(b) Separate codebook learning. (c) Multitask codebook learning
(λ = 0.001). (d) Multitask codebook learning (λ = 0.005).

Fig. 14. Computational complexity analysis. (a) time consumption of
codebook learning, contextual quantization and semantic pooling in the
proposed algorithm (K = 500, 1000, 2000); (b) time consumption of separate
codebook learning, universal codebook learning and the proposed multitask
codebook learning.

The composition of runtime of the proposed method is dis-
played in Fig. 14(a) for K = 500, 1000 and 2000. Note that
the contextual quantization and semantic pooling are applied
to all four million local features. Fig. 14(a) demonstrates that
the time for codebook learning, contextual quantization and
semantic pooling is almost proportional to the number of
codewords.
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In addition, we further compare the time consumption
of separate codebook learning, universal codebook learning
and the proposed multitask codebook learning on the SIFT
flow dataset. Specifically, 1000 codewords are learned from
approximately one million SIFT descriptors as described in
Section VI-B by the three codebook learning approaches.
The result is shown in Fig. 14(b). It can be observed from
Fig. 14(b) that computational complexity of the proposed mul-
titask codebook learning is significantly larger than separate
codebook learning and universal codebook learning. However,
in practice, since the codebook learning is accomplished
off-line and the semantic codeword assignment tasks can be
optimized in parallel, the time consumption of the proposed
method can be further reduced.

VII. CONCLUSIONS

This paper proposes a novel scene classification method
that enriches the conventional BoF-based framework with two
improvements: the multitask learning of compact semantic
codebooks and context-aware image representation. It encodes
the local features of the images with a set of distinct semantic
codebooks, which are more characteristic of the visual appear-
ance of different types of semantic categories than a single
universal codebook. Furthermore, in order to suppress the
dimensionality of the codebooks, a compact representation of
multiple semantic codebooks is designed. Specifically, instead
of learning each semantic codebook separately in a single-
task learning manner, we learn a global codebook, so that
each semantic codebook is composed of a sparse subset of
the codewords from the global codebook. Since this prob-
lem is non-trivial, we decompose the original problem into
two subproblems, and optimize them iteratively via convex
optimization and submodular optimization techniques. Based
on the learned semantic codebooks, a discriminative context-
aware image representation, incorporating both global and
semantic information, is designed, which can be computed
by contextual quantization and semantic pooling. Experiments
on multiple datasets with various local features validated the
effectiveness of the proposed method in comparison with other
conventional approaches. Along this trajectory, our future
effort is to make pixel-level annotation of semantic classes
more convenient to train the semantic codebooks by semi-
supervised data mining approaches.
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