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ABSTRACT

This paper addresses the problem of representing and recognizing
motion trajectories. We first propose to derive scene-related
equipotential lines for points in a motion trajectory and
concatenate them to construct a 3D tube for representing the
trajectory. Based on this 3D tube, a droplet-based method is
further proposed which derives a "water droplet" from the 3D tube
and recognizes trajectory activities accordingly. Our proposed 3D
tube can effectively embed both motion and scene-related
information of a motion trajectory while the proposed droplet-
based method can suitably catch the characteristics of the 3D tube
for activity recognition. Experimental results demonstrate the
effectiveness of our approach.

Categories and Subject Descriptors
1.2.10 [Vision and Scene Understanding]: Video analysis
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1. INTRODUCTION

Motion trajectories are essential in describing object movement
patterns over time. Visual analysis and recognition of motion
trajectories are of considerable importance in many applications
including video surveillance and video retrieval [1-6]. In this
paper, we focus on the effective representation and recognition of
motion trajectories.

First, properly representing motion trajectories is crucial in
trajectory recognition. Many algorithms [4] directly utilized object
locations at different time to represent object motion trajectories.
However, this representation method is easily affected by the
large variation of motion trajectories. To address this problem,
Nascimento et al. [1] proposed low-level dynamic models to
decompose trajectories into basic displacements. Chu et al. [2]
created heat maps from trajectories to include temporal
information while reducing the variances among trajectories.
However, most of the existing methods only focus on modeling
the absolute movements of objects while the scene-related
information (e.g., whether the object is located in an unusual place
in a scene) is not embedded. Thus, they will have limitations
when recognizing scene-related abnormal activities such as
entering an unusual place. Although some methods [3] utilized
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Gaussian process flows to model the location and velocity
probability for each point in a trajectory, these flows are only used
to measure the likelihood of a trajectory belonging to a specific
trajectory type. Thus, they still do not actually embed information
about the scene.

Second, accurately recognizing motion trajectories is another
important issue. Some methods applied alignment or dynamic
time warping to reduce trajectory variances and performed
recognition by finding the most similar trajectory type [2, 4].
However, due to the large uncertainty of object motions, they still
cannot completely avoid recognition errors from trajectory
variances. Other methods constructed trajectory probability
densities or graphical models for different activity patterns and
recognized activities accordingly [1, 3, 10, 11]. However, these
methods also have disadvantages in: (a) requiring large numbers
of training data to achieve reliable probability models, and (b)
have limitations in differentiating abnormal activities which only
deviate slightly from normal ones [3]. Besides, Lin et al. [6]
proposed to calculate transmission energies from trajectories for
abnormality detection. Although this method can effectively
detect abnormal activities, it still has limitations in differentiating
normal activity patterns.

In this paper, we propose a new tube and droplet approach to
represent and recognize motion trajectories. The contributions of
our approach can be summarized in the following:

(1) We propose to derive scene-related equipotential lines for
points in a motion trajectory and concatenate them together to
construct a 3D tube for representing the trajectory. The proposed
3D tube can effectively embed both motion and scene-related
information of a motion trajectory.

(2) We propose a droplet-based method which derives "water
droplets" from 3D tubes and recognizes trajectory activities
accordingly. The proposed droplet-based method can i) suitably
catch the characteristics of 3D tubes, ii) effectively differentiate
subtle normal/abnormal activities, iii) perform recognition with
small number of training data.

The remainder of this paper is organized as follows. Section 2
describes the basic ideas of our approach. Section 3 presents the
details of our 3D tube and droplet construction steps. Experiment-
al results are shown in Section 4. Section 5 concludes the paper.

2. BASIC IDEAS

As mentioned, in order to properly handle scene-related
activities, it is desirable to embed both object motion and scene-
related information in trajectory representations. Thus, we
propose to utilize 3D tubes to represent trajectories. As shown in
Figure 1, (a) is an object motion trajectory, (b) is the equipotential
lines for different points in the trajectory in (a), and (c) is a 3D
tube representing the trajectory in (a). From Figure 1, we can see
that a 3D tube is composed of equipotential lines where each
equipotential line describes a point in a trajectory. More
specifically, each equipotential line is located at its corresponding
trajectory point while its shape is decided by the neighborhood



scene around the trajectory point (e.g., a trajectory point located in
an unusual region will make its equipotential line shrink, as in
Figure 1 and will be described in detail later). In this way, we can
effectively embed both motion and scene-related information in a
3D tube with the route of the tube representing object motions and
the shape of the tube representing information of the neighbor-
hood scene.

Since 3D tubes include rich and high-dimensional information,
the problem then comes to the selection of a suitable method for
performing recognition based on these tube features. In this paper,
we further propose a droplet-based method for activity recognition.
In this method, we first "inject" water in one end of a 3D tube and
then achieve a water droplet flowed out from the other end, as in
Figure 1 (c). Since different activities are represented by 3D tubes
with different shapes, by suitably modeling the water flow process,
the flowed droplets can precisely catch the characteristics of 3D
tubes. Thus, accurate recognition results can be achieved by
parsing the shape of these droplets.

With the basic ideas of 3D tubes and water droplets, we can
propose our motion trajectory representation and recognition
approach. It is described in detail in the following section.
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Figure 1. (a) Object trajectory; (b) Equipotential lines for
different points in the trajectory in (a); (¢) The final 3D tube
representation and the process of droplet-based method.

3. THE APPROACH

The framework of our approach can be described in the
following. First, equipotential lines are achieved for all points in
the input trajectory. These equipotential lines are derived
according to a pre-trained network which encodes the correlations
among patches in the scene. Then, equipotential lines for different
points are concatenated chronologically to construct a 3D tube for
representing the input trajectory. After deriving a water drop by
flowing water through the 3D tube, the activity of the input
trajectory can be recognized by comparing this water drop with
the trained drop shape patterns for different activities. In the
following, we will describe details of the proposed approach.

3.1 3D Tube Construction
3.1.1 Network construction

In order to embed scene-related information into 3D tubes, we
first need to construct a directed network to describe a scene. In
this paper, we divide a scene into non-overlapping patches such
that each patch can be viewed as a node in a network while the
directed links between neighboring patches can be viewed as the
directed edges in a network, as in Figure 2. With this network
model, a trajectory moving in a scene can be modeled as a
package transmitting through different nodes in its corresponding
network. Thus, by properly constructing the edge weights in this
network, the information of the scene can be effectively modeled.

In this paper, the directed edge weights between neighboring
patches are calculated by:

N
W= Zk—l Ryisj

) ®

where W,_,; is the weight for the directed edge from patch P; to

L
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Figure 2. Separate a scene into patches and construct a
directed network accordingly.

patch P;. N is the total number of trajectories in the training set.
Ry ;i j is the impact of the k-th training trajectory to edge Pi—P;.
Ry i j can be calculated by:
Ly )
Rk,i—>j = Z max(vk’r(i N ])‘ O) . e—”Pr—Pi” (2)
r=1

where L is the total number of points in trajectory k. vy ,.(i -
j) is the displacement of the r-th point in trajectory k in the
direction of P,—P;, as in Figure 3. P, is the patch where point 7 is
located. ||P. — P;||? is the distance between patches P; and P,.
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Figure 3. The way to calculate v, (i — ).

From Egs (1) and (2), we can see that the weight for a directed
edge P—P; is proportional to the total displacement strength of
all training trajectory points in the direction of P,—P;. Besides, a
distance term ||P. — P;||? is also included such that trajectory
points closer to the directed edge will have more impact to the

weight W;_,;. In this way, if there are large numbers of training
trajectories passing through P; and following the direction of
P—Pj, a large weight will be assigned to W;_,; meaning that

moving from P; to P; is normal. On the contrary, a small W;_,;
will be assigned to indicate that following P;—P; is abnormal.

3.1.2 Achieving equipotential lines

With the constructed network, we can derive an equipotential
line for each point in an input testing trajectory. More specifically,
we first achieve an energy map for a trajectory point based on the
constructed network, and then derive a constant-energy line from
this energy map as the resulting equipotential line.

The energy map for a trajectory point r can be achieved by
iteratively propagating energies outwards from the patch of r (i.e.
P,) to other patches in the scene. The trajectory point patch P, is
first allocated with an initial energy £,=100 before propagation.
And during each iteration, the energy propagated from a patch P;
to its outside neighboring patch P; can be calculated by:

)4

E_=E e "ivi 3)

where E;_,; is the energy transmitted from P; to P;. E; is the energy
in patch P, W,_,; is the weight for the directed edge P—P;
achieved by Eq. (1). And y is a constant. From Eq. (3), it is clear
that fewer energies will be propagated if the motion from P; to P,
is abnormal (i.e., small ;_,)).

Figure 4 (b) and (d) show the energy maps of two points 7,
and r, in a trajectory in (a). In (b), since moving rightward from r,
is normal (because there are lots of dashed blue training
trajectories moving rightward around r,), more energies can be
propagated to this direction, thus leading to a long rightward tail

i->j



in r,'s energy map. Comparatively, in (d), since 7, is located in an
unusual/abnormal region (because there is no training trajectories
moving around r,), few energies can be propagated out, thus
making 7,'s energy map decay quickly around ry.

With the energy map, the equipotential line can be easily
achieved by finding a constant-energy line in the map. In this
paper, we find the line whose energy is half of the peak energy E,,
as in Figure 4.
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Figure 4. (a) The input trajectory (solid red line) and training
trajectories (dashed black lines); (b) and (d): The energy maps

and equipotential lines for trajectory points r, and r, in (a); (c):

The energy map surfaces of (b) in 3D.
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Figure 5. (a) Input trajectories (red/blue solid lines) and
training trajectories (black dashed lines); (b) 3D tubes for the
input trajectories in (a); (c) Droplets derived from the 3D
tubes in (b); (d) Viewing the droplets in (c) from the left side.
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3.1.3 Constructing 3D tubes

After deriving equipotential lines for each point in an input
trajectory, a 3D tube can be constructed to represent this trajectory
by concatenating all equipotential lines according to their
temporal order in the trajectory. Figure 5 (b) shows the 3D tubes
of the trajectories in (a). From Figure 5, we can see that:

(1) Our proposed 3D tubes include rich information about both
trajectories' motion and their relationships with the surrounding
scene. For example, the routes of 3D tubes represent actual
motions of trajectories. The thicknesses of 3D tubes indicate
whether trajectories are normal/abnormal (e.g., tubes will become
narrow for abnormal trajectories). Moreover, the shapes of
equipotential lines inside 3D tubes also indicate possible normal
motion directions (e.g., the convex part in the pink circle in (b)
indicates that moving upward (i.e., turn left) is another possible
normal motion direction). Therefore, various trajectory activities
can be effectively recognized with our 3D tubes.

(2) Compared with the 2D trajectory representation in (a), our
3D tube representation includes an additional time dimension.
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And this also has the advantage of properly displaying the object's
motion speed information such as "stop" and "speed up".

Note that we also normalize 3D tubes to have the same length
in order to avoid the influence of different trajectory lengths.

3.2 The Water-Droplet Method

After constructing 3D tubes for input trajectories, we need to
find suitable methods to effectively utilize these high-dimensional
tube features. In this paper, we propose to inject water into 3D
tubes and derive "water droplets" to detect activities, as Figure 1.

Basically, a droplet can be described by a center point 7 and a
set of boundary points #,, as in Figure 6 (a). We define r as the
point which follows the route of the input trajectory when passing
through a 3D tube. And 4, is the point following the route
constructed by the points on the m-th direction of » on all
equipotential lines, as in Figure 6 (b). Assuming that » passes a 3D
tube with a constant velocity while the velocity of 4, is changed
according to the thickness and shape of the 3D tube, by
calculating the relative distances between /,, and r at the tube
output, the features of the 3D tube can be effectively captured.

In this paper, we define two distances at a tube output: H,
which is the distance between 4,, and 7 in the time dimension, and
D,, which is the distance between #,, and r in the x-y plane, as in
Figure 6 (a). In order to simplify calculation, we further assume
D,= H,, such that a 3D droplet can be simply described by H,, in a
2D plane, as in Figure 5 (d). According to the fluid viscosity
theory [7], H,, can be calculated by:

Z ‘u(d

1
I 17m -t =7
t=1
where L is the length of a 3D tube. dm‘, is the distance between 7,
and 4, ,, and 6,,, is the angle between lines —h,,, and r—r,;, as
in Figure 6 (b) and (c). Note that 4,,, and 7, are the locations of #,,
and 7 at time ¢ when going through a 3D tube (i.e., 7, is the #th
point in a trajectory and 4,,1is the m-th point on the equipotential
2

Hpy = €

m,t mt)

line of 7). Vpy_p¢ = is the relative time-dimensional

dm,
Fl(dm,tvem,t)
velocity between A, and r at time ¢. u(d,,;, 6,,,) is the viscosity
coefficient of the tube calculated by:

B

dmt, 6 =
Ko = g Ceos(m) + 0
where 4 and f are constant values.

From Eqgs (4) and (5), we can see that the time-dimensional
distance H,, is calculated by accumulating the time-dimensional
velocity difference between #,, and r when passing through a 3D
tube. The velocity difference vy,_, . is decided by the thickness
and shape variations in a 3D tube. When a tube becomes thick
(i.e., large d,,, and correspond to normal motions), v,,.., will be
enlarged and create large H,,. Besides, when #,, is located along
the motion direction of a trajectory (i.e., the angle between r—h,,,
and r,—7,;; is small), the viscosity from a tube will be small,
leading to large H,,,.

Figure 5 (c) and (d) show the resulting droplets of the 3D tubes
in (b). From Figure 5 (c) and (d), we can observe the effectiveness
of our water-droplet method. For example, the droplets of normal
tubes (the first and second rows in Figure 5) have large sizes than
the droplets of abnormal tubes (the last two rows). Also, the
droplets have large sectors in the trajectories' major motion
directions. Thus, we can effectively use these droplet features to
recognize both normal/abnormal activities and activities of
different motion patterns. In our experiments, we construct feature
vectors from droplets by concatenating H, and utilize linear
SVMs [8] to recognize activities.

®)
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Figure 6. (a) Center point r, boundary point %,, and their
distances; (b) Illustration of d,,, and 6,,, at time #; (c) h,,,and
r; at different 7 and relative velocity vy, ..

4. EXPERIMENTAL RESULTS

In this section, we show experimental results for our proposed
tube and droplet approach. In our experiments, the patch size is
set to be 10x10, and y, 4, and £ in Eqs (3) and (5) are set to be 1, 5,
and 1, respectively. We first perform experiments on a road
dataset that we constructed. The dataset includes 300 trajectories
obtained by a tracking method [9] where 200 trajectories are for
normal activities and the other 100 trajectories are abnormal ones.
The normal trajectories includes seven classes (with about 30
trajectories for each class), as in Figure 7 (a). Besides, some
example abnormal trajectories are also displayed in Figure 7 (a).
Note that this is a challenging dataset in that: (1) the total number
of trajectories in the dataset is small; (2) The motion trajectories
within the same class have large variance; (3) Many trajectories
from different class are confusing and are difficult to differentiate.

We compare our approach with three methods: the GPRF
method [3], the DTW method [4], and the heat-map (HM) method
[2]. We split the dataset into 75% training-25% testing parts and
perform recognition on the testing part [6]. Four independent
experiments are performed where the training and testing sets are
randomly selected in each experiment. And the results are
averaged. Figure 7 (b) compares the ROC curves for different
methods in recognizing normal/abnormal activities. Besides,
Table 1 further compares the Miss, False Alarm (FA), and Total
Error Rates (TERs) [6] for different methods in differentiating the
seven normal activity patterns and the abnormal activity pattern.

From Table 1 and Figure 7 (b), we can see that the compared
methods, which mainly perform recognition according to the
similarity among trajectories’ motion patterns, have low
effectiveness when recognizing activities such as "L", "RU", and
"RD" since their trajectories are easily confused with other similar
activities such as "UL", "U", "R". Comparatively, our proposed
approach can achieve obviously better results where the confusing
activities are properly differentiated. This is because: (1) our 3D
tube representation embeds scene-related information by using
narrow tube sections to represent local abnormal displacements.
Thus, abnormal activities can be precisely differentiated even if
their overall trajectory shapes are similar to normal activities; (2)
Our droplet features can catch the subtle motion direction by
accumulating velocity differences between boundary and center
points in 3D tubes. Thus, the confusing activities such that "R"
and "RD" can also be effectively differentiated by our approach.
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Figure 7. (a) Examples of normal activities (yellow) and

abnormal activities (red); (b) ROC curves of different
methods in abnormality detection.

Table 1 Miss, FA, and TER rates in recognizing different
normal patterns together with the abnormal activity pattern

Our | GPRF[3]]| DTW[4] | HM [2]

N Miss | 4.2% 9.7% 15.3% 8.2%
FA 0.5% 1.4% 1.7% 0.7%

. Miss | 3.8% 71% 9.3% 11.2%
FA 0.2% 0.5% 1.0% 18%

"p | Miss | 3.5% 10.2% 18.5% 12.4%
FA 0.3% 0.7% 14% 1.0%

U | Miss [ 2.6% 03% 0.5% 2.6%
FA 0.5% 0.2% 0.0% 0.4%

b | Miss | 1.2% 33% 14.1% 8.0%
FA 0.2% 0.2% 0.6% 0.2%

RU | Miss | 2.4% 14.7% 13.1% 17.9%
FA 0.5% 1.8% 15% 2.1%

Miss | 1.3% 2.5% 1.4% 2.4%

DL FA 0.0% 0.2% 0.0% 0.4%
Miss | 8.8% 17.4% 243% 23.1%
Abnormal 7.9% 17.0% 26.7% 212%
TER 53% 10.7% 15.4% 14.1%
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5. CONCLUSION AND FUTURE WORKS

In this paper, we propose to construct a 3D tube for
representing a motion trajectory and then derive a "water droplet"
from the 3D tube to recognize the trajectory. Experimental results
demonstrate the effectiveness of our approach. Future work
includes more experiment on public datasets and comparison with
other graphical model-based methods [10, 11].
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