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ABSTRACT 
This paper addresses the problem of representing and recognizing 
motion trajectories. We first propose to derive scene-related 
equipotential lines for points in a motion trajectory and 
concatenate them to construct a 3D tube for representing the 
trajectory. Based on this 3D tube, a droplet-based method is 
further proposed which derives a "water droplet" from the 3D tube 
and recognizes trajectory activities accordingly. Our proposed 3D 
tube can effectively embed both motion and scene-related 
information of a motion trajectory while the proposed droplet- 
based method can suitably catch the characteristics of the 3D tube 
for activity recognition. Experimental results demonstrate the 
effectiveness of our approach. 

Categories and Subject Descriptors 
I.2.10 [Vision and Scene Understanding]: Video analysis  

Keywords 
Motion trajectory representation; Activity recognition; Droplet 

1. INTRODUCTION 
Motion trajectories are essential in describing object movement 

patterns over time. Visual analysis and recognition of motion 
trajectories are of considerable importance in many applications 
including video surveillance and video retrieval [1-6]. In this 
paper, we focus on the effective representation and recognition of 
motion trajectories. 

First, properly representing motion trajectories is crucial in 
trajectory recognition. Many algorithms [4] directly utilized object 
locations at different time to represent object motion trajectories. 
However, this representation method is easily affected by the 
large variation of motion trajectories. To address this problem, 
Nascimento et al. [1] proposed low-level dynamic models to 
decompose trajectories into basic displacements. Chu et al. [2] 
created heat maps from trajectories to include temporal 
information while reducing the variances among trajectories. 
However, most of the existing methods only focus on modeling 
the absolute movements of objects while the scene-related 
information (e.g., whether the object is located in an unusual place 
in a scene) is not embedded. Thus, they will have limitations 
when recognizing scene-related abnormal activities such as 
entering an unusual place. Although some methods [3] utilized 

Gaussian process flows to model the location and velocity 
probability for each point in a trajectory, these flows are only used 
to measure the likelihood of a trajectory belonging to a specific 
trajectory type. Thus, they still do not actually embed information 
about the scene. 

Second, accurately recognizing motion trajectories is another 
important issue. Some methods applied alignment or dynamic 
time warping to reduce trajectory variances and performed 
recognition by finding the most similar trajectory type [2, 4]. 
However, due to the large uncertainty of object motions, they still 
cannot completely avoid recognition errors from trajectory 
variances. Other methods constructed trajectory probability 
densities or graphical models for different activity patterns and 
recognized activities accordingly [1, 3, 10, 11]. However, these 
methods also have disadvantages in: (a) requiring large numbers 
of training data to achieve reliable probability models, and (b) 
have limitations in differentiating abnormal activities which only 
deviate slightly from normal ones [3]. Besides, Lin et al. [6] 
proposed to calculate transmission energies from trajectories for 
abnormality detection. Although this method can effectively 
detect abnormal activities, it still has limitations in differentiating 
normal activity patterns.   

 In this paper, we propose a new tube and droplet approach to 
represent and recognize motion trajectories. The contributions of 
our approach can be summarized in the following: 
   (1) We propose to derive scene-related equipotential lines for 
points in a motion trajectory and concatenate them together to 
construct a 3D tube for representing the trajectory. The proposed 
3D tube can effectively embed both motion and scene-related 
information of a motion trajectory.  
   (2) We propose a droplet-based method which derives "water 
droplets" from 3D tubes and recognizes trajectory activities 
accordingly. The proposed droplet-based method can i) suitably 
catch the characteristics of 3D tubes, ii) effectively differentiate 
subtle normal/abnormal activities, iii) perform recognition with 
small number of training data. 
  The remainder of this paper is organized as follows. Section 2 
describes the basic ideas of our approach. Section 3 presents the 
details of our 3D tube and droplet construction steps. Experiment- 
al results are shown in Section 4. Section 5 concludes the paper. 

2. BASIC IDEAS  
As mentioned, in order to properly handle scene-related 

activities, it is desirable to embed both object motion and scene- 
related information in trajectory representations. Thus, we 
propose to utilize 3D tubes to represent trajectories. As shown in 
Figure 1, (a) is an object motion trajectory, (b) is the equipotential 
lines for different points in the trajectory in (a), and (c) is a 3D 
tube representing the trajectory in (a). From Figure 1, we can see 
that a 3D tube is composed of equipotential lines where each 
equipotential line describes a point in a trajectory. More 
specifically, each equipotential line is located at its corresponding 
trajectory point while its shape is decided by the neighborhood 
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scene around the trajectory point (e.g., a trajectory point located in 
an unusual region will make its equipotential line shrink, as in 
Figure 1 and will be described in detail later). In this way, we can 
effectively embed both motion and scene-related information in a 
3D tube with the route of the tube representing object motions and 
the shape of the tube representing information of the neighbor- 
hood scene.  

Since 3D tubes include rich and high-dimensional information, 
the problem then comes to the selection of a suitable method for 
performing recognition based on these tube features. In this paper, 
we further propose a droplet-based method for activity recognition. 
In this method, we first "inject" water in one end of a 3D tube and 
then achieve a water droplet flowed out from the other end, as in 
Figure 1 (c). Since different activities are represented by 3D tubes 
with different shapes, by suitably modeling the water flow process, 
the flowed droplets can precisely catch the characteristics of 3D 
tubes. Thus, accurate recognition results can be achieved by 
parsing the shape of these droplets.  

With the basic ideas of 3D tubes and water droplets, we can 
propose our motion trajectory representation and recognition 
approach. It is described in detail in the following section. 

   
     (a)            (b)                (c) 
Figure 1. (a) Object trajectory; (b) Equipotential lines for 
different points in the trajectory in (a); (c) The final 3D tube 
representation and the process of droplet-based method. 

3. THE APPROACH 
The framework of our approach can be described in the 

following. First, equipotential lines are achieved for all points in 
the input trajectory. These equipotential lines are derived 
according to a pre-trained network which encodes the correlations 
among patches in the scene. Then, equipotential lines for different 
points are concatenated chronologically to construct a 3D tube for 
representing the input trajectory. After deriving a water drop by 
flowing water through the 3D tube, the activity of the input 
trajectory can be recognized by comparing this water drop with 
the trained drop shape patterns for different activities. In the 
following, we will describe details of the proposed approach. 

3.1 3D Tube Construction 
3.1.1 Network construction 

In order to embed scene-related information into 3D tubes, we 
first need to construct a directed network to describe a scene. In 
this paper, we divide a scene into non-overlapping patches such 
that each patch can be viewed as a node in a network while the 
directed links between neighboring patches can be viewed as the 
directed edges in a network, as in Figure 2. With this network 
model, a trajectory moving in a scene can be modeled as a 
package transmitting through different nodes in its corresponding 
network. Thus, by properly constructing the edge weights in this 
network, the information of the scene can be effectively modeled.  

In this paper, the directed edge weights between neighboring 
patches are calculated by:  																													 ௜ܹ→௝ =෍ ܴ௞,௜→௝ே௞ୀଵ 																																						(1) 
where ௜ܹ→௝ is the weight for the directed edge from patch Pi to  

         
Figure 2. Separate a scene into patches and construct a 
directed network accordingly. 

patch Pj. N is the total number of trajectories in the training set. ܴ௞,௜→௝	is the impact of the k-th training trajectory to edge Pi→Pj. ܴ௞,௜→௝	can be calculated by:  													ܴ௞,௜→௝ =෍ max൫ݒ௞,௥(݅ → ݆), 0൯ ∙ ݁ି‖௉ೝି௉೔‖మ௅ೖ௥ୀଵ 								(2)	 
where Lk is the total number of points in trajectory k. ݒ௞,௥(݅ →݆)	is the displacement of the r-th point in trajectory k in the 
direction of Pi→Pj, as in Figure 3. Pr is the patch where point r is 
located. ‖ ௥ܲ − ௜ܲ‖ଶ is the distance between patches Pi and Pr.  

 
Figure 3. The way to calculate ݒ௞,௥(݅ → ݆). 

From Eqs (1) and (2), we can see that the weight for a directed 
edge Pi→Pj is proportional to the total displacement strength of 
all training trajectory points in the direction of Pi→Pj. Besides, a 
distance term ‖ ௥ܲ − ௜ܲ‖ଶ	is also included such that trajectory 
points closer to the directed edge will have more impact to the 
weight ௜ܹ→௝.	In this way, if there are large numbers of training 
trajectories passing through Pi and following the direction of 
Pi→Pj, a large weight will be assigned to ௜ܹ→௝ meaning that 
moving from Pi to Pj is normal. On the contrary, a small ௜ܹ→௝ 
will be assigned to indicate that following Pi→Pj is abnormal.  

3.1.2 Achieving equipotential lines 
With the constructed network, we can derive an equipotential 

line for each point in an input testing trajectory. More specifically, 
we first achieve an energy map for a trajectory point based on the 
constructed network, and then derive a constant-energy line from 
this energy map as the resulting equipotential line.  

 The energy map for a trajectory point r can be achieved by 
iteratively propagating energies outwards from the patch of r (i.e. 
Pr) to other patches in the scene. The trajectory point patch Pr is 
first allocated with an initial energy E0=100 before propagation. 
And during each iteration, the energy propagated from a patch Pi 
to its outside neighboring patch Pj can be calculated by: 

௜→௝ܧ																															     = ௜ܧ ∙ ݁ି	 ംೈ೔→ೕ                 (3) 

where Ei→j is the energy transmitted from Pi to Pj. Ei is the energy 
in patch Pi. Wi→j is the weight for the directed edge Pi→Pj 
achieved by Eq. (1). And γ is a constant. From Eq. (3), it is clear 
that fewer energies will be propagated if the motion from Pi to Pj 
is abnormal (i.e., small Wi→j). 
   Figure 4 (b) and (d) show the energy maps of two points ra 
and rb in a trajectory in (a). In (b), since moving rightward from ra 
is normal (because there are lots of dashed blue training 
trajectories moving rightward around ra), more energies can be 
propagated to this direction, thus leading to a long rightward tail 
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        (a)                    (b)            (c) 
Figure 6. (a) Center point r, boundary point hm, and their 
distances; (b) Illustration of dm,t and θm,t at time t; (c) hm,t and 
rt at different t and relative velocity vm-r,t. 

4. EXPERIMENTAL RESULTS 
In this section, we show experimental results for our proposed 

tube and droplet approach. In our experiments, the patch size is 
set to be 10×10, and γ, λ, and β in Eqs (3) and (5) are set to be 1, 5, 
and 1, respectively. We first perform experiments on a road 
dataset that we constructed. The dataset includes 300 trajectories 
obtained by a tracking method [9] where 200 trajectories are for 
normal activities and the other 100 trajectories are abnormal ones. 
The normal trajectories includes seven classes (with about 30 
trajectories for each class), as in Figure 7 (a). Besides, some 
example abnormal trajectories are also displayed in Figure 7 (a). 
Note that this is a challenging dataset in that: (1) the total number 
of trajectories in the dataset is small; (2) The motion trajectories 
within the same class have large variance; (3) Many trajectories 
from different class are confusing and are difficult to differentiate.  

 We compare our approach with three methods: the GPRF 
method [3], the DTW method [4], and the heat-map (HM) method 
[2]. We split the dataset into 75% training-25% testing parts and 
perform recognition on the testing part [6]. Four independent 
experiments are performed where the training and testing sets are 
randomly selected in each experiment. And the results are 
averaged. Figure 7 (b) compares the ROC curves for different 
methods in recognizing normal/abnormal activities. Besides, 
Table 1 further compares the Miss, False Alarm (FA), and Total 
Error Rates (TERs) [6] for different methods in differentiating the 
seven normal activity patterns and the abnormal activity pattern.  

From Table 1 and Figure 7 (b), we can see that the compared 
methods, which mainly perform recognition according to the 
similarity among trajectories' motion patterns, have low 
effectiveness when recognizing activities such as "L", "RU", and 
"RD" since their trajectories are easily confused with other similar 
activities such as "UL", "U", "R". Comparatively, our proposed 
approach can achieve obviously better results where the confusing 
activities are properly differentiated. This is because: (1) our 3D 
tube representation embeds scene-related information by using 
narrow tube sections to represent local abnormal displacements. 
Thus, abnormal activities can be precisely differentiated even if 
their overall trajectory shapes are similar to normal activities; (2) 
Our droplet features can catch the subtle motion direction by 
accumulating velocity differences between boundary and center 
points in 3D tubes. Thus, the confusing activities such that "R" 
and "RD" can also be effectively differentiated by our approach. 

            
           (a)                      (b) 

Figure 7. (a) Examples of normal activities (yellow) and 
abnormal activities (red); (b) ROC curves of different 
methods in abnormality detection. 

Table 1 Miss, FA, and TER rates in recognizing different 
normal patterns together with the abnormal activity pattern  

  Our GPRF [3] DTW [4] HM [2] 

R Miss 4.2% 9.7% 15.3% 8.2% 
FA 0.5% 1.4% 1.7% 0.7% 

L Miss 3.8% 7.1% 9.3% 11.2% 
FA 0.2% 0.5% 1.0% 1.8% 

RD Miss 3.5% 10.2% 18.5% 12.4% 
FA 0.3% 0.7% 1.4% 1.0% 

LU Miss 2.6% 0.3% 0.5% 2.6% 
FA 0.5% 0.2% 0.0% 0.4% 

LD Miss 1.2% 3.3% 14.1% 8.0% 
FA 0.2% 0.2% 0.6% 0.2% 

RU Miss 2.4% 14.7% 13.1% 17.9% 
FA 0.5% 1.8% 1.5% 2.1% 

DL Miss 1.3% 2.5% 1.4% 2.4% 
FA 0.0% 0.2% 0.0% 0.4% 

Abnormal
Miss 8.8% 17.4% 24.3% 23.1% 
FA 7.9% 17.0% 26.7% 21.2% 

TER 5.3% 10.7% 15.4% 14.1% 

5. CONCLUSION AND FUTURE WORKS 
  In this paper, we propose to construct a 3D tube for 
representing a motion trajectory and then derive a "water droplet" 
from the 3D tube to recognize the trajectory. Experimental results 
demonstrate the effectiveness of our approach. Future work 
includes more experiment on public datasets and comparison with 
other graphical model-based methods [10, 11]. 
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