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A New Network-Based Algorithm for Human
Activity Recognition in Videos

Weiyao Lin, Yuanzhe Chen, Jianxin Wu, Hanli Wang, Bin Sheng, and Hongxiang Li

Abstract—In this paper, a new network-transmission-based
(NTB) algorithm is proposed for human activity recognition in
videos. The proposed NTB algorithm models the entire scene as
an error-free network. In this network, each node corresponds
to a patch of the scene and each edge represents the activity
correlation between the corresponding patches. Based on this
network, we further model people in the scene as packages,
while human activities can be modeled as the process of package
transmission in the network. By analyzing these specific package
transmission processes, various activities can be effectively de-
tected. The implementation of our NTB algorithm into abnormal
activity detection and group activity recognition are described
in detail in this paper. Experimental results demonstrate the
effectiveness of our proposed algorithm.

Index Terms—Activity recognition, network model, video
surveillance.

I. Introduction

HUMAN ACTIVITY recognition is of increasing impor-
tance in many applications, including video surveillance,

human–computer interaction, and video retrieval [1]–[14].
Automatically recognizing activities of interest plays a key part
in many of the existing video systems. Therefore, it is always
desirable to develop new activity recognition algorithms with
higher accuracy and stronger capability for handling various
scenarios.
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Many algorithms have been proposed to recognize human
activities [1]–[10]. Aggarwal and Ryoo [1] gave a comprehen-
sive review of human activity analysis. Nascimento et al. [2]
detected human actions using a bank of switch dynamical
models with a priori knowledge of the scenario. Rao et al. [3]
introduced view-invariant dynamic time warping for analyzing
activities with trajectories. Zelniker et al. [4] created global
trajectories by tracking people across different cameras and
detected abnormal activities if the current global trajectory de-
viates from the normal paths. However, these algorithms only
focus on recognizing the scene-related activities (i.e., activities
only considering the relationship between the person and his
surrounding scene, such as a person following a regular path or
a person entering unusual regions). Thus, it is very difficult to
extend these algorithms into the recognition of group activities
(i.e., activities including the interaction among people such as
approach or people being followed [12]). Furthermore, Kim
and Grauman [5] proposed using a mixture of probabilistic
principal component analyzers to learn normal patterns of ac-
tivities and infer a space–time Markov random field (MRF) to
detect abnormal activities. This method can effectively detect
and locate abnormal activities that deviate from the learned
normal motion patterns and has the potential to be extended
to detect group activities when the group motion pattern is suit-
ably learned. However, since this method is constructed based
on the local–regional motion information, it cannot explicitly
differentiate activities with motion patterns in common (e.g.,
differentiating moving-back-and-forth from moving-forward
and moving-backward). Also, the step of inferring the MRF
during the detection process is time consuming.

There is also much research on group activity recognition.
Zhou et al. [13] detected pair activities by extracting the
causality features from bitrajectories. Ni et al. [14] further
extended the causality features into three types, including
individuals, pairs, and groups. Cheng et al. [11] used the
group activity pattern for representing and differentiating
group activities where Gaussian parameters from trajectories
were calculated from multiple people. Lin et al. [12] used
group representative to represent each group of people for
detecting the interaction of people groups such that the number
of people can vary in the group activity. However, while
these methods suitably handle the interaction among people,
many of them neglect the relationship between people and
their surrounding scene. Thus, they may have limitations
when detecting the scene-related activities. Furthermore, their
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abilities for detecting complex activities (such as people first
approach and then split) are also limited.

Although some methods [7], [10], [17], [27] can recognize
the group activity, as well as the scene-related activity, by
using some predesigned graphical models such as the layered
hidden Markov model (HMM) [10], they often require large
amount of training data to work well. Besides, the restricted
graphical structure used in these methods may also limit their
ability to handle various unexpected cases.

In this paper, we propose a new network-transmission-
based (NTB) algorithm for human activity recognition. The
proposed framework first models the entire scene as an error-
free network. In this network, each node corresponds to a
patch of the scene and each edge represents the activity
correlation between the corresponding patches. Based on this
network, we further model people in the scene as packages
and human activities can be viewed as the process of package
transmission in the network. By suitably analyzing these
specific package transmission processes, human activities can
be efficiently recognized. Our NTB algorithm is flexible and
capable of handling both the interactions among people (group
activities) and the interaction between people and the scene
(scene-related activities). Experimental results demonstrate the
effectiveness of our proposed algorithm.

The rest of this paper is organized as follows. Section II
describes the framework of our proposed NTB algorithm.
Sections III and IV describe the implementations of our NTB
algorithm in abnormal event detection and group activity
recognition in detail, respectively. The experimental results are
shown in Section V and Section VI concludes this paper.

II. Framework of the NTB Algorithm

A. Basic Idea of the Algorithm

The basic idea of our NTB algorithm can be described by
Figs. 1 and 2. Our NTB algorithm first divides the entire
scene into patches where each patch is modeled as a node in
the error-free network (as in Fig. 1). Based on this network,
the process of people moving in the scene can be modeled
as the package transmission process in the network (i.e., a
person moving from one patch to another can be modeled as
a package transmitted from one node to another). In this way,
various human activity recognition problems can be transferred
into the package transmission analysis problem in the network.

With this network-based model, one key problem is how to
use this model for recognizing activities. We further observe
that if we model the process of person moving among patches
as the energy consumed to transmit a package, the activities
can then be detected with these transmission energy features.
For example, abnormal activities can be detected if its energies
deviate from the normal activity transmission energy by larger
than a pretrained threshold (i.e., for example, if a person moves
to an unusual patch, the energy used will be increased and
this will be detected as an abnormal activity). In this way,
the abnormal detection problem can be modeled as the energy
efficient transmission problem in a network [19].

Furthermore, besides modeling the correlation between the
person and the scene, our network-based model can also be

Fig. 1. (a) Divide the scene into patches. (b) Model each patch in (a) as a
node in the network and the edges between nodes are modeled as the activity
correlation between the corresponding patches. The red trajectory R(u, q)
in (a) is modeled by the red package transmission route in (b). [Note that
(b) can be a fully connected network (i.e., each node has edges with all the
other nodes in the network). In order to ease the description, we only draw the
four neighboring edges for each node in the rest of this paper] (best viewed
in color).

Fig. 2. Constructing relative networks for modeling people interactions.
Upper: the locations of the two approaching people in two different frames
(the dashed patches are divided by making the red-circled gray person at the
network center). Down: the transferred networks of the upper frames (the
red-circled gray node and the blue-circled dotted node are the locations of
the two people in the network). The location of the red-circled gray person is
fixed in the bottom network, while the location of blue-circled dotted person
in the bottom network is decided by his relative location to the red-circled
gray person.

easily extended for handling the interaction among people.
For example, as in Fig. 2, we can construct a relative network
where one person is always located in the center of the network
and the movement of another person can be modeled as the
package transmission process in this relative network based
on his relative movement to the network-center person. In
this way, the interaction among people can also be effectively
recognized by evaluating different transmission energies in our
network-based model.

Based on the above discussions, we can propose our NTB
algorithm. The framework of our algorithm is described in the
following section.

B. Framework

The framework of our proposed NTB algorithm is shown
in Fig. 3. In Fig. 3, the part in the dashed rectangle is the
training module, while the three blocks on the top are the
testing process.
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Fig. 3. Framework of the NTB algorithm.

In the training module, the scene is first divided into patches
where each patch is modeled as a node in the network. Then
the activity correlations between patches are estimated based
on the training data, and these activity correlations will be
used as the edge values in the network. With these nodes and
edges, the transmission networks can be constructed. At the
same time, the activity detection rules are also derived from
the training data for detecting activities of interest during the
testing process.

In the testing process, after obtaining trajectories of people
(which represent activities), their corresponding transmission
energies are first calculated based on the constructed network.
Then, these transmission energies are analyzed and the activity
detection rules will be applied for detecting the activities.
Furthermore, several things need to be mentioned about our
NTB algorithm. They are described in the following.

1) We assume the networks used in our algorithm are error-
free (i.e., there are no interferences such as noise or
package losses during transmission).

2) Although there are other works [7], [15], [17] trying to
segment the scene into parts for activity recognition, our
NTB algorithm is different from them in the following.

a) Our NTB algorithm constructs a package transmis-
sion network over the patches, while other works
[7], [17] use graphical models for recognition.
While the fixed structures of the graphical models
[7], [17] may limit their ability to handle various
unexpected cases, our fully connected transmission
network is more general and flexible for handling
various scenarios.

b) With the transmission network model, our NTB al-
gorithm is robust to the patch segmentation styles
(e.g., in this paper, we just simply segment the
scene into identical rectangular blocks as shown in
Fig. 1). Comparatively, the graphical model-based
methods normally require careful segmentation of
the scene [15], [17].

3) From Fig. 3, it is clear that the steps of calculate the en-
ergy between patches and activity detection rules are the
key parts of our NTB algorithm. The implementation of
these steps can be different for different activity recog-
nition scenarios. Therefore, in the next two sections, we
will describe the implementations of our algorithm in
two scenarios (abnormal event or scene-related activity
detection, and group activity recognition), respectively.

III. Implementation of the NTB Algorithm in

Abnormal Event Detection

In this scenario, we try to detect abnormal activities such
as people following irregular paths and people that move back
and forth. In the following, we will describe the implementa-
tion of each step in Fig. 3 in detail. Again, note that the two
gray blocks in Fig. 3 are the key parts of our algorithm.

A. Divide the Scene Into Patches

For the ease of implementation, we simply divide the scene
into identical nonoverlapping rectangular patches in this paper,
as in Fig. 1. Note that other semantic-based segmentation
methods [15] can also be easily used in our algorithm.

B. Calculate Energy Consumption for People Activities

Let R(u, q) be the person trajectory of the current activity
with u being the starting patch and q being the person’s current
patch. Also define the direct transmission (DT) energy for the
edge between patches i and j as e(i, j) (i.e., the energy used
by directly transmitting a package from patch i to j without
passing through other patches, as will be described in detail
in the next subsection). The total transmission energy for the
trajectory R can be calculated by accumulating the DT energies
of all patch pairs in the trajectory, as in

E (u, q) =
∑

(i,j)∈R(u,q)

e (i, j). (1)

For example, in Fig. 1(a), the total transmission energy for
the red trajectory R(u, q) equals e(u, m) + e(m, n) + e(n, q).

C. Calculate DT Energy (Activity Correlation) Between
Patches

The edges between nodes in the network are modeled by
the DT energy between patches. In order to calculate the DT
energy, we first introduce the activity correlation AC between
patches. That is, when there are high chances for people to
perform activities between two patches i and j (e.g., move
across i and j), a high correlation AC(i, j) will appear between
these patches. Otherwise, a low correlation will be set. Thus,
the activity correlation can be calculated by

AC (i, j) =
∑

k

twk (i, j) (2)

where AC(i, j) is the activity correlation between patches
i and j. twk(i, j) is the correlation impact weight between
i and j from the kth trajectory in the training data. From
(2), we can see that the activity correlation AC(i, j) is the
summation of correlation impact weights twk(i, j) from the
training trajectories. If more training trajectories indicate a
high correlation between patches i and j, a large activity
correlation AC(i, j) will be calculated. With the definition
of AC(i, j), the DT energy e(i, j) between patches can be
calculated by

e (i, j) = 1/
AC (i, j). (3)

From (3), we can see that the DT energy is inversely
proportional to the activity correlation. That is, when the
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Fig. 4. Flowchart of the iterative method.

activity correlation value AC(i, j) is larger between patches
i and j, it implies that a higher activity correlation will appear
between the patches, resulting in a lower DT energy. In this
way, we can guarantee that normal activities (normally go
across high-correlation patches) can result in smaller total
energies.

From (2) to (3), we can see that the correlation impact
weights twk(i, j) are the key parts for calculating the DT
energies. In this paper, an iterative method is proposed to
calculate twk(i, j), AC(i, j), and e(i, j) and the flowchart of
this iterative method is shown in Fig. 4.

From Fig. 4, we can see that the proposed iterative
method mainly includes three steps. In the first step, twk(i, j),
AC(i, j), and e(i, j) are initialized. In the second step, given the
current values of twk(i, j), AC(i, j), and e(i, j), the thresholds
for activity detection (T 1 and T 2) are updated such that they
can achieve good detection results with the current DT energy
values e(i, j). In the third step, the values of twk(i, j), AC(i, j),
e(i, j) are further updated with the newly updated detection
thresholds (T 1 and T 2). Steps 2 and 3 will be performed
iteratively until the parameter values are converged or the
maximum iteration time is reached. From Fig. 4, we can
see that the key parts of the iterative method are the three
steps. Therefore, in the following, we will describe the detailed
process of the three steps in Fig. 4.

Step 1: Initialize twk (i, j), AC(i, j), and e(i, j): The values
of twk(i, j), AC(i, j), and e(i, j) are initialized by

tw0
k (i, j) =

⎧⎨
⎩

1, if training trajectory k moves across
patches i andj

0, otherwise
(4)

AC0 (i, j) =
∑

k

tw0
k (i, j) and e0(i, j) = 1/AC0(i, j)

where tw0
k(i, j), AC0(i, j), and e0(i, j) are the initialized values

and the superscript 0 stands for the iteration number. From (4),
we can see that twk(i, j) is initialized to be 1 if the kth training
trajectory moves across node i and node j, or initialized to
be 0 otherwise. This means that the initial DT energy values
e0(i, j) are set to be the inverse of the total number of training
trajectories crossing the patches such that a large number
of crossing trajectories imply a high correlation between the
patches, and thus a low DT energy value will be initialized.
This process can reasonably initialize the DT energy values
close to their optimal ones. Furthermore, note that a large value
will be set for initializing e0(i, j) if the trajectory-crossing time
between i and j is zero to avoid dividing by 0.

Step 2: Update the detection thresholds T1 and T2: In this
step, the detection thresholds T 1 and T 2 are updated such that
the updated thresholds can achieve good detection results with
the current DT energy values e(i, j). The thresholds are updated
by (9) and this step will be described in detail in Section III-D.

Step 3: Update twk (i, j), AC(i, j), and e(i, j): Given the
newly updated detection thresholds T 1 and T 2, the values of
twk(i, j), AC(i, j), and e(i, j) can be updated by

twn+1
k (i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

twn
k (i, j) if kth trajectory is correctly

recognized

twn
k (i, j) ·

(
1 + En

k−T n
l

En
k

)
if k is a false alarm

twn
k (i, j) ·

(
1 − T n

l −En
k

2·T n
l

)
if k is a miss detection

(5)

ACn+1 (i, j) =
∑

k

twn+1
k (i, j) and en+1 (i, j) = 1/

ACn+1 (i, j)

where the superscripts n and n + 1 are the iteration numbers
and the subscript k is the trajectory number. twn+1

k (i, j), AC
n+1 (i, j), and e n+1 (i, j) are the updated values in the n + 1
iteration. En

k is the total transmission energy for trajectory k
calculated by (1) based on the DT energy values in the nth
iteration en(i, j). Tn

l (l = 1 or 2) are the detection thresholds
in the nth iteration where the selection of l depends on which
threshold is used for detection. The calculation of Tn

l (n = 0, 1,
2, ...) will be described in detail in Section III-D. From (5), we
can see that during each iteration, the activity detection results
on the training data are used as the feedback for updating
the DT energies. In this way, a false alarm will increase the
activity correlation weight twk(i, j) and a miss detection will
decrease twk(i, j). More specifically, if trajectory k is a false
alarm (i.e., a normal activity wrongly detected as abnormal)
and it passes through patches i and j, we will increase twk(i,
j) according to (5) [i.e., increase twk(i, j) by multiplying a
factor of 1 + (En

k – Tn
l )/En

k ]. In this way, the DT energy e(i, j)
will be decreased such that the total transmission energy for
k will become smaller in the next iteration [note that e(i, j) is
inversely proportional to twk(i, j)], making k more likely to be
detected as a normal activity. On the contrary, if the abnormal
activity k is detected as a normal activity (i.e., a miss), the
correlation impact weight of k will be decreased [or the DT
energy e(i, j) is increased] for increasing the ability to detect
abnormal activities.
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Furthermore, note that since our network model allows the
nodes to be fully connected to each other (i.e., each node can
also have edge with non-adjacent patches), our NTB algorithm
is more general and flexible of handling unexpected cases such
as a person unexpectedly jumping to a nonadjacent patch due
to the occlusion in the adjacent patches.

D. Activity Detection Rules

As mentioned, the basic idea of using our NTB algorithm
for abnormal activity detection is to evaluate whether the
transmission energy of the activity deviates from the normal
case by larger than a pretrained threshold. Therefore, one of
the key issues of our algorithm is to estimate the energy con-
sumption for normal activities such that it can be used as the
reference for abnormality detection. In this paper, we propose
creating the minimum-energy route map for estimating the
total transmission energies needed for normal activities. Based
on this minimum-energy route map, criteria can be developed
to detect abnormal activities.

The minimum-energy route map can be described by

mapnormal = {Emin (m, n) , Rmin (m, n) |m, n ∈ S} (6)

where S is the entire set of all patches, Emin(m, n) and
Rmin(m, n) are the smallest possible transmission energy and
its corresponding minimum energy consumption route when
we want to transmit packages from patch m to n, respectively.

Since in practice, the number of entrance (or exit) patches in
the scene is limited, we do not need to calculate Emin and Rmin

for all (m, n) pairs. Instead, mapnormal only needs to include
Emin(u, n) and Rmin(u, n) where u are the entrance (or exit)
patches and n is any patch in the scene (i.e., n∈S). In this
way, given any patch in the scene, we can know the best route
and its corresponding minimum transmission energy from the
entrance u to this patch.

Since the calculations of Emin(u, n) and Rmin(u, n) are
similar to the energy routing problem in network broadcasting
[19], they can be calculated by the energy-efficient-routing
algorithms [19] used in wireless sensor broadcasting. However,
since we only need to calculate the minimum energy and
route to the entrance patch u instead of between any patches
[i.e., u is fixed in Emin(u, n) and Rmin(u, n)], the routing
algorithm can be simplified. Therefore, in this paper, we use a
simplified broadcast incremental power (SBIP) algorithm for
creating the normal transmission route map. It is described as
in Algorithm 1. Fig. 5 shows the process of the SBIP algorithm
in an example network.

Based on the minimum-energy route map, detection rules
can then be developed to decide whether the input activity tra-
jectory is abnormal. The proposed abnormal detection criteria
are

The current activity, R (u, q) is abnormal if

E(u, q) > T1 or E(u, q) > T2(u, q) (7)

where R(u, q) is the trajectory of the current activity with u
being the entrance patch and q being the current patch. E(u,
q) is the total transmission energy for the current activity and
Emin(u, q) is the minimum possible energy between u and q

Fig. 5. Process of the SBIP algorithm in an example network. [The nodes
inside the blue dash-dot circle are the set of nodes that have already been
added to the routing tree (i.e., NE in Algorithm 1). The dashed lines are the
DT energy values. The bold solid lines are the minimum energy routes in the
tree. The lists at the bottom are the decided Rmin and Emin in each step.]

and it is calculated by Algorithm 1 and (6). T l (l = 1 or 2)
are the thresholds for detecting abnormal activities. Note that
T 1 is a constant value for all trajectories, while T 2(u, q) is
adaptive with the trajectories and controlled by the parameter
α by

T2 (u, q) = α · (Emin (u, q)) . (8)

Note that T 1 and T 2 can be automatically determined by
the training data during the same recursive training process as
in Fig. 4 where in each iteration, T 1 and T 2 are updated by
finding a suitable set Tn

1 and Tn
2 that minimize the squared

summation of two error rates err2
FA + err2

miss

{
T n

1 , T n
2

}
= arg min{t1,t2}

(
errFA (t1, t2, {en (i, j)})2

+errmiss (t1, t2, {en (i, j)})2
)

(9)

where {en(i, j)} is the DT energy set for all edges in the
transmission network during the nth iteration [as calculated
by (5)]. errFA(t1, t2, {en(i, j)}) and errmiss(t1, t2, {en(i, j)})
are the false alarm and miss detection rates [12] for detecting
abnormal activities in the training set when the thresholds t1,
t2, as well as {en(i,j)}, are used for detection. It should be
noted that the rules in (7) are only one way to detect abnormal
activities. In practice, other general classifiers [such as the
support vector machine (SVM) [8]] can also be used to take
the place of (7) and to perform abnormal activity recognition
based on our energy features. This will be further discussed
in Section V. Furthermore, Fig. 6 shows the detailed detection
processes for four example activity trajectories. From (7) and
Fig. 6, we can see that with our detection rules, an activity will
be detected as abnormal if its total energy deviates from the
normal activity transmission energy by larger than a pretrained
threshold T 1 [such as Fig. 6(b) and (d)], or it is larger than
another pretrained threshold T 2 [such as Fig. 6(c)]. Note that
the second detection criterion is included such that:

1) the on-the-fly (or online) abnormal detection is enabled
such that we can detect normal/abnormal activities in
the current patch rather than waiting until the end of the
trajectory for detection;

2) some abnormal activities with small absolute energy
values but large ratios over Emin(u, q) can be effectively
detected [as Fig. 6(c)].
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Fig. 6. Examples of the activity trajectories (upper) and their corre-
sponding detection processes (down). (Red dashed line: T1 threshold.
Pink dash-dot line: T2 threshold. Black circle-marker line: total trans-
mission energy. Blue arrows: patches where abnormalities are detected).
(a) Normal activity. (b) Abnormal climbing table. (c) Abnormal back and
forth. (d) Abnormal approach unusual region.

IV. Implementation of the NTB Algorithm in

Group Activity Recognition

In the group activity recognition scenarios, we want to
recognize various group activities such as people approach
each other, one person leaves another, and people walk to-
gether. As mentioned, when recognizing the interaction among
people, the relative networks can be constructed as in Fig. 2.
At the same time, since some group activities also include
the relationship between people and their surrounding scene
(e.g., we need to recognize whether a person is moving or
standing still in the scene to differentiate activities such as
both people walk to meet or one person stand still and another
one approaches him), a scene-related transmission network
similar to abnormal event detection is also required. Therefore,
in this section, we propose using two types of networks for
representing group activities. The detailed implementation of
the key parts in Fig. 3 for group activity detection is described
in the following.

A. Construct Networks

In this paper, we construct three networks for recognizing
group activities: the scene-related network, the normal relative
network, and the weighted relative network. The scene-related
network is used to model the correlation between people and
the scene, and it can be constructed as in Fig. 1. The normal
relative network and the weighted relative network are used

for modeling the interaction among people, and they can be
constructed by fixing the location of one person in the network
and derive the locations of other people based on their relative
movements to the location-fixed person, as in Fig. 2. Besides,
the following points need to be mentioned about the networks.

The structures of the normal relative and the weighted
relative networks are the same. They only differ in edge values.

Note that the scene-related network is an undirected network
(i.e., the DT energy consumption when moving from patch i
to j is the same as moving from j to i). However, the normal
relative network and the weighted relative network are directed
networks (i.e., the DT energy from i to j is different from j to
i). This point will be further described in detail in the following
subsections.

Since the relative networks only focus on the relativity
between people, when constructing relative networks, we
randomly select one person to be the reference person and
put him at the center of the relative network.

Besides the three networks used in the section, our algorithm
can also be extended to include other networks with other
motion features. This point will be further discussed in detail
in the experimental results (i.e., Sections V-C and V-D).

B. Calculate Energy Consumption for People Activities

In this paper, we propose calculating a set of transmission
energies from the three networks for describing group activ-
ities. For the ease of description, we use two-people group
activity as the example to describe our algorithm. Multiple
people scenarios can easily be extended from our description.
The total transmission energy set for two-people group activity
can be calculated by

[E1(u1, q1), E2(u2, q2), ENR(u2 − u1, q2 − q1),

EWR(u2 − u1, q2 − q1) (10)

where E1(u1,q1) and E2(u2,q2) are the total transmission
consumption for person 1 and person 2 in the scene-
related network, respectively. They can be calculated by (1).
ENR(u2–u1,q2–q1) is the total transmission consumption in the
normal relative network where R(u2–u1,q2–q1) is the relative
trajectory of person 2 with respect to person 1. EWR(u2–u1,q2–
q1) is the total transmission consumption in the weighted
relative network. ENR(u2–u1,q2–q1) and EWR(u2–u1,q2–q1)
can be calculated by⎧⎪⎪⎨
⎪⎪⎩

ENR (u2 − u1, q2 − q1) =
∑

(i,j)∈R(u2−u1,q2−q1)
enr (i, j)

EWR (u2 − u1, q2 − q1) =
∑

(i,j)∈R(u2−u1,q2−q1)
ewr (i, j)

(11)
where enr(i, j) and ewr(i, j) are the DT energy from patch
i to j in the normal relative network and weighted rela-
tive network, respectively. The calculation of enr(i, j) and
ewr(i, j) will be described in detail in the next subsection.

C. Calculate Energy (Activity Correlation) Between Patches

The DT energy for the three networks is shown by Fig. 7.
For the scene-related network, since we only need it to

detect the movement of the person in our scenario, we simply
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Fig. 7. DT energy values for the three networks [note that (a) is an
undirected network while (b) and (c) are directed networks]. (a) Scene-related
network. (b) Normal relative network. (c) Weighted relative network.

set all the DT energies to be 1, as in Fig. 7(a). Note that if
we want to detect abnormal group activities such as a group
of people following abnormal paths, we can also utilize the
method described in Fig. 4 to automatically train the DT
energies in the scene-related network instead of simply putting
all DT energies to be 1. Furthermore, we can also extend the
scene-related network by using directed networks to handle
the scenarios related to motion directions (e.g., the road traffic
case).

For the normal relative network, three DT energy values
are used as shown in Fig. 7(b). For edges pointing toward
the center node, their DT energy values enr(i, j) will be 1
[as the red dashed arrows in Fig. 7(b)]. For edges pointing
outward the center node, their DT energy values will be −1 [as
the blue dash-dot arrows in Fig. 7(b)]. The DT energy values
will be 0 for edges between nodes having the same distance
to the center node [as the black solid arrows in Fig. 7(b)].
Since in the normal relative network, person 1 is fixed at the
center node, the normal relative energy ENR(u2–u1,q2–q1) is
mainly calculated by the movement of person 2 with respect to
person 1. Based on our DT energy definition, when person 2 is
moving close to the center node (i.e., moving toward person 1),
ENR(u2–u1,q2–q1) will be increased. On the contrary, when
person 2 is leaving the center node, ENR(u2–u1,q2–q1) will be
decreased. In this way, the relative movement between people
can be effectively modeled by the transmission energy.

The structure of the weighted relative network is the same
as the normal relative network. However, the DT energy values
ewr(i, j) are weighted as shown in Fig. 7(c). For edges either
pointing toward or outward the center node, the DT energy
values will become larger when they are closer to the center
node. Their only difference is that edges pointing toward the
center node are positive while edges pointing outward the cen-
ter node are negative. With this weighted relative network, we

can extract the history or temporal information of the relative
movement between people. For example, when person 2 moves
from the red node in Fig. 7(c) toward person 1 and moves back,
the corresponding total weighted relative transmission energy
EWR(u2–u1,q2–q1) will be a positive value. On the contrary,
EWR will be a negative value when person 2 leaves person 1
from the red node and then comes back.

If we take a more careful look at the three networks in
Fig. 7, we can see that since the scene-related network is
constructed based on the scene without being affected by
the people movements, it can be viewed as an identical field
where packages need to consume energy to move and their
moving distances are proportional to their consumed energies.
Comparatively, since the two relative networks in Fig. 7(b)
and (c) are constructed based on person 1, they can be
viewed as the repulsive fields where person 1 in the network
center is creating repulsive forces. Thus, packages need to
consume energy to approach person 1 while gaining energy
when leaving person 1. At the same time, no energy will
be consumed or gained when packages are revolving around
person 1.

Furthermore, note that the three energy networks in Fig. 7
are not fully connected (i.e., each node is only connected
to its eight neighboring nodes and is not connected with
its nonadjacent nodes). However, these networks can also be
extended to become fully connected. For example, we can
define the DT energy between two nonadjacent nodes i and j
as the minimum possible energy needed to move from i to j. In
this way, the DT energy between any nodes can be calculated
and the fully connected networks can be constructed.

D. Activity Detection Rules

With the three networks and their corresponding DT ener-
gies, we can calculate the total transmission energy set for the
input group activity trajectories, as in (10). Then when rec-
ognizing group activities, we can view the total transmission
energy set in (10) as a feature vector and train classifiers for
automatically achieving the detection rules. In this paper, we
use SVM [8] to learn the detection rules from the training
set and use it for group activity recognition. It should be
noted that the proposed method can be used with general
classifiers. We choose SVM since it is the common choice for
activity recognition so that it is easy to be implemented and
compared with our methods. Experimental results demonstrate
that our NTB algorithm can effectively recognize various
group activities.

V. Experimental Results

In this section, we show experimental results for our
proposed NTB algorithm. In the following, we will show
the results on four different datasets, including abnormality
detection and group activity recognition. Finally, we will
also discuss the computation complexity and memory storage
requirement of our NTB algorithm. Furthermore, note that in
our experiments, when we map the trajectory of an object
into the patch-based route [such as in Fig. 1(b)], we check the
location of the object in each frame. As long as the object
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TABLE I

Three Types of Abnormal Activities in Our Experiments

Fig. 8. Configuration of cameras in our two-camera dataset.

moves to a new patch, this new patch will be added to the
object’s patch-based route. In this way, all the patches through
which the trajectory passes can be added in the route.

A. Experiments for Abnormal Event Detection in an
Abnormality Dataset

First, we perform experiments on our multicamera dataset.
The dataset is created by a two-static-camera system as shown
in Fig. 8. From Fig. 8, we can see that the entire room has
five cubes (the gray blocks) and one entrance door (the dashed
block). In normal cases, people enter the room to their cubes,
or exit the room from their cubes, or move from one cube
to another. Therefore, these cubes and the entrance door can
be viewed as the entrance (or exit) patches. Furthermore, two
cameras are used to monitor the entire room where one camera
monitors the right part (the left blue dashed camera in Fig. 8)
and the other one monitors the left part (the right red dash-dot
one in Fig. 8).

In total, there are 326 sequences in our dataset which in-
cludes 230 normal activity sequences and 96 abnormal activity
sequences. Note that each sequence includes two videos from
the two cameras. In our experiments, three types of abnormal
activities are defined as in Table I. Fig. 9 shows part of the
global trajectories that we extracted for normal activities in the
two-camera view where the trajectories from two cameras are
first extracted by the particle-filter-based method [16] and then
combined into the global trajectory by the method of Prosser
[6]. Besides, the colored blocks in Fig. 10 are the patches that
we divided in our experiment.

Furthermore, several things need to be mentioned about
combing multiple camera views.

1) Our proposed algorithm is general and other methods
[9], [20], [21] can also be used to achieve the activity
trajectories.

Fig. 9. Global trajectories for part of the regular activities.

Fig. 10. Minimum-energy route map and normal transmission routes.
(a) Minimum-energy route map calculated by our SBIP algorithm. (b) Map
for normal transmission routes by deleting connections with large DT values
in (a).

2) When the patches from different camera views overlap
(i.e., patches from different camera views are for the
same region), we simply set the DT energy between
these patches to be 0 since moving between these
patches does not consume any energy.

3) Besides creating the global trajectories, other methods
can also be used to combine multicamera views. For
example, we can first use image stitching [23] to stitch
multicamera images into a large image of the entire
scene. Then, we can divide patches on this large image
and apply our method.

It should be noted that the scenario of our experiment is
quite challenging and complex because of the following.

1) The two-camera view includes both overlapping regions
(i.e., regions covered by both cameras) and nonover-
lapping regions (i.e., regions only covered by a single
camera).

2) There are only about 250 sequences available for train-
ing (in 75% training and 25% testing cases), which is
difficult for constructing satisfactory detection models.

Fig. 10(a) shows the result of a minimum-energy route map
calculated by our SBIP algorithm under 75% training and 25%
testing where five independent experiments are performed,
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and the results are averaged (note that we train on 75% of
all the data where both normal and abnormal samples are
included). From this map, we can achieve the minimum-energy
routes from the entrance patch to all the patches in the scene.
Furthermore, by deleting the connections with large DT values
in Fig. 10(a) (note that large connections with large DT values
refer to the routes to the unusual patches), a normal route map
can be achieved which can be roughly regarded as the map for
normal transmission routes, as in Fig. 10(b). From Fig. 10(b),
we can see that the calculated normal transmission routes
among the cubes and the entrance door are pretty close to the
regular trajectories in Fig. 9. This implies the effectiveness of
our algorithm in detecting abnormal activities. Furthermore,
note the following.

1) Although some patches such as i and j in Fig. 10(a) are
not connected (because the route map only allows one
route from the entrance patch to each patch and circle
routes are not allowed), it does not mean that the DT
energy between i and j is large. Rather, the DT energy
between i and j is small. Therefore, during the testing
part, people moving downward around the table to patch
j can also be detected as normal activity since its total
transmission energy is small.

2) Some nonadjacent patches [such as k and i in Fig. 10(a)]
are also connected in the minimum-energy route map.
This is because these patches are for the overlap regions
(i.e., patches from different camera views but repre-
senting the same physical region). As mentioned, the
DT energies between these patches are set to 0 by our
algorithm. In this way, patch i can find its best route to
the entrance patch u by going through k.

Furthermore, Table II compares the activity detection results
of the following seven methods.

1) The baseline 1 method that views the patches covered by
the normal training trajectories as normal patches (i.e.,
patches went through by the normal training trajectories)
and the remaining patches as abnormal (or unusual)
ones. Thus, in the testing part, trajectories going through
those abnormal patches will be detected as abnormal
(baseline 1 in Table II).

2) The baseline 2 method that uses kernel density estima-
tion [24] to construct an occupancy probability based on
the normal training trajectories and detects trajectories
that enter into low occupancy-probability areas as the
abnormal activities (baseline 2 in Table II).

3) The trajectory-similarity-based method where abnormal-
ities are detected if there is a clear difference between
the input trajectory and the pretrained trajectory cluster
[4] (TSB in Table II).

4) The spatio-temporal-analysis-based method that first ex-
tracts dynamic instants from the global trajectory and
then utilizes view-invariant dynamic time warping for
measuring trajectory similarities for detection [3] (STAB
in Table II).

5) The probability-transition-matrix-based method that cal-
culates the activity’s conditional probability based on

the pretrained probability transition matrix for activity
detection [9] (PTM in Table II).

6) The NTB + SVM method. That is, using [E(u, q), E(u,
q)/Emin(u, q)] as a 2-D feature vector for describing the
activities and using SVM to take the place of the rules
in (7) for abnormity detection (NTB + SVM in Table II).
Note that the training process of the NTB + SVM method
is similar to the NTB algorithm as in Fig. 4. However,
there are two major differences for the training process
of the NTB + SVM method.

a) Since in the abnormal activity recognition sce-
nario, the DT energy values [i.e., e(i, j) that are
used to calculated E(u, q) and Emin(u, q)] also
need to be trained in the training process, the
SVM classifier needs to be retrained during each
iteration when the DT energy values are updated.
That is, the SVM retrain step is used to take the
place of threshold updating step (Step 2) in Fig. 4.

b) Since there are no thresholds in the NTB + SVM
method, the correlation impact weight twk(i, j) can
be updated by (12) instead of (5)

twn+1
k (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

twn
k (i, j) , if kth trajectory is correctly

recognized
twn

k (i, j) · (
1 + Pn

k

)
, if k is a false alarm

twn
k (i, j) · (

1 − Pn
k

)
, if k is a miss

(12)
where Pn

k is the activity detection probability for the kth
trajectory calculated by the SVM in the nth iteration.
Our proposed NTB algorithm (NTB in Table II).

In Table II, three rates are compared: false alarm rate (FA)
[12], miss detection rate (Miss) [12], and total error rate (TER)
[12]. The FA rate is defined by Nfp

θ /N−
θ where Nfp

θ is the
number of false positive video clips for activity θ (i.e., the
number of normal activities wrongly detected as abnormal
activities in this experiment), and N−

θ is the total number of
negative video clips except activity θ in the test data (i.e.,
the total number of normal activities in this experiment) [12].
The miss detection rate is defined by Nfn

θ /N+
θ where Nfn

θ is the
number of false negative (misdetection) sequences for activity
θ (i.e., the number of abnormal activities wrongly detected
as normal activities in this experiment), and N+

θ is the total
number of positive sequences of activity θ in the test data
(i.e., the total number of abnormal activities in this experiment)
[12]. The TER rate is calculated by N t−r/N t−f where N t−r is
the total number of wrongly detected activities for both normal
and abnormal activities and N t−f is the total number of activity
sequences in the test set. TER reflects the overall performance
of the algorithm in detecting both the normal and the abnormal
activities [12]. In order for more detailed comparison, we also
include the Miss rate for each individual abnormal activity
listed in Table I (i.e., the miss rates for I, II, III in Table II).
Note that since the two baseline methods (baselines 1 and 2)
are only designed to detect normal and abnormal activities,
they cannot differentiate different abnormality types, and thus
the miss rates for types I, II, III abnormalities for these two
methods are not listed in Table II. Furthermore, also note that
the abnormal activities can be simply differentiated in our
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TABLE II

Miss, FA, and TER Rates of Abnormal Activity Detection

Under 75% Training and 25% Testing

NTB algorithm by: 1) detecting as type I abnormality if the
activity’s total transmission energy (TE) is larger than both
thresholds T 1 and T 2; 2) detecting as type II abnormality if
TE is smaller than T 1 and larger than T 2; and 3) detecting as
type III abnormality if TE is larger than T 1 but smaller than
T 2. Some examples of the process for detecting these three
abnormality types are shown in Fig. 6.

From Table II, we can see that the performance of our
NTB algorithm is obviously better than the other methods
(baseline 1, baseline 2, TSB, STAB, and PTM). Besides,
several observations can be drawn from Table II.

1) The performance of our NTB algorithm is obviously
better than the two baseline methods. This is because
of the following.

a) Since the training data in this experiment are not
sufficient, normal regions are not fully covered by
the normal training trajectories (i.e., some regions
are normal but no normal training trajectory passes
through them). Thus, if we simply use the limited
normal training data to model all the normal routes
(such as the two baseline methods), many normal
regions will be misregarded as the abnormal ones
and the detection performance will be greatly af-
fected. Comparatively, our NTB algorithm utilizes
an iterative method to construct the DT energies
between patches by suitably integrating both the
normal and abnormal training samples, as well as
the error rates on these training samples [i.e., (5)
and (9) in this paper]. In this way, the insufficient
training data can be more efficiently utilized to
construct a more reliable model.

b) More importantly, the two baseline methods also
cannot differentiate the abnormalities whose entire
trajectories are inside the normal regions (e.g.,
moving back and forth in the regular route or
moving around the table in the regular route).
Comparatively, our method can effectively detect
these abnormalities by checking the second criteria
in (7).

2) Our NTB algorithm also has better performance than
the trajectory-similarity-based methods such as TSB and
STAB. This is because of the following.

a) The trajectory-similarity-based methods will easily
confuse large-deviation normal trajectories with
small-deviation abnormal trajectories. For exam-
ple, if a normal trajectory keeps zigzagging around

the normal route, its distance to the normal-route
cluster may be large. At the same time, if an
abnormal trajectory closely follows the normal
route most of the time but only deviates to unusual
region at the end, its distance to the normal-route
cluster may be even smaller than the normal tra-
jectory. In this case, the trajectory-similarity-based
methods will fail to work. Comparatively, our NTB
algorithm utilizes both the normal and abnormal
training samples, as well as the error rates on these
training samples to construct suitable DT energies
between patches. In this way, trajectories moving
into unusual regions will be effectively detected
due to the large DT energies entering these unusual
patches.

b) The trajectory-similarity-based methods also have
low efficiency in detecting abnormalities such as
back and forth whose trajectory overlaps. Compar-
atively, our NTB algorithm can work effectively by
checking the second criteria in (7).

3) Although the PTM method introduces the transmission
matrix and multicamera consensus for handling activity
detection, its performance is still less satisfactory. This
is because of the following.

a) The transmission matrix may have limitations in
differentiating different trajectory behaviors.

b) The camera overlapping area in this experiment is
small, which limits the capabilities of its multi-
camera consensus step. On the contrary, our NTB
algorithm is more flexible under this scenario.

4) Our NTB algorithm is not only effective in detecting
abnormal activities, but also efficient in differentiating
all the abnormality activity types (i.e., I, II, III). Com-
pared to our method, the abnormal activity differen-
tiation ability for the other methods is much poorer.
Furthermore, the compared methods (i.e., TSB, STAB,
PTM) are extremely poor in differentiating the back and
forth activity [i.e., (II)]. This is because many back tra-
jectory patches are overlapped with the forth trajectory
patches, making the entire trajectory very difficult to be
efficiently represented. However, these types of activities
can still be effectively detected by NTB, as shown in
Fig. 6(b).

5) Comparing NTB with NTB + SVM methods, we have
seen that both methods can achieve similar perfor-
mances. This demonstrates the following.

a) Our proposed energy-based features (E(u, q) and
Emin(u, q)) are effective in differentiating abnor-
mal activities.

b) Our energy-based features from the network mod-
els are general and other general classifiers can
also be utilized to perform abnormal activity
recognition besides the criteria in (7).

Furthermore, Fig. 11 shows the total transmission energies
calculated by our NTB algorithm for one set of testing
sequences where the first 34 values are for normal activity
sequences and the later 21 values are for abnormal activity
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Fig. 11. Total transmission energies calculated by our NTB algorithm for
activities in the test sequences.

TABLE III

Miss, FA, and TER Rates of the Detection Algorithms With

Different Patch Sizes (Note That the Results in Table II and

Fig. 10 Are Achieved by Using the Patch Size of 48 × 48).

sequences. We can see from Fig. 11 that most abnormal
activities have large total energy values by our model and thus
can be easily detected. Some abnormal activities have rela-
tively small absolute energy values. For example, sequences
39–42 correspond to activities going back and forth along the
normal path. Since most of their trajectories are on the normal
route where the DT energies are small, the accumulated total
energies for these sequences become small. However, since
their energy differences with the minimum possible energy
Emin are larger than our pretrained threshold, they still can be
successfully detected in our algorithm by checking the second
criterion in (7).

Finally, we also perform another experiment by using dif-
ferent patch sizes for abnormality detection. The results are
shown in Table III and we can have the following observations.

1) We can achieve stable results when the patch sizes
change within a wide range (e.g., from 24 × 24 to
48 × 48 in Table III). This implies that the iterative
training method in our NTB algorithm can adaptively
achieve suitable DT energy values for different patch
sizes when the patch size is within a reasonable range.

2) The patch size cannot be extremely large. When the
patch size is extremely large (e.g., 72 × 72 in Table III),
there will be few patches in the scene. This will make
the algorithm difficult to differentiate the various activity
patterns. For example, in the extreme case, if the patch
size is the entire image and there is only one patch, it
is impossible to perform recognition.

3) Also, the patch size also cannot be extremely small.
When the patch size is extremely small (e.g., 9 × 9
in Table III), the number of nodes and edges in the

Fig. 12. Example frames of the BEHAVE dataset. (a) Leave. (b) Follow.

network will become obviously large. In this case, a
large number of training samples are required in order
for constructing reliable DT energies. Otherwise, the
performance will be poor. For example, if the patch size
is 1 × 1 (i.e., each pixel is a patch) and we only have
ten training trajectories, there will be a large number
of normal patches where no training trajectory arrives.
In this case, the DT energy for these patches will be
large and trajectories passing these patches will be easily
detected as abnormal.

4) From the above discussions, in the experiments in this
paper, we select patch sizes such that the entire image of
one camera scene can have 7–14 patches in width and
6–12 patches in height. Of course, when more training
samples are available, smaller patch sizes can also be
selected.

B. Experiments for Group Activity Recognition on the
BEHAVE Dataset

We further perform another set of experiments for the group
activity recognition. The experiments are performed on the
public BEHAVE dataset [18] where 800 activity clips are
selected for recognition. Eight group activities are recognized
as shown in Table IV. Some frames are shown in Fig. 12.

Table V compares the results of the four methods.

1) The group-representative-based algorithm [12] (GRAD
in Table V).

2) The pair-activity classification algorithm based on bitra-
jectories analysis that uses causality and feedback ratios
as features [13] (PAC in Table V).

3) The localized-causality-based algorithm using individ-
ual, pair, and group causalities for group activity detec-
tion [14] (LCC in Table V).

4) Our proposed NTB algorithm with transmission energy
sets from three networks (NTB in Table V).

In Table V, three rates are compared: the miss detection rate
(Miss), the FA rate [12], and TER. From Table V, we can see
that our proposed NTB algorithm can achieve obviously better
performance than the other three state-of-art algorithms. This
demonstrates that our NTB algorithm with the transmission
energy features can precisely catch the interperson spatial
interaction and the activity temporal history characteristics
of the group activities. Specifically, our NTB is obviously
effective in recognizing complex activities (i.e., exchange and
return). Two example trajectories of the complex activities are
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TABLE IV

Group Activities Recognized on the BEHAVE Dataset

TABLE V

Miss, False Alarm, and TER Rates of the Group Recognition

Algorithms Under 75% Training and 25% Testing

Fig. 13. (a) Example trajectories for complex group activities. (b) Major
feature values for PAC algorithm. (c) EWR energy values by our NTB.

shown in Fig. 13(a), the values of the major features in the PAC
algorithm [13] are shown in Fig. 13(b), and the transmission
energy (EWR) from the weighted relative network in our
NTB algorithm is shown in Fig. 13(c). From Fig. 13(b), we
can see that the features in the PAC algorithm [13] cannot
show much difference between the two complex activities.
Compared to Fig. 13(b), our EWR energy in Fig. 13(c) is
obviously more distinguishable by effectively catching the
activity history information.

C. Experiments for Group Activity Recognition on the CASIA
Dataset

In order to further demonstrate the effectiveness of our
NTB algorithm, we also perform another experiment on the
CASIA dataset [26]. The CASIA dataset contains seven group
activities as shown in Table VI [26]. Some example frames are
in Fig. 2.

Since the activities such as rob and fight are related to
person’s local motion intensities, many of the algorithms on

TABLE VI

Group Activities Recognized on the CASIA Dataset

this dataset [27] utilize both the trajectory and the motion
intensity features for detection. Therefore, in order to have
a fair comparison with these methods, we further extend
our algorithm by introducing an additional motion-intensity
network to include the motion intensity feature. The structure
of the motion-intensity network is the same as the scene-
related network in Fig. 7(a). However, unlike the scene-related
network whose DT energies are a constant value, the DT
energies in the motion-intensity network are decided by the
motion intensities [27] when an object moves across patches

emi(i, j, t) = s(i, j, t) (13)

where emi(i, j, t) is the DT energy between patches i and j at
time t in the motion-intensity network. s(i, j, t) is the motion-
intensity in patches i and j at time t and it can be calculated
by

s(i, j, t) =
∣∣vopticalflow (i, j, t) − v (i, j, t)

∣∣ (14)

where vopticalflow(i, j, t) is the magnitude of the average optical
flow speed inside patches i and j at time t. Also, v(i, j, t) is the
magnitude of the object’s global speed moving across patches
i and j at time t. Similar to [27], vopticalflow(i, j, t) and v(i, j, t)
can be calculated from the Lucas–Kanade algorithm [28] and
the object’s trajectory, respectively [27].

Basically, since vopticalflow includes both the object’s local
and global motions while v only includes the global motion,
by removing v from vopticalflow, the object’s local motion
intensities can be achieved [27]. Furthermore, note that the
DT energy emi(i, j, t) is related to time t. This means that
people moving across patches with different local motion
patterns will have different DT energies in the motion-intensity
network. With this motion-intensity network, the following
feature vector is utilized in our NTB algorithm for group
activity recognition:

E1(u1,q1),E2(u2, q2), ENR(u2 − u1, q2 − q1)

EWR(u2 − u1, q2 − q1), EMI1(u1, q1), EMI2(u2, q2) (15)

where the definitions of E1(u1,q1), E2(u2,q2), ENR(u2–
u1,q2–q1), and EWR(u2–u1,q2–q1) are the same as in (10).
EMI1(u1,q1) and EMI2(u2,q2) are the total transmission con-
sumption for person 1 and person 2 in the motion-intensity
network.

Fig. 14 compares the experimental confusion met-
ric results of different methods on the CASIA dataset.
Fig. 14(a)–(e) shows the results for the HMM method [12],
[29], the coupled HMM method (CHMM) [30], the cou-
pled observation decomposed HMM method with continu-
ous features (CODHMM−C) [27], the coupled observation
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Fig. 14. Confusion matrices for different methods on the CASIA dataset.
(a) HMM. (b) CHMM. (c) CODHMM−C. (d) CODHMM−CD. (e) NTB
(proposed).

decomposed HMM method with some discretized features
[27], and our NTB algorithm, respectively. From Fig. 14, we
can see that our proposed NTB algorithm can also achieve
better performance than the state-of-the-art algorithms [27]
on the CASIA dataset. More specifically, our algorithm has
obvious improvements in detecting activities such as rob (A1),
follow (A3), and overtake (A7). This further demonstrates the
following.

1) Our network-based models are very effective in differ-
entiating similar activities (such as follow and overtake).

2) Besides trajectories, our algorithm can also be extended
to include other motion features (such as local motion
intensities) and to effectively handle the complicated
activities such as rob. This point will be further discussed
in the next subsection.

D. Experiments for Group Abnormality Detection on the UMN
Dataset

In this section, we perform another experiment on the UMN
dataset [31] that contains videos of 11 different scenarios of an
abnormal escape event in three different scenes, including both
indoor and outdoor. Each video starts with normal behaviors
and ends with the abnormal behavior (i.e., escape). Some
example images of the UMN dataset are shown in Fig. 15.

In order to recognize the abnormal escape events, we simply
use a single normal relative network [as in Fig. 7(b)] and
put it in the center of the image scene (note that in this
experiment, the normal relative network is fixed at the image
center rather than moving with some object). Furthermore,
instead of extracting the object trajectories, we directly extract
the optical flows [27] from the videos and use them as the
packages to transmit in the normal relative networks. When
detecting activities, we use a sliding window to segment the
video into small video clips [12] and the total transmission
energy of all optical-flow packages in the video clip is used
to detect events in this video clip (i.e., we simply compare
the total transmission energy with a threshold to detect the
abnormal escape events).

Fig. 15(b)–(d) compares the normal/abnormal classification
results of our algorithm with the ground truth. Furthermore,
Fig. 15(a) compares the ROC curves between our algo-
rithm (proposed) and the other four algorithms: the optical

Fig. 15. (a) ROC results of different methods on the UMN dataset.
(b)–(d) Qualitative results of using our NTB algorithm for abnormal detection
in the UMN dataset. The bars represent the labels of each frame, black
represents normal, and red represents abnormal (best viewed in color).

flow only method (optical flow) [12], [32], the social force
model [34], the interaction energy potential method [33],
and the velocity-field based method [32]. The results in
Fig. 15(a) show that by using the simple optical flow feature
and a single relative network, our algorithm can achieve
similar or better results than the state-of-the-art algorithms
[32]–[34]. This further demonstrates the effectiveness of our
NTB algorithm. Furthermore, several things need to be men-
tioned about Fig. 15.

1) Basically, in our normal relative network [as in
Fig. 7(b)], packages moving to different direc-
tions will cause different positive and negative en-
ergies. Therefore, in normal events, since people
walk randomly in various directions, the optical-
flow packages will create similar amounts of pos-
itive and negative energies such that the total
transmission energy will be around zero. However,
during the abnormal escape events, since people are
coherently moving outside, most optical-flow packages
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TABLE VII

Computation Costs of Our NTB Algorithm on

Different Datasets

will create negative energies. Thus, the total transmis-
sion energy will be a large negative number and the
abnormalities can be effectively detected.

2) In this experiment, the low-level optical flow features are
used. This implies that in cases when reliable trajectory
cannot be achieved (e.g., in extremely crowded scenes),
we can also extend our algorithm by using the low-level
motion features to take the place of the trajectories for
recognition.

3) Note that in this experiment, we only use the basic
optical flow feature and a single relative network for
detection. The performance of our NTB may be further
improved by: a) using more reliable motion features such
as the improved optical flow [23] and b) introducing ad-
ditional networks to handle more complicated scenarios.

E. Computation Complexity and Memory Storage Require-
ments

Finally, we evaluate the computation complexity and mem-
ory storage requirements of our algorithm.

1) Computation Complexity: Our algorithm is run on a PC
with 2.6-GHz 2-Core CPU and 4-G RAM, while the training
and testing processes are implemented by MATLAB.

Table VII shows the computation costs of our NTB
algorithm in the experiments of Sections V-A–V-D. From
Table VII, we can see that for the abnormality detection
dataset, given about 250 training trajectories, the training pro-
cess took about 6 min to converge. The entire testing process
only took about 10 ms to process over 80 input trajectories
since we only need to calculate the transmission energies by
applying (1). Besides, when combined with human detector
[20] and particle-based tracking [6], [16] (implemented by
C + + ), our algorithm can still achieve about 20 frames/s in the
testing process. Therefore, our algorithm has low computation
complexity and is suitable for real-time applications.

For group activity recognition in the BEHAVE dataset,
given about 600 group trajectories in the training set, the
training process took about 50 seconds since the DT energies
in the group activity experiments do not need to be trained in
an iterative way. And entire testing processing also only took
about 10 ms to process over 200 input trajectories. Similarly,
our algorithm’s complexity cost on the CASIA and UMN
datasets are also low.

Moreover, Table VIII compares the computation costs of
our algorithm with the other methods on the CASIA dataset
[27] (note that the complexity costs of the other methods
are achieved from their publications [27] in order for a fair
comparison). From Table VIII, we can also see that the

TABLE VIII

Computation Costs of Different Methods

on the CASIA Dataset

computation complexity of our algorithm is lower than the
compared methods.

2) Memory Storage Requirements: As for the storage issue,
for the abnormal event detection case, we need an N × N
matrix to store the fully connected network (i.e., the N × N
DT energies between nodes where N is the total number of
nodes) and an N × 1 matrix to store the minimum possible
energy Emin from the entrance patch u to all the other patches.
In the example of Figs. 9 and 10, we have 84 nodes in total and
thus only one 84 × 84 and one 84 × 1 float-type matrixes are
needed, which is small load for memory. For the group activity
recognition case, since the networks in Fig. 7 are precalculated.
We even do not need matrixes to store the DT values and all
the DT energy values can be derived according to the relative
location between people. Thus, the storage requirements of the
proposed method are low.

VI. Conclusion and Future Work

In this paper, a new network-based algorithm is proposed for
human activity recognition in videos. The proposed algorithm
models the entire scene as a network. Based on this network,
we further model people in the scene as packages. Thus, vari-
ous human activities can be modeled as the process of package
transmission in the network. By analyzing the transmission
process, various activities such as abnormal activities and
group activities can be effectively recognized. Experimental
results demonstrate the effectiveness of our algorithm.

In the future, our algorithm may be further extended in the
following ways.

1) In this paper, we assume that the camera is fixed and
directly divides patches in the image of the scene.
However, we can extend our algorithm by setting up a
global coordinate of the entire scene and divide patches
of the scene in this global coordinate. In this way, even
when the camera is moving or zoom-in/zoom-out, we
can also handle these cases by first mapping the person’s
location into this global coordinate [25] and then by
performing our algorithm inside the global coordinate.

2) Although our algorithm can perform online detection,
this online detection capability will finish when the
abnormality is detected (i.e., after the abnormality is
detected, all the later parts will be detected as abnor-
mal). However, note that our algorithm can be extended
to further handle the online detection task even after
abnormality happens. For example, we can use the
sliding windows to segment the video into clips and
then perform detection in each video clip independently.
These will be one of our future works.
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