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a b s t r a c t 

Multiple object tracking (MOT) aims to model the temporal relationship among detected objects and as- 

sociate them into trajectories. Thus, one major challenge of MOT lies in the confusion from noisy object 

detection results. In this paper, we propose Tracklet-Plane Matching (TPM), a new approach which im- 

proves the performance of MOT by modeling and reducing the interferences from noisy or confusing ob- 

ject detections. TPM first constructs good temporally-related object detections into short tracklets. Then, 

a tracklet-plane matching process is introduced to organize related tracklets into planes and associate 

them into long trajectories. The tracklet-plane matching process assigns visually confusing tracklets into 

different tracklet planes according to their contextual information, thus properly reducing the confusion 

among similar tracklets. At the same time, it also allows association among temporally non-neighboring 

or overlapping tracklets, which provides good flexibility to handle confusion from noisy detections. Un- 

der this process, a tracklet-importance evaluation scheme and a representative-based similarity modeling 

scheme are introduced. These two schemes can properly evaluate the reliability of detection results and 

identify reliable ones during association so that the impact of noisy or confusing detections can be well- 

mitigated. Experimental results on benchmark datasets demonstrate that the proposed approach outper- 

forms the state-of-the-art MOT methods. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multiple object tracking (MOT) is of increasing importance in

any applications including intelligent video surveillance, auto-

atic driving and robotics. After obtaining the results of each

rame from the detector, the MOT task aims to model the tem-

oral relationship among detected objects and associate them into

rajectories [1] . Since the major target of MOT is to find the cor-

espondences and perform matching among multiple objects in

eighboring frames, this remains as a fundamental matching prob-

em in various visual applications. 

Basically, since object detection results are the major informa-

ion cues for MOT, noisy detection results will hurt the perfor-

ance of MOT [2] ; a pictorial example of such an issue is shown in

ig. 1 . Thus, one major challenge of MOT lies in properly handling
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hese noisy detections. Most of the existing MOT approaches fo-

used on developing a proper object association strategy such that

bjects in different frames are optimally matched under some cost

unctions. However, since different objects in a video may be con-

used due to their similarity in appearance or motion, the associa-

ion results are often interfered with by these confusing detections.

ome researchers aim to reduce this interference by developing

ore differentiable feature representations or similarity metrics, or

earning them together. These methods still have limitations when

andling highly confusing objects. At the same time, since noisy

etections are inevitable in the association process, their results

re also interfered with by these noisy detections. Some recent ap-

roaches aim to reduce the confusion from noisy detections by in-

roducing more accurate object detectors, or developing more reli-

ble object-wise similarity metrics. However, they do not discrim-

nate good detections from noisy ones very well, which in turn,

mpacts their performance when handling visually similar or eas-

ly confusable noisy detections. 

We posit that handling confusing or noisy detections is impor-

ant in MOT. For example, in Fig. 1 , the confusing detections (or-

nge box and green box) are visually similar, hence they may easily

esult in wrong association results. However, if we can find some

https://doi.org/10.1016/j.patcog.2020.107480
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107480&domain=pdf
mailto:wylin@sjtu.edu.cn
https://doi.org/10.1016/j.patcog.2020.107480
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Fig. 1. Example of confusing object detections. (a) The detection result. (b) The wrong tracking result due to overlapping and confusing object detections (orange box and 

green box, respectively). (c) Our TPM approach separates the confusing objects into different tracklet-planes by using contextual information. (d) The tracking result of our 

TPM approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Example of noisy object detections. (a) The detection result. The red box is the noisy detection. (b) The wrong tracking result is due to noisy detection, which in turn 

generates a redundant trajectory. (c) Our TPM approach merges the overlapping tracklets of the same object by tracklet-plane. (d) The tracking result by our TPM approach. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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way to reduce such confusion (e.g., utilizing the contextual infor-

mation), the association processing can be facilitated, leading to a

more reliable tracking result. Furthermore, as in Fig. 2 , since noisy

detections (red box) include duplicated or misleading information,

wrong tracking results are present when utilizing them in the de-

tection matching or association process. However, if we can dis-

criminate and exclude these noisy detections, the tracking results

can also be improved. 

To this end, we propose a new approach named Tracklet-Plane

Matching (TPM) for multiple object tracking, whose framework

is shown in Fig. 3 . We propose a new concept called tracklet-

plane (See Fig. 3 ). A tracklet-plane is a spatial-temporal hyper-

plane, where tracklets are connected to it by assigning the start

and end detections of tracklets to one side of the plane, such that

tracklets connected to the same tracklet-plane have a higher prob-

ability of being associated to form a long trajectory. The proposed

TPM approach first associates the object detections with high sim-

ilarity into short tracklets. Then, we design an in-plane match-

ing process to organize related short tracklets into their planes

and associate these short tracklets on the same plane to generate
ong trajectories. The tracklet-plane matching process assigns visu-

lly confusing tracklets into different tracklet planes according to

heir contextual information, thus reducing the confusion among

imilar tracklets. At the same time, it also associates the tempo-

ally non-neighboring and overlapping tracklets effectively, which

omplements missing detections and exclude noisy detections. To

mprove the performance of this tracklet-plane-based process, we

urther introduce a tracklet-importance evaluation scheme and a

epresentative-based similarity modeling scheme. These schemes

an evaluate the reliability of tracklets and pick up reliable ones

uring association. Thus overall, the impact of confusing or noisy

etections can be further reduced. Extensive ablation studies and

omparisons with the state-of-the-art methods are conducted on

OT16 and MOT17 benchmarks, highlighting the promise of TPM. 

In summary, the contributions of our approach are three folds:

1) We propose a tracklet-plane matching process, which con-

tructs tracklet-planes to differentiate the easily confusable track-

ets and model the association among temporally non-neighboring

r overlapping tracklets, and thus providing good flexibility to han-

le the interferences from confusing or noisy detections. (2) We
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Fig. 3. Framework of the proposed TPM approach. 
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ntroduce a tracklet-importance evaluation scheme that measures

he reliability of tracklets and excludes the noisy detections. (3) We

ntroduce a representative-based similarity modeling scheme by

roposing a deep-based representative-selection network, which

an effectively discriminate and pick up reliable and representa-

ive detections when calculating tracklet-wise similarity, thus fur-

her eliminating the interferences from confusing or noisy detec-

ion. 

The rest of the paper is organized as follows. Section 2 reviews

he related work while Section 3 describes the overall framework

f TPM. The details of our proposed tracklet-plane matching pro-

ess and tracklet importance / similarity modeling are described in

ection 4 and Section 5 respectively. Section 6 then presents the

xperimental results. Finally, Section 7 concludes the paper. 

. Related work 

Most existing MOT approaches focus on improving its perfor-

ance from three aspects: object association, object detection, and

bject-wise similarity measure. 

Object association . Since the key task of multiple object track-

ng is to associate detected objects, most current research focused

n developing proper object association strategies. Basically, ob-

ect association can be viewed as a fundamental matching prob-

em in the temporal domain, which aims to model the relation-

hip, find the correspondence, and perform matching among de-

ected objects in temporally neighboring frames. Therefore, many

esearchers have developed matching models or matching theories

o address the object association problem. 

Tang et al. [3] designed a Subgraph Multicut model to deal with

he detection association problem and solved it by the Kernighan-

in algorithm [4] . 

Ren et al. [5] applied a prediction network and a decision net-

ork to associate the objects by collaborative deep reinforcement

earning. Maksai et al. [6] proposed a non-Markovian MOT ap-

roach by using behavioral patterns to impose global consistency.

an et al. [7] proposed an affinity optimization method with grad-

ated consistency regularization to improve the accuracy of graph

atching. Since these methods include both noisy and easily con-

usable detections in the association process, their results are often

nterfered with by these misleading detections. Our proposed TPM

an assign the visually similar or easily confusable objects into dif-

erent tracklet-planes so that they are less associated incorrectly,

hich is effective in improving the overall tracking performance. 
Object detection . Since object detection results play an impor-

ant role in MOT, some research works also aim to improve ob-

ect detection capabilities for better MOT accuracy. Henschel et al.

8] used a multi-detector to track pedestrians by fusing body and

ead detections. Furthermore, Chu et al. [9] used single object

racking (SOT) to enrich detections in MOT. Kim et al. [10] mod-

led the multi-object state as a labeled random finite set and used

ayes recursion to eliminate false negatives and false positives. Jor-

uera et al. [11] introduced probability hypothesis density filter to

void data association uncertainty, noise and false alarms. 

Object-wise similarity measure . Moreover, some other prior

orks further develop better object-wise similarity measure

o boost the object association results. Some approaches used

earning-based methods to calculate pairwise association costs.

ang et al. [12] proposed a deep network flow method and a deep

atching algorithm to calculate the similarity of objects. In ad-

ition, Son et al. [13] designed a Quadruplet Convolutional Neu-

al Network to achieve end-to-end tracking which differentiates

imilar objects by learning. However, some noisy information will

e included in the feature if there are serious occlusions in the

racklet. Other research works designed some methods to extract

ore robust appearance features or motion features, which are

lso used for obtaining a better object-wise similarity measure.

ang et al. [14] proposed a joint learning method for features

nd distance metrics to distinguish confusing objects. Wu et al.

2] designed instance-aware representations to distinguish similar

bjects. Zhu et al. [15] used the estimated trajectory information

f future frames to enable more accurate matching between track-

ets. Shen et al. [16] proposed a patch-based appearance model and

patialâtemporal similarity measurement to increase matching ac-

uracy. Meanwhile, a more recent method by Tian et al. [17] in-

roduced a spatial-temporal attention appearance model to solve

ariations relating to occlusion and illumination, and to calculate a

eliable similarity score between the candidate detection and the

bject. Although these methods can improve the performance of

OT, they still have limitations when handling visually similar or

asily confusable noisy detections. 

There are also some video re-identification methods [18,19] can

e applied to calculate tracklet-wise similarity, but they need to

nclude all information in a video clip to handle large camera-wise

ariations. This may unfeasibly incorporate noise into the similarity

alculation. Comparatively, based on the observation that neighbor-

ng tracklets of the same object have small variations, our method

ocuses on calculating the feature vector for the most representa-
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tive detection in every tracklet, which is simpler and more effi-

cient. 

Overall, our approach improves MOT from the aspect of ob-

ject association and object similarity measure. Firstly, we develop

a tracklet-plane matching process to differentiate easily confus-

able tracklets and flexibly model the correlation among tracklets,

thus improving the accuracy of object association. Secondly, we in-

troduce a tracklet-importance evaluation scheme together with a

representative-based similarity modeling scheme, which discrim-

inates and selects reliable tracklets for a more precise similarity

measure. 

3. Overview 

Fig. 3 illustrates the framework of our approach. As shown in

Fig. 3 , we first associate initial detections (blue dots) into tracklets

in the tracklet construction module ( Section 4.1 ). To remove noisy

tracklets in these short tracklets, the importance of tracklets are

measured in the tracklet importance evaluation ( Section 5.1 ) mod-

ule by confidence of detection results and similarity between adja-

cent objects. Those tracklets with low importance will be deleted.

Since similarity among tracklets will be used in tracklet-plane con-

struction and in-plane tracklet matching, a representative-select

network and tracklet similarity metric are designed in the tracklet

similarity modeling ( Section 5.2 ) module. Based on the evaluated

tracklet importance and similarity information, the tracklet-plane

construction module builds a set of tracklet-planes, in which each

tracklet-plane is connected to several tracklets ( Section 4.2 ). Fi-

nally, in Section 4.3 , the in-plane tracklet matching module merges

or associates tracklets within each tracklet-plane, and obtains the

final long trajectories. Note that our approach uses tracklets as the

basic association unit. This way, richer information can be obtained

when evaluating object reliability and modeling object-wise simi-

larity. 

In contrast to existing work that also employed tracklets to per-

form object tracking, our approach differs in two major aspects. 

(1) Most of the existing tracklet-based methods only view track-

lets as an enlarged version of objects intended for the as-

sociation process, whereby the complex correlations among

tracklets ( e.g , temporally overlapping or non-neighboring)

are not well modeled or studied. Comparatively, our ap-

proach introduces a tracklet-plane matching process to

model tracklet-wise correlations, thus this makes full use of

the rich information of tracklets and is capable of obtaining

better tracking results. 

(2) The existing tracklet-based methods simplistically select the

tracklets’ terminal objects or extract their global features to

evaluate tracklet-wise similarity, which may be easily af-

fected by the interferences of noisy detections. Compara-

tively, our approach introduces a representative-based sim-

ilarity scheme, which reduces the effect of noisy object de-

tections by finding the most reliable and representative de-

tections for measuring tracklet-wise similarity. 

4. Tracklet-plane matching process 

The proposed tracklet-plane matching process aims to asso-

ciate detections of high similarity into short tracklets, group these

highly-related short tracklets into tracklet planes, and further asso-

ciate these in-plane tracklets into long trajectories. In short, it con-

tains three main steps: tracklet construction, tracklet-plane con-

struction and in-plane tracklet matching. To accurately discrimi-

nate and exclude noisy detections / tracklets in the tracklet-plane

matching process, it is important to find effective ways to evalu-

ate tracklet reliability and model tracklet-wise similarity. To this
nd, we also propose a tracklet-importance evaluation scheme and

 representative-based similarity modeling scheme. 

.1. Tracklet construction 

The tracklet construction process merges highly-related objects

nto tracklets, which will be used as the basic units in the asso-

iation process later. In this paper, we first use a min-max nor-

alization process to evaluate the confidence of each detected ob-

ect; those of low confidence are excluded. Then, we apply Kuhn-

unkres (KM) algorithm [20] to dynamically associate temporally

elated objects into short tracklets [14] . During object association,

e model the similarity between an object D in frame t and a

racklet T constructed in the previous frame t − 1 as: 

 to (T , D ) = A (T , D ) + λs M(T , D ) , (1)

here S to ( T, D ) represents the similarity between tracklet T and

bject D. A ( T, D ) is the appearance similarity and M ( T, D ) is the

otion similarity. λs = 0 . 5 is the weight balancing the importance

etween the appearance similarity and the motion similarity. We

ompute the cosine similarity between pool5 features of ResNet-50

21] as the appearance similarity, while the velocity and position

nformation of the tracklet and the object is computed to obtain

he motion similarity [22] . 

.2. Tracklet-plane construction 

After obtaining short tracklets, we need to further associate

hem to form long trajectories. However, due to the interferences

f confusing or noisy detections, tracklets belonging to the same

rajectory may become temporally disconnected, temporally over-

apping, or created by noisy detections ( Fig. 5 b). Directly applying

ssociation methods may lead to low performances. 

To address the aforementioned interferences, we develop a

racklet-plane matching method to organize related tracklets into

lanes and apply association methods in each tracklet plane. This

esolves the association confusions caused by noisy or missing de-

ections. In our method, the optimization function that constructs

he tracklet-planes is given by: 

(X 

∗, Y ∗, n 

∗
p ) = arg min 

X,Y,n p 

�1 (X, Y, n p ) + �2 (X, Y, n p ) + λp n p , 

.t. x m 

i , y 
m 

j ∈ { 0 , 1 };
n p ∑ 

m =1 

x m 

i ≤ 1 ;
n p ∑ 

m =1 

y m 

j ≤ 1 (2)

here X = { x m 

i 
} , i = 1 , . . . , n t , m = 1 , . . . , n p and Y = { y m 

j 
} , j =

 , . . . , n t , m = 1 , . . . , n p are the sets representing the tracklet-plane

onstruction status of all tracklets in a video, x m 

i 
= 1 indicates the

nd of tracklet t i that is connected to tracklet-plane P m 

and y m 

j 
= 1

ndicates the start of tracklet t j that is connected to tracklet-plane

 m 

(See Fig. 4 ). n t is the total number of tracklets and n p is the

otal number of tracklet-planes. λp = −0 . 1 is the balancing weight.

he constraints guarantee that the start and the end of every

racklet are connected to at most one tracklet-plane. �1 ( X, Y, n p )

nd �2 ( X, Y, n p ) are the optimization terms for evaluating tracklet-

lane construction qualities, which are defined in Eq. 3 and Eq. 4 ,

espectively: 

1 (X, Y, n p ) = −
n p ∑ 

m =1 

n t ∑ 

i =1 

n t ∑ 

j=1 

2 x m 

i y m 

j W i W j S tt (T i , T j ) , (3)

2 (X, Y, n p ) = 

n p ∑ 

m =1 

n t ∑ 

i =1 

n t ∑ 

j=1 

(x m 

i x m 

j + y m 

i y m 

j ) W i W j S tt (T i , T j ) , (4)

here W i represents the importance of tracklet T i , which is eval-

ated by the tracklet importance evaluation scheme ( Section 5.1 ).
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Fig. 4. Schematic diagram with symbols. t axis represents time and s axis represents space. 

Fig. 5. Tracklet-plane matching process: (a) Short tracklets. (b) Tracklet-plane construction results. A shows temporally overlapping tracklets due to duplicated detections. B 

shows temporally non-neighboring tracklets due to missing detections. C indicates association errors in tracklets. D shows less reliable tracklets. (c) Trajectories generated 

from (b). 
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 tt ( T i , T j ) denotes the similarity between tracklet T i and tracklet T j ,

hich is calculated by the representative-based similarity model-

ng scheme ( Section 5.2 ). 

According to Eqs. 2 –4 , �1 ( X, Y, n p ) mainly measures the to-

al similarity among tracklets connected to different sides of a

racklet-plane ( Fig. 4 ). Note that there is a negative sign in Eq. 3 .

he second term �2 ( X, Y, n p ) measures the similarity among track-

ets connected to the same side of a tracklet-plane ( Fig. 4 ). 

Furthermore, we want tracklets that have the potential of be-

onging to the same trajectory to be connected to different sides

f a tracklet-plane, such that they can be associated during the in-

lane tracklet matching step. At the same time, we want the vi-

ually similar or easily confusable tracklets to be not connected to

he same side of a tracklet-plane, such that they will not interfere

ith each other in the in-plane tracklet matching step. Thus, by

ointly optimizing �1 ( X, Y, n p ) and �2 ( X, Y, n p ) in Eq. 2 , tracklets

an be properly organized according to our requirements. 

Moreover, we introduce a third term λp n p in Eq. 2 to encourage

racklets being organized into more tracklet-planes. In this way, we

an reduce the number of tracklets in each tracklet-plane and ease

he later in-plane tracklet matching step. 
 

Additionally, since some tracklets may wrongly include the sub-

racklets of two objects when constructing tracklet-planes, we also

llow a tracklet to be split into two parts at the point where

ts two adjacent object pairs have the minimum similarity within

hat tracklet. And the split tracklets can be then connected to dif-

erent sides of a tracklet plane. This way, the association errors

n tracklets can also be corrected by the tracklet-plane matching

rocess. Fig. 5 (b) and Fig. 5 (c) show some examples of tracklet-

lane construction results and final trajectory results. From Eqs. 2 –

 and Fig. 5 –6 , we can observe the advantages of our tracklet-plane

atching process as follows: 

(1) Our approach can effectively differentiate and assign visu-

ally confusing tracklets into different tracklet-planes. Thus,

the interferences among confusing tracklets can be effec-

tively reduced in the tracking results. For example, in Fig. 6 b,

tracklet C has high visual similarity with a confusing track-

let D. If performing direct association, C may be incorrectly

associated to D instead of its correct ground-truth tracklet F.

However, by performing our tracklet plane construction pro-

cess, tracklet D will be ‘pushed’ towards a tracklet plane that

is different from C based on its contextual constraints with
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Fig. 6. (a) Traditional tracklet cluster methods. The easily confusable tracklets (the red tracklet and the purple tracklet) which are similar will always be clustered into the 

same cluster, which is hard to be distinguished in tracklet matching step. (b) Our TPM approach. Tracklet-plane matching could push the easily confusable tracklets into 

different tracklet-planes, which reduces the confusion in tracklet matching step. In detail, the high similarity between B and D generates a high value of �2 , the optimization 

of tracklet-plane construction pushes D to P 2 from P 1 . Similarly, F is pushed to P 1 . (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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other tracklets. In other words, although the similarity be-

tween D and C are high, their similarity to other tracklets

are different. This difference will push C and D into different

tracklet planes according to the constraints �2 in Eq. 2 (e.g.

based on left side of Fig. 6 (b): when tracklets A and B are as-

signed to the two sides in a tracklet plane P 1 , tracklet C can

be assigned to the left side of P 1 since it has large dissimi-

larity to A. However, tracklet D cannot be assign to the right

side of P 1 since it has small dissimilarity to B). Thus, the

confusion between C and D can be properly avoided. Simi-

larly, on the right side example, tracklet F is pushed to P 1 
and the confusion between E and F is also avoided. 

Moreover, it should be noted that although some tracking

methods also use contextual information [3] , our approach

is essentially different from theirs. Generally, since these ex-

isting works aim to use contextual information to group

visually similar objects or tracklets, the intrinsic confusion

among similar objects/tracklets still cannot be avoided inside

the groups. Comparatively, our tracklet-plane approach aims

to use the contextual information to ‘push’ visually similar

tracklets into different tracklet planes. Thus, the confusion

among similar tracklets can be effectively avoided. 

(2) Since our tracklet-plane construction module allows track-

lets at different temporal locations to be linked into the

same tracklet-plane, it has large flexibility to handle the as-

sociation of tracklets with different kinds of issues, i.e , tem-

porally non-neighboring tracklets due to missing detections

( i.e , B in Fig. 5 (b)) or temporally overlapping tracklets due to

duplicated detections ( i.e , A in Fig. 5 b). 

(3) Our tracklet-plane construction module also allows tracklets

to be split and connected to different sides of a tracklet-

plane. This enhances the capability of our tracklet-plane

matching process to correct potential association errors that

may occur ( i.e , C in Fig. 5 b). 

(4) Our tracklet-plane construction module also integrates the

importance weights of tracklets ( i.e, W i and W j in Eqs. 3 and

S  
4 ). This way, we also have the flexibility to evaluate the re-

liability of tracklets and to exclude less reliable tracklets in

the tracklet-association process ( i.e , D in Fig. 5 b, not linking

it to any tracklet-planes). 

Inference. Solving Eq. 2 is not trivial as the optimization terms

nd constraints are discrete and complicated. In this paper, we use

ocal Gradient Descent algorithm [23] to obtain an approximate

olution that iteratively derives candidate tracklet-plane solutions

y sequentially connecting tracklets to neighboring planes to find

he best one. 

We set S as the matrix combined with tracklet similarity and

racklet importance: 

 i j = W i W j S tt (T i , T j ) , ∀ i, j ∈ [1 , n t ] , (5)

hen �1 ( X, Y, n p ) and �2 ( X, Y, n p ) can be expressed as: 

1 (X, Y, n p ) = −2 

n p ∑ 

m =1 

X 

T 
m 

SY m 

, (6)

2 (X, Y, n p ) = 

n p ∑ 

m =1 

(X 

T 
m 

SX m 

+ Y T m 

SY m 

) , (7)

here X m 

is the m th column of matrix X and Y m 

is the m th column

f matrix Y . Due to that S is a symmetric matrix, the optimization

unction �( X, Y, n p ) can be expressed as: 

(X, Y, n p ) = 

n p ∑ 

m =1 

(X m 

− Y m 

) T S(X m 

− Y m 

) + λp n p , (8)

et A = X − Y, then: 

(A, n p ) = 

n p ∑ 

m =1 

A 

T 
m 

SA m 

+ λp n p , (9)

he function in Eq. 9 can be made convex by the normalized Lapla-

ian matrix of S: 

 

 = I − G 

1 
2 SG 

1 
2 , (10)
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here I is the identity matrix and G is the diagonal matrix by the

ow sums of S . Therefore, �( X, Y, n p ) is convex for both X and Y

nd we can apply the Local Gradient Descent algorithm to solve

q. 2 . The detailed process is described in the following steps as

ell as Algorithm 1 . 

lgorithm 1 Algorithm to find the tracklet-planes (optimal solu-

ion of Eq. 2). 

equire: W i , W j , S tt (T i , T j ) ∀ i = 1 , . . . , n t j = 1 , . . . , n t 
nsure: X ∗, Y ∗, n ∗p 
1: Initialize n p by Eq. 11 

2: Randomly initialize X and Y with constraints in Eq. 2 

3: Calculate �(X, Y, n p ) by Eq. 8 

4: while �(X ′ , Y ′ , n ′ p ) < �(X, Y, n p ) do 

5: X = X ′ , Y = Y ′ 
6: Calculate �(X ′ , Y ′ , n ′ p ) by Eq. 8, 12–16 

7: end while 

8: X ∗ = X , Y ∗ = Y , n ∗p = n p 

(1) We first set the initial number of tracklet-planes as 
√ 

n t : 

n p = 

√ 

n t , (11) 

which means the columns of X and Y is 
√ 

n t and the rows of

X and Y is n t . 

(2) Randomly assign all the tracklets to tracklet-planes with the

constraints in Eq. 2 , which means that we randomly set one

element as 1 and other elements as 0 for every row of X and

Y . 

(3) Then, we apply the Local Gradient Descent algorithm and

the normalization operation to update X, Y and n p . The par-

tial derivative of �( X, Y, n p ) to X and Y is given in Eq. 12 and

Eq. 13 : 

∂�(X, Y, n p ) 

∂X 

= 2 S(X − Y ) , (12)

∂�(X, Y, n p ) 

∂Y 
= 2 S(Y − X ) , (13)

then we can update X and Y by Eq. 14 and Eq. 15 : 

X 

′ = N (X − ∂�(X, Y, n p ) 

∂X 

) , (14)

Y ′ = N (Y − ∂�(X, Y, n p ) 

∂Y 
) , (15)

where N (X ) is the normalization operation, which sets the

maximum element of every row of X as 1 and the other

elements as 0. In this process, there are some columns of

X and Y whose elements are all 0, which means that the

tracklet-plane can be removed. Therefore, the actual number

of tracklet-planes n p is the initial value minus the union of

all-zero columns of X and Y , as in Eq. 16 : 

n 

′ 
p = 

√ 

n t − (�(X ) ∪ �(Y )) , (16)

where �( X ) is the number of all-zero columns of X. 

(4) After every iteration we calculate the objective function

value in Eq. 2 by X, Y and n p . If the value does not decrease,

the last X, Y and n p can be seen as the optimal solution of

Eq. 2 . 

.3. In-plane tracklet matching 

After connecting related tracklets onto tracklet-planes, we are

ble to perform tracklet-wise association ( i.e , matching) within

ach tracklet-plane to obtain final trajectories. Particularly, the in-

lane tracklet matching process aims to find the best one-to-one
atching among tracklets which are connected to different sides

f a tracklet-plane. Therefore, the process can be modeled as: 

 

∗ = arg max 
Z 

n p ∑ 

m =1 

n t ∑ 

i =1 

n t ∑ 

j=1 

x m 

i y m 

j z i j W i W j S tt (T i , T j ) , 

.t. z i j ∈ { 0 , 1 };
n t ∑ 

j=1 

z i j ≤ 1 ;
n t ∑ 

i =1 

z i j ≤ 1 (17) 

here Z = { z i j } , i = 1 . . . n t , j = 1 . . . n t is the set representing the

racklet association status. z i j = 1 means the end of tracklet T i is

onnected to the start of tracklet T j ( i.e, T i and T j are associated).

 

m 

i 
and y m 

j 
are obtained by Eq. 2 , which guarantees that only the

racklets from both sides of the same tracklet-plane can be associ-

ted. Finally, KM algorithm [20] is applied to solve Eq. 17 . 

Note that since the associated tracklets may be temporally over-

apping / non-neighboring, or may include noisy detections, some

nterpolation, merging or deleting operations are further applied

n the associated tracklets to obtain clean and coherent trajecto-

ies, as shown in Fig. 7 . 

. Tracklet importance evaluation and similarity modeling 

To accurately discriminate and exclude noisy detections / track-

ets in the tracklet-plane matching process ( Section 4 ), it is im-

ortant to find effective ways to evaluate tracklet reliability and

odel tracklet-wise similarity. To this end, we propose a tracklet-

mportance evaluation scheme and a representative-based similar-

ty modeling scheme. 

.1. Tracklet importance evaluation 

The importance of tracklet T i is calculated by: 

 i = 

∑ L i 
n =1 

C n 
i 

L i 

∑ L i −1 
n =1 

S oo (D 

n 
i 
, D 

n +1 
i 

) 

L i − 1 

(1 − e −
√ 

L i ) , (18)

here D 

n 
i 

denotes the n -th object of tracklet T i , C 
n 
i 

represents the

onfidence of detection D 

n 
i 

similar to those by [24] , S oo (D 

n 
i 
, D 

n +1 
i 

)

epresents the appearance similarity between two adjacent objects

 

n 
i 

and D 

n +1 
i 

, and L i represents the length of tracklet T i . 

In general, good tracklets consist of detections with high confi-

ence (modeled by the first term in Eq. 18 ) and high appearance

imilarity (second term). Additionally, the longer the tracklet is, the

ore important the tracklet becomes (third term). As a result, ac-

ording to Eq. 18 , tracklets with high importance will be regarded

s more reliable and will have higher chance to join tracklet-planes

nd to be associated with other tracklets Eqs. 2 and (17) . In this

ay, the tracklet matching process can be more assured of obtain-

ng results containing highly confident tracklets while excluding

nwanted noisy tracklets. 

.2. Representative-based similarity modeling 

Tracklet similarity S tt ( T i , T j ) is another key factor affecting the

erformance of the tracklet matching process. Intuitively, tracklet-

ise similarity can be modeled by the similarity between the fea-

ures of tracklets’ terminal objects [1,8] ( Fig. 8 (a)) or between the

lobal features of tracklets [25] ( Fig. 8 (b)). However, since tracklets

ay include noisy detections, directly using terminal object fea-

ures or global features may improperly introduce noisy informa-

ion and reduce the reliability of the similarity measure. 

Therefore, we propose a representative-based similarity mod-

ling scheme, which introduces a neural network to select the

ost representative objects from each tracklet and use them to

odel tracklet similarity. Our proposed representative-based simi-

arity modeling scheme is shown in Fig. 8 (c). When calculating the
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Fig. 7. Three operations of tracklet association: (a) Interpolation . The detection boxes will be interpolated into the gap between the two associated tracklets. (b) Merging . 

The overlap detection boxes between the two associated tracklets will be merged by calculating the confidence-based weighted average in the same frame. (c) Deleting . The 

left tracklets (in the dashed circle) with low importance will be deleted. 

Fig. 8. Three tracklet similarity measurement strategies: (a) By the features of terminal objects. (b) By the global features. (c) By the features of representative objects (Ours). 
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similarity S tt ( T i , T j ) between two tracklets T i and T j , we first input

them into a representative-selection network and select the most

reliable representative object from each tracklet. Then, the tracklet-

wise similarity between T i and T j is calculated by the feature sim-

ilarity between the selected representative objects. 

Representative-selection network. In order to capture

the temporal variation in a tracklet, we adopt convolutional

LSTM [26] as the major structure of the representative-selection

network. Moreover, since each tracklet needs to calculate similarity

with other tracklets in different temporal locations, we select two

representative objects from each tracklet: one is used to measure

the similarity with tracklets before it, while the other is used to

measure the similarity with tracklets after it. Therefore, we develop

a bi-directional convolutional LSTM as the representative-selection

network, as depicted in Fig. 9 . 
The representative-selection network (as in Fig. 9 ) contains two

STM streams, where the forward stream (LSTMs in blue) is de-

igned to select a representative object around the back-end of a

racklet, while the backward stream (LSTMs in yellow) is used to

nd the representative object around the tracklet’s front-end. Each

tream has a set of LSTM units where each unit takes an object in

 tracklet as input and outputs its representative score. Finally, the

bject with the highest score will be selected as the representative

bject and used to calculate tracklet similarity. 

Moreover, the forward and backward streams are jointly trained

hile minimizing the distance between two feature maps of the

ame detection box. More specifically, a loss function, known as

erceptual loss or feature matching loss [27] , is adopted to su-

ervise the selection of the two coherent streams. Note that if a

racklet is longer than γ in the inference stage, we will simply ap-
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Fig. 9. The representative-selection network. Bi-directional convolutional LSTM units are merged into the representative-selection network. Two score values are calculated 

from two streams for each object based on the network. The object with the largest score (the brightest red square) is selected for tracklet similarity calculation. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o  
ly our network on the first and last γ detections in the tracklet

o select representative detections. The value of γ is discussed in

ection 6 . 

Learning and loss function. In order to make the

epresentative-selection network select proper objects, we need

o define proper ground-truth representative scores to guide the

earning process. In this paper, we define the ground-truth by 

 

t 
i = 

1 

γ

∑ 

τεG 

(S oo (D 

t 
i , D 

t+ τ
i 

) − max 
j 	 = i 

(S oo (D 

t 
i , D 

t+ τ
j 

))) , (19)

here D 

t 
i 

is obtained from the training dataset and it denotes the

round-truth detection box of the i th tracklet in frame t . V t 
i 

is the

round-truth representative score for D 

t 
i 
. S oo denotes the appear-

nce similarity between two detections, which is defined in the

ame way as in Eq. 18 . The set G represents the frame clip of the

racklet. For the forward stream, the set G = { 1 , 2 , · · ·γ } , while for

he backward stream, G = {−1 , −2 , · · · − γ } . An object is more rep-

esentative if it can differentiate matched objects (same object in

ifferent frames as the first term in Eq. 19 ) from unmatched ones

different objects in different frames as the second term in Eq. 19 ).

ote that since our bi-directional convolutional LSTMs need to se-

ect two representative objects from a tracklet, we generate two

round-truth representative scores to guide the forward stream

nd backward stream. For simplicity, we use the same notation

s in Eq. 19 for both streams, yielding two different representa-

ive scores V t 
i 

when given two different sets G corresponding to

he two streams. 
With the ground-truth representative scores determined by

q. 19 , we define the loss function of the representative-selection

etwork as: 

 = L F + L B + L P , (20)

 F = 

1 

γ

γ∑ 

τ=0 

∥∥y 
t B −γ + τ
i 

− V 

t B −γ + τ
i 

∥∥2 
, (21) 

 B = 

1 

γ

γ∑ 

τ=0 

∥∥y 
t F + γ −τ
i 

− V 

t F + γ −τ
i 

∥∥2 
, (22) 

here L F and L B are the losses for the forward and backward

treams, respectively. L P denotes the aforementioned similarity su-

ervision between two feature maps extracted from bi-directional

onvolutional LSTM units. y t 
i 
= f (D 

t 
i 
) is the prediction score from

his network and the function f ( · ) represents the representative-

election network. V 
t B −γ + τ
i 

and V 
t F + γ −τ
i 

are the ground-truth rep-

esentative scores for the forward and backward streams, respec-

ively. t B denotes the back-end frame of tracklet T i , and t F denotes

he front-end frame of the tracklet. During training, the frame clips

re extracted from all tracklets by a sliding window of length γ . At

est time, we switched the selections. The clip used for the forward

tream is selected from the back-end of the tracklet, while the clip

sed for the backward stream is selected from the front-end of the

racklet. 

Tracklet similarity calculation. After selecting representative

bjects, the tracklet-wise similarity S tt can be calculated by the
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Fig. 10. The blue box represents the selected front-end object obtained by backward stream and the red box represents the selected back-end object obtained by forward 

stream. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Qualitative comparisons of different methods on a test sequence (MOT16-06). 
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combination of the motion similarity and the appearance similarity

between the selected representative objects (cf. Eq. 1 ). 

Fig. 10 shows two representative objects selected by our ap-

proach. From Fig. 10 , we can see that our approach can properly

choose reliable and representative objects in tracklets and avoid in-

cluding noisy objects during tracklet similarity calculation. 

6. Experiments 

6.1. Datasets and experimental settings 

We perform experiments on two benchmark datasets: MOT16

[28] and MOT17. 

MOT16 contains 7 training and 7 test sequences. The video

sequences in MOT17 are the same as MOT16, except that each

sequence is provided with three different detection sets (DPM,

Faster-RCNN and SDP), together with newer and more accurate

ground-truth. These video sequences are captured by both static

and moving cameras, with different scenes and resolutions. Vari-

ous types of object occlusions and large changes in object appear-

ances render these datasets challenging for MOT research. 

Based on the MOTChallenge Benchmark, tracking performance

is measured by Multiple object Tracking Accuracy (MOTA), Multiple

Object Tracking Precision (MOTP), the total number of False Nega-

tives (FN), the total number of False Positives (FP), the total num-

ber of Identity Switches (IDs), the percentage of Mostly Tracked

Trajectories (MT) and the percentage of Mostly Lost Trajectories
ML). Specifically, MOTA measures the overall tracking performance

f an approach, together with FN, FP, and IDs. 

In our comparisons, we use the public detection results pro-

ided by the MOT16 and MOT17 datasets, so that a fair comparison

ith other MOT methods can be judged. For the representative-

election network in Section 5.2 , we use the training sequences

f MOT16 as the training data and apply the trained network to

erform tracking on all test datasets. While in the ablation study

ection, we use the training sequences of MOT15 [29] as training

ata and the training sequences of MOT16 for validation. ResNet-

0 [21] pre-trained model is adopted as the backbone of our

epresentative-selection network. SGD optimizer is applied to train

he network with batch size of 32 and the initial learning rate is

et to 0.0 0 01. After every 20,0 0 0 iterations, the learning rate is re-

uced by half. The training process terminates after 80,0 0 0 itera-

ions. 

.2. Ablation study 

To evaluate the effectiveness of different components in our ap-

roach, we compare the following six methods: 

(1) Baseline . Directly applying KM algorithm to associate the de-

tected objects into trajectories without constructing track-

lets. 

(2) Softassign . Using KM algorithm to generate reliable tracklets

and applying Softassign algorithm [14] to associate the track-
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Fig. 12. Some failure cases (highlighted with red circles) when performing tracklet-plane matching on MOT17 test datasets. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Tracking performance with different γ values. 

Table 1 

Ablation study on MOT16 validation dataset. 

Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ 
Baseline 39.6 75.4 14.8% 49.1% 

Softassign 40.5 75.4 15.3% 48.2% 

TP 42.1 75.4 16.3% 46.7% 

TP + Imp 43.0 75.4 16.7% 45.8% 

TP + Imp+Glob 43.8 75.5 18.0% 43.4% 

TP + Imp+Rep (TPM) 44.7 75.5 19.1% 40.8% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

MOTA results with different hyperparameters. 

0.1 0.3 0.5 0.7 1.0 2.0 

λs 41.9% 42.6% 44.7% 43.3% 41.7% 40.2% 

λp 42.3% 44.0% 44.7% 44.2% 43.1% 42.7% 
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lets into trajectories. The terminal detection in each track-

let is used to calculate tracklet-wise similarity, as shown in

Fig. 8 (a). 

(3) TP . Using our tracklet-plane matching process to perform

tracking, but excluding both the tracklet-importance evalua-

tion scheme and the representative-based similarity model-

ing scheme( i.e , setting all importance weight W in Eqs. 3 –17

to 1 and simply using the terminal detection in each tracklet

to calculate tracklet-wise similarity, as shown in Fig. 8 (a)). 

(4) TP+Imp . Using our tracklet-plane matching process to per-

form tracking, which includes the tracklet-importance evalu-

ation scheme but excludes the representative-based similar-

ity modeling scheme. 

(5) TP+Imp+Glob . Using our tracklet-plane matching process to

perform tracking, including the tracklet-importance evalua-

tion scheme. Global features of tracklets [30] are used to

measure tracklet-wise similarity. 

(6) TP+Imp+Rep (TPM) . Using the full version of our proposed

pproach by including both the tracklet-importance evalua-

tion scheme and the representative-based similarity model-
ing scheme. s  
Table 1 compares the tracking results on the MOT16 valida-

ion dataset and Fig. 11 shows several tracking results of different

ethods on a sample test sequence (MOT16-06). 

From Table 1 and Fig. 11 , we can observe that: 

TP performs significantly better than Baseline and Softassign .

his indicates that directly performing the association of detected

bjects or simply using a general tracklet association algorithm

an be easily interfered with by noisy detections and similar ob-

ects, leading to unsatisfactory results. Comparatively, by apply-

ng our tracklet-plane matching process, we can associate the

racklets more reasonably, and have more flexibility to organize

racklets onto tracklet-planes for association even when they are

emporally overlapping or non-neighboring. Therefore, we observe

tronger capabilities in handling noisy detections such as dupli-

ated ( e.g trajectory 166 in Fig. 11 (a)) or missing detections. 

TP+Imp performs better than TP . This demonstrates that our

racklet-importance evaluation scheme can effectively evaluate the

eliability of tracklets and provide tracking performance improve-

ent by discriminating and excluding the interference of noisy de-

ections and tracklets. For example, our tracklet-importance evalu-

tion scheme identifies the unreliability of tracklet 145 in Fig. 11 b,

nd excludes it from tracklet-plane construction by assigning it

ith a small importance weight (See Fig. 11 (c)). Thus, the incor-

ect tracking caused by this tracklet can be avoided. 

TP+Imp+Rep outperforms TP+Imp and TP+Imp+Glob , which

hows that our proposed representative-based similarity modeling
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Table 3 

Tracking performance of TPM and state-of-the-art methods on MOT16 and MOT17 test datasets. 

Dataset MOT16 

Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ 
CDA-DDAL [31] 43.9 74.7 10.7% 44.4% 6450 95,175 676 

Quad-CNN [13] 44.1 76.4 14.6% 44.9% 6388 94,775 745 

STAM [9] 46.0 74.9 14.6% 43.6% 6895 91,117 473 

JMC [12] 46.3 75.7 15.5% 39.7% 6373 90,914 657 

NOMT [32] 46.4 76.6 18.3% 41.4% 9753 87,565 359 

NLLMPa [33] 47.6 78.5 17.0% 40.4% 5844 89,093 629 

LMP [34] 48.8 79.0 18.2% 40.1% 6654 86,245 481 

TPM (Ours) 50.9 74.9 19.4% 39.4% 4866 84022 619 

Dataset MOT17 

Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ 
MHT-bLSTM [35] 47.5 77.5 18.2% 41.7% 25,981 268,042 2069 

PHD-GSDL [36] 48.0 77.2 17.1% 35.6% 23,199 265,954 3998 

DMAN [37] 48.2 75.9 19.3% 38.3% 26,218 263,608 2194 

EDMT [38] 50.0 77.3 21.6% 36.3% 32,279 247,297 2264 

MOTDT [39] 50.9 76.6 17.5% 35.7% 24,069 250,768 2474 

JCC [40] 51.2 75.9 20.9% 37.0% 25,937 247,822 1802 

FWT [8] 51.3 77.0 21.4% 35.2% 24,101 247,921 2648 

TPM (Ours) 52.4 76.6 22.4% 40.0% 19922 246183 2215 

Fig. 14. Qualitative results of TPM on different test datasets. 
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scheme calculates the tracklet-wise similarity more accurately by

selecting the most reliable detection in a tracklet. Comparatively,

the tracklet terminal-based similarity in TP+Imp and the tracklet

global feature similarity in TP+Imp+Glob are easily affected by noisy

or unreliable detections, leading to less satisfactory results. For ex-

ample, trajectory 123 in Fig. 11 c is not complete. By modeling the

representative-based similarity, trajectory 91 in Fig. 11 d, which cor-

responds to the same object, is now correctly associated. 

Fig. 12 shows some failure cases that commonly occur in TPM.

In the case of the first row, trajectory 145 (in the red circle)

switches between two neighbouring persons. In the case of the

second row, there is another identity switch in trajectory 39 (in the

red circle). Basically, both of the aforementioned identity switch

failure cases are actually from the errors of the tracklet construc-

tion step, i.e. the tracklet construction process erroneously put tra-

jectory segments of two persons into a single tracklet. Since the

TPM process mainly performs association at the tracklet level, the

errors inside tracklets may not be corrected in the final result. One

possible solution is to increase the reliability of tracklet construc-

tion methods to reduce such kinds of errors. We will explore this

issue our future works. 

Fig. 13 compares the tracking performance for different values

of γ in the representative-selection network. In Fig. 13 , MOT16-04

and MOT16-05 are two representative validation sequences, while

MOT16 represents all MOT16 validation sequences. We can see that

the MOTA score is not that sensitive to the value of γ , which

demonstrates the robustness of our proposed approach. From this
gure, we see that the best γ for MOT16-04 is 15, while for

OT16-05 is 5. We surmise that the reason here is that MOT16-

4 has a higher video frame rate. Based on our observation that

he best γ for the entire MOT16 validation dataset is 10, we finally

et γ to 10 in all the experiments. Besides, we also study the influ-

nce of λs and λp on the final results, which is shown in Table 2 .

mpirically, the best numerical value for λs and λp are both 0.5.

rom the results, we observe that it is necessary to appropriately

ecide the weights for appearance feature and motion feature. As

or λp , if it is set too small a value, there will be too many tracklet-

lanes generated, which makes merging between tracklet-planes

ather challenging. Otherwise, if it is too large, confusing tracklets

rom different objects are more likely to be placed into the same

roup, causing mismatches. 

.3. Comparison with state-of-the-art methods 

Finally, Table 3 compares the proposed TPM with the state-of-

he-art MOT methods on the test sequences of MOT16 and MOT17

atasets. For a fair comparison, all the methods are performed

ased on the same public detection results. 

From Table 3 , we make the following observations: 

(1) TPM significantly outperforms existing MOT methods in

terms of MOTA (the primary metric) on both MOT16 and

MOT17, which demonstrates the effectiveness of our ap-

proach. Example results of TPM are shown in Fig. 14 . 
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(2) Our TPM approach produces the highest MT and the lowest

FN on both MOT16 and MOT17. This shows that our TPM

algorithm can associate the tracklets accurately and cater

for the missing detections correctly. On the other hand, the

MOTP of our approach is slightly lower than some meth-

ods because the interpolated detections tend to be ineffec-

tive when there are significant camera motions. 

(3) On both MOT16 and MOT17, our approach produces the low-

est FP among all methods. This demonstrates TPM’s advan-

tage of effectively handling the visually-similar or easily con-

fusable objects by discriminating and excluding the less im-

portant tracklets and selecting more representative detec-

tions for tracklet similarity modeling. 

. Conclusion 

This paper introduces a new approach which can alleviate the

roblem of noisy object detections in MOT by using a new tracklet-

lane matching method. To accomplish this, we use existing de-

ection results to construct short tracklets, whereby their individ-

al importance is determined to filter out those of low confidence.

he similarity between tracklet pairs are also computed based on a

ewly designed representative-selection network. The intuition of

his is that we can properly evaluate and differentiate the reliabil-

ty of detection results and select reliable ones during association.

e also design a tracklet-plane matching process to put highly-

elated tracklets into similar planes and likewise, confusing track-

ets into different planes to decrease matching errors. Finally, in-

lane matching is performed on the associated tracklets with ad-

itional post-processing operations to obtain the long, clean trajec-

ories. A standout advantage of our method is that no specially de-

igned feature extraction network or complex matching algorithm

s necessary to track good and reliable trajectories. We demon-

trate its strengths through extensive experiments on the MOT16

nd MOT17 benchmarks. Nevertheless, we also found that sporadic

ailure cases could happen when short tracklets are not properly

onstructed. Future research will look into the possibility of us-

ng more representative features to reduce such errors when con-

tructing short tracklets. 
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