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Abstract—This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like

mobile phones or embedded gadgets. We focus on filter level pruning, i.e., the whole filter will be discarded if it is less important. An

effective and unified framework, ThiNet (stands for “Thin Net”), is proposed in this paper. We formally establish filter pruning as an

optimization problem, and reveal that we need to prune filters based on statistics computed from its next layer, not the current layer,

which differentiates ThiNet from existing methods. We also propose “gcos” (Group COnvolution with Shuffling), a more accurate group

convolution scheme, to further reduce the pruned model size. Experimental results demonstrate the effectiveness of our method, which

has advanced the state-of-the-art. Moreover, we show that the original VGG-16 model can be compressed into a very small model

(ThiNet-Tiny) with only 2.66 MB model size, but still preserve AlexNet level accuracy. This small model is evaluated on several

benchmarks with different vision tasks (e.g., classification, detection, segmentation), and shows excellent generalization ability.

Index Terms—Convolutional neural networks, filter pruning, deep learning, model compression

Ç

1 INTRODUCTION

IN the past few years, we have witnessed a rapid develop-
ment of deep neural networks in the field of computer

vision, from basic image classification tasks such as the
ImageNet recognition challenge [1], [2], [3], to some more
advanced applications, e.g., object detection [4], semantic
segmentation [5], style transfer [6] and many others. Deep
neural networks have achieved state-of-the-art performance
in these fields compared with traditional methods based on
manually designed visual features.

In spite of its great success, a typical deep model is hard
to be deployed on resource constrained devices, e.g.,
mobile phones or embedded gadgets. A resource con-
strained scenario means a computing task must be accom-
plished with limited resource supply, such as computing
time, storage space, battery power, etc. One of the main
issues of deep neural networks is its huge computational
cost and storage overhead, which constitutes a serious
challenge for a mobile device. For instance, the VGG-16
model [2] has 138.34 million parameters, taking up more
than 500 MB storage space, and needs 30.94 billion float
point operations (FLOPs) to classify a single image. Such a
cumbersome model can easily exceed the computing limit
of small devices. Thus, network compression has drawn a
significant amount of interest from both academia and
industry.

Pruning is one of the most popular methods to reduce net-
work complexity,which has beenwidely studied in themodel
compression community. In the 1990s, LeCun et al. [7] had
observed that several unimportant weights can be removed
from a trained network with negligible loss in accuracy. A
similar strategy was also explored in [8]. This process resem-
bles the biological phenomena in mammalian brain, where
the number of neuron synapses has reached the peak in early
childhood, followed by gradual pruning during its develop-
ment. However, these methods are mainly based on the
second derivative, thus are not applicable for today’s deep
model due to expensive computation costs.

Recently, Han et al. [9] introduced a simple pruning strat-
egy: all connections with weights below a threshold are
removed, followed by fine-tuning to recover its accuracy. This
iterative procedure is performed several times, generating a
very sparse model. However, such a non-structured sparse
model cannot be supported by off-the-shelf libraries, thus
specialized hardwares and softwares are needed for efficient
inference, which is difficult and expensive in real-world
applications. On the other hand, the non-structured random
connectivity ignores cache andmemory access issues. As indi-
cated in [10], due to the poor cache locality and jumpingmem-
ory access caused by random connectivity, the practical
acceleration is very limited (sometimes even slows down), even
though the actual sparsity is high.

To avoid the limitations of non-structured pruning men-
tioned above, this paper argue that filter level pruning will
be a better choice. The benefits of removing the whole unim-
portant filter have a great deal: 1) The pruned model has
no difference in network structure, thus it can be perfectly
supported by any off-the-shelf deep learning library.
2) Memory footprint will be reduced dramatically. Such
memory reduction comes not only from the model itself, but
also from the intermediate activation, which is rarely consid-
ered in previous studies. 3) Since the pruned network struc-
ture has not been damaged, it can be further compressed
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and accelerated by other compression methods, e.g., the
parameter quantization approach [11]. 4) More vision tasks,
such as object detection or semantic segmentation, can be
accelerated greatly using the prunedmodel.

We propose a unified framework, ThiNet (which stands for
“ThinNet”), to prune the unimportant filters to simultaneously
accelerate and compress CNNmodels in both training and test
stageswithminor performance degradation.With our pruned
network, some important transfer learning tasks such as object
detection or fine-grained recognition can run much faster (in
both training and inference), especially in small devices. Our
main insight is that we establish a well-defined optimization prob-
lem, which shows that whether a filter can be pruned depends on
the outputs of its next layer, not its own layer. This novel finding
differentiates ThiNet from existing methods which prune fil-
ters using statistics calculated from their own layer.

One of the most significant advantages of filter level
pruning is its compatibility: the model structure has not
been destroyed, hence the pruned network can be further
compressed with other methods. We proposed a more accu-
rate group convolution scheme, gcos (Group COnvolution
with Shuffling), to further reduce model size. Traditional
group convolution will face a severe “information blocking”
problem: different groups cannot communicate with each other.
In gcos, we use 1� 1 convolution to shuffle the information
of different groups, hence the accuracy will be preserved.

We then compare the proposed method with other state-
of-the-art criteria. Experimental results show that our
approach is significantly better than existing methods, espe-
cially when the compression rate is relatively high. We eval-
uate ThiNet on the large-scale ImageNet classification task.
ThiNet achieves 3:23� FLOPs reduction on the VGG-16
model [2], with 1.76 percent top-1 and 0.6 percent top-5
accuracy drop. The ResNet-50model [3] has less redundancy
compared with classic CNN models. ThiNet can still reduce
2:26� FLOPs and 2:06� parameters with 3.27 percent top-1
and 1.21 percent top-5 accuracy drop.

To explore the limits of ThiNet, we prune VGG-16 into two
small but accurate models with the help of gcos, ThiNet-Tiny
and ThiNet-Small. ThiNet-Tiny only takes up 2.66 MB space,
but still preserves AlexNet level accuracy. ThiNet-Small
is much more accurate, whose top-1 accuracy on ImageNet is
62.97 percent while its size is only 4.67 MB. Further experi-
ments on several vision tasks (e.g., classification, detection,
segmentation) demonstrate the excellent generalization ability
of ThiNet models, which achieve the best trade-off between
model size and accuracy.

The rest of this paper is organized as follows. Relatedwork
is discussed in Section 2. We will introduce the details of
ThiNet in Section 3. Section 4 presents the experiments to
compare ThiNet with others. Finally, we conclude this paper
in Section 5.

2 RELATED WORK

Many researchers have found that deep models suffer from
heavy over-parameterization. For example, Denil et al. [12]
demonstrated that a network can be efficiently recon-
structed with only a small subset of its original parameters.
However, this redundancy seems necessary during model
training, since the highly non-convex optimization is hard

to be solved with current techniques [13], [14]. Hence, there
is a great need to reduce model size after its training.

Some methods have been proposed to pursue a balance
between model size and accuracy. Han et al. [9] proposed
an iterative pruning method to remove the redundancy in
deep models. Their main insight is that small-weight con-
nectivity below a threshold should be discarded. In practice,
this can be aided by applying ‘1 or ‘2 regularization to push
connectivity values to become smaller. The major weakness
of this strategy is the loss of universality and flexibility, thus
seems to be less practical in real applications.

In order to avoid these weaknesses, some attention has
been focused on the group-wise sparsity. Lebedev and Lem-
pitsky [15] explored group-sparse convolution by introduc-
ing the group-sparsity regularization to the loss function,
then some entire groups of weights will shrink to zeros and
can be removed. Mao et al. [16] explored different granular-
ity of sparsity from irregular connection pruning to regular
filter pruning. Wen et al. [10] proposed the Structured Spar-
sity Learning (SSL) method to regularize filter, channel, fil-
ter shape and depth structures. In spite of their success, the
original network structure has been destroyed. As a result,
some dedicated libraries are needed to obtain inference
speed-up in real applications.

In line with our work, some filter level pruning strategies
have been explored, too. The core is to evaluate neuron
importance, which has been widely studied in the commu-
nity [17], [18], [19], [20], [21]. A simple method is based on
the magnitude of weights. Li et al. [19] measured the impor-
tance of each filter by calculating its absolute weight sum.
Another practical criterion is to measure the sparsity of acti-
vations after the ReLU function [22]. Hu et al. [20] believed
that if most outputs of some neurons are zero, these activa-
tions should be expected to be redundant. They compute
the Average Percentage of Zeros (APoZ) of each filter as its
importance score. These two criteria are simple and
straightforward, but not directly related to the final loss.
Inspired by this observation, Molchanov et al. [21] adopted
Taylor expansion to approximate the influence to loss func-
tion induced by removing each filter.

Beyond pruning, there are also other strategies to obtain
small CNN models. One popular approach is parameter
quantization [11], [23], [24], [25]. Low-rank approximation
is also widely studied [13], [26]. Note that these methods
are complementary to filter pruning, which can be com-
bined with ThiNet for further improvement.

3 THINET

We exploit a filter level pruning method to reduce model
complexity with the goal of minimizing activation recon-
struction error. In this section, we present the overall ThiNet
framework first. Our method consists of two major parts:
pruning and post-processing. Preliminary version of por-
tions of this work have been published in [27], which is
briefly introduced in Section 3.2.3. Then, we introduce the
improved version in Section 3.2.4.

3.1 The ThiNet Framework

Fig. 1 shows the overall pipeline of ThiNet. Given a pre-
trained CNNmodel, we first use the proposed novel method
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to prune several unimportant filters. Since we focus on filter
level pruning, our pruned model can be further compressed
by other methods (the post-processing part). Here, we use
group convolution to further reducemodel parameters. How-
ever, if we simply adopt this strategy in the pruned model,
the accuracy will be damaged greatly. Hence, we use 1� 1
convolution (also known as pointwise convolution) to tackle
the information blocking problem of traditional group convo-
lution. And we call this method “gcos”: Group COnvolution
with Shuffling.

3.2 Part 1: Pruning

We first focus on the pruning part, which can be summa-
rized in one sentence: evaluate the importance of each neu-
ron, remove those unimportant ones, and fine-tune the
whole network.

3.2.1 Overview of ThiNet Pruning

The pruning processing is illustrated in Fig. 2. Starting from
a pre-trained model, we prune it layer by layer with a prede-
fined compression rate. We summarize our pruning frame-
work as follows:

1) Filter selection. Unlike existing methods that use layer
i’s statistics to guide the pruning of layer i’s filters, we
use layer iþ 1 to guide the pruning in layer i. The key
idea is: if we can use a subset of channels in layer ðiþ 1Þ’s
input to approximate the output in layer iþ 1, the other
channels can be safely removed from the input of layer
iþ 1. Note that one channel in layer ðiþ 1Þ’s input is
produced by one filter in layer i, hence we can safely
prune the corresponding filter in layer i.

2) Pruning. Weak channels in layer ðiþ 1Þ’s input and
their corresponding filters in layer i are pruned
away, leading to a much smaller model. Note that
the pruned network has exactly the same structure
as the original network, but with fewer filters and
channels. In other words, the original wide network
is becoming much thinner. That is why we call our
method “ThiNet”.

3) Fine-tuning. Fine-tuning is a necessary step to recover
model accuracy damaged by filter pruning. But it
will take very long time for large datasets and com-
plex models. To reduce training time, we fine-tune
one or two epochs after the pruning of one layer. In
order to get an accurate model, additional epochs
are carried out after all layers have been pruned.

4) Iterate to step 1 to prune the next layer.

Nowwe will focus on the dotted box in Fig. 2 to introduce
our data-driven channel selection method, which determines
the channels (and their associated filters) that are to be pruned
away. We use a triplet hI i;Wi; �i to denote the convolution

process in layer i, where I i 2 RC�H�W is the input tensor,

which has C channels, H rows and W columns. And Wi 2
RD�C�K�K is a set of filters with K �K kernel size, which

outputs a new tensorwithD channels.
Our goal is to remove someunimportant filters inWi. Note

that, if a filter inWi is removed, its corresponding channel in
I iþ1 andWiþ1 are also discarded. However, since the number
of filters in layer iþ 1 is not changed, the size of its output ten-
sor, i.e., I iþ2, will remain exactly the same. Inspired by this
observation, we believe that if we remove filters that have
little influence on I iþ2 (which is also the output of layer iþ 1),
it will have little influence on the overall performance, too.
In other words, minimizing the reconstruction error of I iþ2
is closely related to the network’s classification performance.

3.2.2 Collecting Training Examples

In order to determine which channel can be safely removed,
a training set used for neuron importance evaluation must
be collected. As illustrated in Fig. 3, an element, denoted by
y, is randomly sampled from the tensor I iþ2 (before ReLU).

A corresponding filter cW 2 RC�K�K and sliding window

x 2 RC�K�K (after ReLU) can also be determined according
to its location. The convolution operation is computed with
a corresponding bias b as follows:

y ¼
XC
c¼1

XK
k1¼1

XK
k2¼1

cWc;k1;k2 � xc;k1;k2 þ b : (1)

Fig. 1. The overall ThiNet pipeline, which is divided into two major parts.
Given a pre-trained CNN model, it is pruned layer by layer using our
proposed filter selection method, followed by post-processing to further
reduce model parameters.

Fig. 2. Illustration of ThiNet’s pruning part. We first focus on the dotted
box to determine several weak channels and their corresponding filters
(highlighted in yellow in the first row). These channels (and their asso-
ciated filters) have little contribution to the overall performance, thus
can be discarded, leading to a pruned model. Finally, the network is
fine-tuned to recover its accuracy. (This figure is best viewed in color.)

Fig. 3. Illustration of data sampling and relationship among variables.
We first randomly sample an element y from the activation tensor of layer
iþ 1 with random spatial location and random channel index. According

to the spatial location and channel index of y, the corresponding filter cW
and sliding window x can also be determined.

LUO ETAL.: THINET: PRUNING CNN FILTERS FOR ATHINNER NET 2527



Now, if we further define:

x̂c ¼
XK
k1¼1

XK
k2¼1

cWc;k1;k2 � xc;k1;k2 ; (2)

Eq. (1) can be simplified as:

ŷ ¼
XC
c¼1

x̂c; (3)

in which ŷ ¼ y� b. It is worthwhile to keep in mind that x̂
and ŷ are random variableswhose instantiations require fixed
spatial locations. A key observation is that channels in x̂ ¼
ðx̂1; x̂2; . . . ; x̂CÞ is independent: x̂c only depends on xc;:;:, which
has no dependency relationshipwith xc0;:;: if c

0 6¼ c.
In other words, if we can find a subset S � f1; 2; . . . ; Cg

and the equality

ŷ ¼
X
c2S

x̂c; (4)

always holds, then we do not need any x̂c if c =2 S and these
variables can be safely removed without changing the CNN
model’s result at all.

Of course, Eq. (4) cannot always be true for all instances
of the random variables x̂ and ŷ. However, we can manually
extract instances of them to find a subset S such that Eq. (4)
is approximately correct.

Given an input image, we first apply the CNN model in
the forward run to find the input and output of layer iþ 1.
Then, for any feasible ðc; k1; k2Þ triplet, we can obtain a
C-dimensional vector variable x̂ ¼ fx̂1; x̂2; . . . ; x̂Cg and a sca-
lar value ŷ using Eqs. (1), (2), and (3). Since x̂ and ŷ can be
viewed as random variables, more instances can be sampled
by choosing different input images, different channels, and
different spatial locations.

Finally, we obtain a training matrix X 2 Rm�C and a target
vector y 2 Rm�1, wherem is the number of training examples
(product of the number of the images and locations). Then, we
use these training examples and their corresponding targets to
determinewhich filter should be preserved or discarded.

3.2.3 Filter Selection and Weight Rescaling

Now, given a set of m training examples (matrix X and
target vector y), we formulate the original channel selection
problem as the following optimization problem:

argmin
S

Xm
i¼1

yi �
X
j2S

Xi;j

 !2

s:t: jSj ¼ C � r; S � f1; 2; . . . ; Cg :
(5)

Here, jSj is the number of elements in a subset S, and r is a
predefined compression rate (i.e., how many channels are
preserved). Solving Eq. (5) is equivalent to minimizing the
reconstruction error. In our scenario, minimum reconstruction
error means minimum information loss, hence the accuracy
will not be damaged greatly. However, solving Eq. (5) is a NP
hard problem. We use a greedy strategy presented in our
preliminary conference paper [27] to address this problem.
We add one element to S at a time, and choose the channel
leading to the smallest objective value in the current iteration.

Obviously, this greedy solution is sub-optimal. But, the
gap can be compensated by subsequent fine-tuning.

After obtaining the subset S, we can safely remove the nth
channel in each filter of layer iþ 1 if n =2 S. The correspond-
ing filters in the previous layer i can be pruned, too.

We further minimize the reconstruction error (c.f. Eq. (5))
by scaling the channel weights, which is formulated as:

ŵ ¼ argmin
w

Xm
i¼1
ðyi � bXiwÞ2 ; (6)

where bXi ¼ Xi;S indicates the training examples after chan-
nel selection. Eq. (6) is a classic linear regression problem,
which has a unique closed-form solution using the ordinary
least squares approach:

ŵ ¼ ðbXTbXÞ�1bXT
y : (7)

Each element in ŵ can be interpreted as a scaling factor of
its corresponding filter channel such that W :;i;:;: ¼ ŵiW :;i;:;:.
From another point of view, this scaling operation provides a
better initialization for fine-tuning, hence the network is more
likely to reach higher accuracy.

Algorithm 1. A Greedy Algorithm for Minimizing Eq. (8)

Input: Training set X, y, and compression rate r
Output: The subset of preserved channels: S and a correspond-

ing scaling vectorw
1: S  ;; I  f1; 2; . . . ; Cg; ŷ y;
2: while Sj j < C � r do
3: min value þ1;
4: for each item i 2 I and i =2 S do

5: ŵ ðXT
:;iX:;iÞ�1XT

:;iŷ;

6: value kŷ� X:;iŵk22;
7: if value < min value then
8: min value value;min i i;
9: end if
10: end for
11: movemin i into S;

12: w ðXT
:;SX:;SÞ�1XT

:;Sy;

13: ŷ y� X:;Sw;
14: end while

3.2.4 Improvement: Integrate Weight Rescaling

into Selection

And now, here comes another question: canwe combine filter
selection and weight rescaling to achieve better performance?
Or, can we use weight scaling to guide the pruning process?
Let us revisit the optimization goal. If we can assign a scaling
factor ŵj 2 R to each filter channel, Eq. (5) is rewritten as:

argmin
S

Xm
i¼1

yi �
X
j2S

ŵjXi;j

 !2

s:t: jSj ¼ C � r; S � f1; 2; . . . ; Cg :
(8)

In this new setup, only those channels which have minimal
reconstruction loss after rescaling are preserved. And, we
only need to revise our greedy algorithm with very little
change. Of course, these scaling factors are not globally
optimal. Hence, we need to perform another least squares
after selection as we have done in Eq. (7). Algorithm 1 sum-
marizes our final pruning strategy.
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In the experiment, we find that this new strategy shows
better performance than the strategy in [27] with the cost
of only negligible computing time increasing. With the
preserved channel index set S and scaling vector w, we can
safely remove those weak filters in layer i. As for layer iþ 1,
we first discard corresponding channels to reduce model
size, and then rescale the filter weights using w. After that,
the prunedmodel can be fine-tuned.

3.3 Part 2: Post-Processing

One of the great advantages of filter level pruning is that we
do not alter the network structure, hence it can be further
compressed or accelerated by other compression methods.
This post-processing can be finished via any current compres-
sion technique, e.g., the quantization methods [11], [23], [24],
[25]. In order to match the requirements of being able to use
any off-the-shelf deep learning library, we focus on group
convolution.

Group convolution was first proposed in AlexNet [1],
which aims at solving the limited GPU memory problem.
At that time, AlexNet is too big to fit on one GPU, hence
they spread it across two GPUs. In group convolution, input
tensors and filter weights are divided into several groups,
convolution operations are only performed within the same
group, i.e., the inputs of group 1 can only do convolution
calculations with filters of group 1.

However, it may lead to a severe problem: different groups
cannot communicate with each other! In this paper, we call it
the “information blocking” problem, which may greatly
harm model accuracy. In AlexNet, in order to tackle the
information blocking problem, GPUs can communicate at
certain layers. Hence we propose a more general solution:
use 1� 1 convolution to exchange the information of differ-
ent groups. And we call this method “gcos”: Group COnvo-
lution with Shuffling.

Fig. 4 shows the framework of gcos.We divide each convo-
lution layer into two layer. The first layer is a normal group
convolution layerwith g groups.We require the number of fil-
ters be amultiplier of g, and groups are formed by contiguous
channels (e.g., channels with indexes 1; 2; . . . ;K=g form the
first group). Channels in the ith output group are connected
only to channels in the ith input group. Hence, the number of
parameters is reduced to 1=g with the risk of large accuracy
drop. Then, we use 1� 1 convolution to exchange group
information. In the experiments section, we will show that
these 1� 1 convolution filters play a crucial role in gcos.

This idea is similar to relevant ones in MobileNet [28]
and ShuffleNet [29]. In MobileNet, the 1� 1 convolution is
also adopted. Combined with depthwise convolution, they
have achieved very high efficiency. However, depthwise
convolution is not applicable in our framework. We find
that the model accuracy is damaged greatly when g > 8. In
other words, depthwise convolution works well in Mobile-
Net, but fails in VGG16. Hence, gcos can be viewed as a gen-
eralization of depthwise convolution. ShuffleNet proposes
the channel shuffle operation to address the “information
blocking” problem stated above. However, this layer is
not supported by any off-the-shelf deep learning library.
By contrast, our 1� 1 convolution is general and simple.

Yet there is still one unanswered question: how to initial-
ize these 1� 1 convolution? They may be initialized via
methods like “Xavier”. But this may lead to great perfor-
mance change, and need more epochs during fine-tuning.
Following the key idea of ThiNet, we advise that the best
initialization method is using “minimizing activation recon-
struction error”. Again, some instances of input tensors
(the activation of group convolution) and original activation
tensors (like the output of top row in Fig. 4) will be
collected. Since 1� 1 convolution is in fact a regression
problem, we can recover filter weights via least squares.

3.4 Pruning Strategy

In this part, we introduce our different processing strat-
egy for different CNN structure. There are mainly two
types of network architecture: the traditional convolu-
tional/fully-connected architecture, and recent structural
variants. The former is represented by AlexNet [1] or
VGGNet [2], while the latter mainly includes some recent
networks like GoogLeNet [30] and ResNet [3]. The main
difference between these two types is that more recent
networks usually replace the FC (fully-connected) layers
with a global average pooling layer [17], [31], and adopt
some novel network structures like Inception in Goog-
LeNet or residual blocks in ResNet.

We use different strategies to prune these two types of
networks. For VGG-16, we notice that more than 90 per-
cent FLOPs exist in the first 10 layers (conv1-1 to conv4-3),
while the FC layers contribute nearly 86.41 percent param-
eters. Hence, we prune the first 10 layers for acceleration,
but replace the FC layers with a global average pooling
layer. Although the proposed method is also valid for
FC layers, we believe removing them is simpler and more
efficient.

For ResNet, there are some restrictions due to its special
structure. For example, the channel number of each block
in the same group needs to be consistent in order to finish
the sum operation. Thus, it is hard to prune the last convo-
lution layer of each residual block directly. To address
this problem, [19] only pruned the first layer of each
basic residual block while keeping the last layer fixed.
We adopted a similar strategy to tackle the bottleneck
residual block. As illustrated in Fig. 5, only the first two
layers in each bottleneck block will be pruned, because
these two layers occupy the most FLOPs. As for the Batch
Normalization (BN) layer, since it is channel-wise indepen-
dent, we remove the corresponding BN channel when a
filter is discarded.

Fig. 4. Illustration of gcos: The filter weights are first divided into g groups
(highlighted in different colors), followed by 1� 1 convolution to solve
the information blocking problem. These 1� 1 filters are initialized using
the design idea of “minimizing activation reconstruction error”. (This
figure is best viewed in color.)
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4 EXPERIMENTS

We empirically study the performance of ThiNet here. In the
first part, we compare our filter level pruning strategy with
several state-of-the-art methods. Experimental results show
that our method is significantly better than others. For a fair
comparison, gcos is included in this part. Two widely used
networks are pruned on ILSCVR-12 [32]: VGG-16 [2] and
ResNet-50 [3]. Then, we will add gcos into our framework.
Two small models produced via our ThiNet are introduced
in this part. Finally, we present several applications
of ThiNet. For random selection, we report the averaged
results of 3 repeated experiments. The number of runs is
1 by default. All the experiments are conducted within
Caffe [33].

4.1 Part 1 of ThiNet: Pruning

4.1.1 Different Filter Selection Criteria

Baseline Methods. There are some heuristic criteria to evalu-
ate the importance of each filter in the literature. We com-
pare our selection method with several (non-)data driven
criteria to demonstrate the effectiveness of our evaluation
criterion. These methods are briefly summarized as follows.

� random. Filters are randomly discarded.
� weight sum [19]. This criterion calculates absolute

sum of each filter i as its importance score: si ¼P jWði; :; :; :Þj.
� APoZ (Average Percentage of Zeros) [20]. The sparsity

of each channel in output activations I is calculated

as its importance score: si ¼ 1
N

P
sparsityðIði; :; :ÞÞ,

where N is the dataset size, sparsityðÞ calculates the

percentage of zeros.
� mean-mean [19]. si ¼ 1

N

P
meanðIði; :; :ÞÞ.

� mean-std [19]. si ¼ 1
N

P
stdðIði; :; :ÞÞ.

� mean-‘1 [19]. si ¼ 1
N

P jjIði; :; :Þjj1.
� mean-‘2 [19]. si ¼ 1

N

P jjIði; :; :Þjj2.
� var-‘2 [34]. si ¼ 1

N

P
varðjjIði; :; :Þjj2Þ.

Except for APoZ, all these methods treat filters with
higher scores as more important, which is motivated by the
intuition that an unimportant feature map has similar or
small outputs. As for APoZ, a higher score means almost
all of output elements are zeros, which should be removed.

Datasets. To compare these different selection methods,
iterative pruning is evaluated on two different datasets:

� CUB-200 [35]: This is a typical dataset for fine-grained
classification, which aims at recognizing bird subcate-
gories. This dataset contains 11,788 images of 200 dif-
ferent bird species (5994/5794 images for training/test,
respectively). Except for labels, no additional super-
vised information (e.g., bounding box) is used.

� Indoor-67 [36]: This dataset contains 67 categories for
indoor scene recognition, which is a challenging prob-
lem. We follow the official train/test split (5360 train-
ing and 1340 test images).

Many existing model compression algorithms reported
their results on a small dataset like MNIST [37] or CIFAR-
10 [38]. However, these datasets are relatively simple.
Different algorithms often generate very similar results
with negligible differences. Hence, we think that comparing
on a tough but small dataset is necessary. By contrast, recog-
nition on these two datasets are very challenging due to the
low inter-class but high intra-class variations.

Implementation Details. Following the pruning strategy in
Section 3.4, all the FC layers in VGG-16 are removed, replaced
by a global average pooling layer. We then fine-tune this
model for 21 epochs using SGD. Weight decay is set to 0.0005,
momentum is 0.9 and batch size is set to 32. The initial learning
rate starts from 0.001, and is divided by 10 in every 7 epochs.
Starting from this fine-tuned model (VGG-16-GAP), we then
prune the network layer by layer with different compression
rates. For data-driven methods, we extracted features on all
training images. And, these intermediate representations need
to be re-generated at each layer. After pruning, we fine-tune
the model by one epoch, and 12 epochs in the final layer to
improve accuracy. This procedure is repeated several times
with different channel selection strategies. For a fair compari-
son, all the parameters are kept the same: using SGD with 32
batch size, 10�4 learning rate, 0.9 momentum and 0.0005
weight decay.

Overall Performance Comparison. Figs. 6 and 7 show the
pruning results on CUB-200 and Indoor-67, respectively.
ThiNet achieves higher accuracy compared with other
selection methods, especially when we discard more filters.

Fig. 5. Illustration of the ResNet pruning strategy. For each residual
block, we only prune the first two convolution layers, keeping the block
output dimension unchanged.

Fig. 6. Performance comparison of different channel selection methods:
Pruning the VGG-16-GAP model on CUB-200 with different compres-
sion rates. For random selection, we run it 3 times and report the mean
value. (This figure is best viewed in color and zoomed in.)
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One interesting observation is: random selection shows
a pretty good result, even better than heuristic criteria in
some cases. In fact, according to the property of distributed
representations (i.e., each concept is represented by many
neurons; and, each neuron participates in the representation
of many concepts [39], [40]), randomly selected channels
may be quite powerful in theory. However, this criterion is
not robust. As shown in Fig. 6, it can lead to very bad result
and the accuracy is very low after all layers are compressed.
Thus, random selection is not applicable in practice.

Weight sum has pretty poor accuracy on CUB-200, but
shows good performance on Indoor-67, which means weight
sum is not very robust for different datasets. This result is rea-
sonable, since it only takes the magnitude of kernel weights
into consideration, which is not directly related to the final
classification accuracy. Small weights may still have large
impact. When we discard a large number of filters with small
weights at the same time, the final accuracy can reduce a lot.
For example, in the CUB-200 experiment, if we removed
60 percent filters in conv1-1 using the weight sum criterion,
the top-1 accuracy is only 40.99 percent (before fine-tuning),
while the random criterion is 51.26 percent. In contrast, our
method reaches 70.80 percent. The accuracy loss of weight
sum is so large that fine-tuning cannot completely recover it
from the drop.

Layer-Wise Comparison and Running Speed. Table 1 shows
the layer-wise pruning results on CUB-200 when the com-
pression ratio r is set to 0.7. ThiNet achieves the best perfor-
mance among these baselines. We also report the running
speed of different channel selection methods. For data-driven
methods, its running speed depends on dataset size and
model inference speed. The VGG-16-GAP model takes 216s
on a K80 GPU to extract features from all 5994 training
images. Our greedy selection algorithm takes only 49.3s to
select the important filters and corresponding scaling vector,
which is even faster than some heuristic methods.

4.1.2 Pruning VGG-16 on ImageNet

We now evaluate the performance of the proposed ThiNet
method on the large-scale ImageNet classification task.

Implementation Details. The ILSCVR-12 dataset [32] con-
sists of over one million training images drawn from 1000

Fig. 7. Performance comparison of different channel selection methods:
Pruning the VGG-16-GAP model on Indoor-67 with different compres-
sion rates. For random selection, we run it 3 times and report the mean
value. (This figure is best viewed in color and zoomed in.)

TABLE 1
Layer-Wise Pruning Results Using Different Channel Selection Criteria

conv1-1 conv1-2 conv2-1 conv2-2 conv3-1 conv3-2 conv3-3 conv4-1 conv4-2 conv4-3

random
0.635 (0.0639ms) 0.576 0.547 0.510 0.615 0.532 0.405 0.539 0.510 0.493

0.701 0.688 0.680 0.672 0.668 0.652 0.647 0.636 0.622 0.679

weight sum
0.678 (1.4s) 0.658 0.611 0.311 0.376 0.370 0.256 0.237 0.328 0.426

0.699 0.696 0.685 0.622 0.590 0.566 0.557 0.541 0.533 0.640

mean-mean
0.650 (236.1s) 0.635 0.571 0.351 0.592 0.580 0.534 0.572 0.557 0.449

0.701 0.686 0.682 0.672 0.666 0.649 0.645 0.631 0.616 0.677

mean-std
0.629 (262.6s) 0.583 0.419 0.336 0.444 0.349 0.315 0.278 0.343 0.303

0.697 0.678 0.645 0.589 0.566 0.565 0.545 0.521 0.515 0.610

mean-‘1
0.614 (240.1s) 0.553 0.613 0.448 0.560 0.553 0.411 0.457 0.516 0.385

0.692 0.678 0.662 0.636 0.627 0.618 0.610 0.596 0.583 0.660

mean-‘2
0.681 (2483.7s) 0.596 0.647 0.400 0.564 0.590 0.426 0.515 0.523 0.448

0.706 0.675 0.670 0.651 0.642 0.637 0.628 0.610 0.603 0.673

var-‘2
0.705 (248.5s) 0.627 0.671 0.583 0.582 0.621 0.545 0.556 0.543 0.459

0.707 0.694 0.694 0.673 0.663 0.649 0.648 0.629 0.620 0.678

APoZ
0.675 (385.7s) 0.593 0.480 0.613 0.577 0.563 0.532 0.601 0.539 0.484

0.706 0.697 0.689 0.685 0.674 0.665 0.654 0.647 0.627 0.681

ThiNet
0.713 (265.3s) 0.708 0.709 0.684 0.687 0.681 0.674 0.660 0.652 0.647

0.711 0.709 0.707 0.699 0.690 0.690 0.680 0.676 0.666 0.693

The first/second row of each method means accuracy before/after fine-tuning. These results are conducted on K80 GPU to prune the VGG-16-GAP model on
CUB-200 with compression ratio r ¼ 0:7, i.e., 70 percent filters are preserved after pruning. For conv1-1, the running time of selecting unimportant filters is
also reported (model forward time is around 216s).
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categories. We randomly select 10 images from each category
in the training set to comprise our evaluation set (i.e., collected
training examples for channel selection). And for each input
image, 10 instances are randomly sampled from different
channels and spatial locations as described in Section 3.2.4.
Hence, there are in total 100,000 training samples used for
finding the optimal channel subset via Algorithm 1. Finally,
top-1 and top-5 classification performance are reported on the
50k standard validation set, using the single-view testing
approach (central patch only).

During fine-tuning, images are resized to 256� 256, then
224� 224 random cropping is adopted to feed the data into
network. Horizontal flip is also used for data augmentation.
At the inference stage, we center crop the resized images to
224� 224. No other tricks are used here. The whole network
is pruned layer by layer and fine-tuned in one epoch with
10�3 learning rate. We find the last layer of each group (i.e.,
conv1-2, conv2-2, conv3-3) is more sensitive to pruning. For
example, pruning conv1-1 and conv2-1 only bring 2.6 and
2.2 percent top-1 accuracy drop, respectively. However,
when we prune conv1-2 and conv2-2, the top-1 accuracy is
4 and 11 percent lower than the model before pruning,
respectively. Similar observation is also found for ResNet-
34 [19]. Hence, we fine-tune these layers with one additional
epoch of 10�4 learning rate to prevent large accuracy drop.
When pruning the last layer, more epochs (12 epochs) are
adopted to get an accurate result with learning rate varying
from 10�3 to 10�5. We use SGD with mini-batch size of 64,
and other parameters are kept the same as the original VGG
paper [2].

Training Examples. First, wewant to study the impact of dif-
ferent training examples for channel selection. Our sample
number m is determined by the image number in each cate-
gory and the location number in each image. Hence, we
change these two variables with 5 choices: 1, 5, 10, 15, 20. We
find that there is no obvious difference among these settings.
For example, if we randomly sample 1 image per category
and 1 location per image, the accuracy of pruning the conv1-1
layer is 70.48 percent without fine-tuning. However, whenwe
increase both values to 20, its accuracy is 70.41 percent. Our
selectionmethod is very robust to the choice of training exam-
ples. The standard deviation of these different settings is only
0.21 percent. Hence, we use the setting of 10 images and 10
locations. In this setup, the collected intermediate representa-
tion takes up 51.2 MB disk space when the channel number is
64 and 409.6MBwith 512 channels.

Compression Ratio. In some real-world application scenar-
ios, the inference speed is constrained. For example, a scene
segmentation network should return predictions within 50
ms in self-driving vehicles for safety considerations. Hence,
the FLOPs of this network should be less than a threshold.
And we can calculate the corresponding compression ratio
according to this threshold value. In this section, we set the
compression ratio to 0.5 and 0.4 in order to compare it with
previous methods. For simplicity, all the layers are pruned
using a fixed compression ratio. It is difficult to find a crite-
rion to obtain the best pruning ratios for different layers.

Compressed ThiNet Models.We compare the performance of
our ThiNet approach with other state-of-the-art filter level
pruningmethods in Table 2.We adopt two different strategies
to prune VGG16, and obtain two types of ThiNetmodels:

� ThiNet-Conv: This model only prune the first 10
convolution layers and keep the FC layers. We use
ThiNet-Conv-1 and ThiNet-Conv-2 to denote the
models pruned with two different compression ratio
0.5 and 0.4 (i.e., only 50 or 40 percent filters are pre-
served in each layer till conv4-3).

� ThiNet-GAP: Based on the ThiNet-Conv-1 model, we
replace FC layers with a GAP (global average pool-
ing) layer and fine-tune this model for 12 epochs
with the same hyper-parameters. The classification
accuracy of GAP model is slightly lower than the
original model, but the model size has been reduced
dramatically.

Pruning versus Training from Scratch. First, we want to
answer the following interesting question: why do we need
model pruning rather than training it from scratch? In order
to answer this question, we train a model from scratch with
the same architecture as ThiNet-Conv-1. Unfortunately, the
top-1/top-5 accuracy are only 67.00/87.45 percent, which
are much worse than our pruned network. Similar observa-
tion on CIFAR-10 is also made in previous work such
as [19]. Now, we demonstrate that this conclusion can be
extended to the large scale ImageNet recognition task. In
fact, deep learning is a highly non-convex optimization
problem, a certain degree of parameter redundancy seems
necessary during model training, especially for a complex
model. Hence, we need to remove these redundant parame-
ters after training.

ThiNet versus Connection Pruning. Connection pruning is
a classic CNN pruning method proposed by Han et al. [9].
Although it achieves impressive accuracy, the non-struc-
tured sparse model is hard to harvest actual computational
savings [10] due to the irregular convolution. As shown
in [16], filter level pruning is more challenging, causing
nearly 3 percent lower top-5 accuracy than irregular connec-
tion pruning with the same sparsity. However, ThiNet can
obtain a comparable accuracy as connection pruning.

TABLE 2
Comparison Among Several State-of-the-Art Pruning Methods

on VGG-16 and ILSVRC-12

Method Top-1 Acc. Top-5 Acc. #Param. #FLOPs

VGG-16 [2]1 71.50% 90.01% 138.34 M 30.94 B
connection pruning [9] 68.66% 89.12% 10.30 M 6.50 B
APoZ-1 [20] 66.20% 87.60% 67.81 M –
APoZ-2 [20] 70.17% 89.69% 51.24 M –
Taylor-1 [21] – 87.00% – 11.50 B
Taylor-2 [21] – 84.50% – 8.00 B
weight sum [19]2 69.35% 89.13% 131.44 M 9.58 B
Channel-Pruning (5�) [41]3 67.80% 88.10% 130.87 M 7.03 B
Train from scratch4 67.00% 87.45% 131.44 M 9.58 B
ThiNet-Conv-1 69.74% 89.41% 131.44 M 9.58 B
ThiNet-Conv-2 69.11% 88.86% 130.50 M 6.91 B
ThiNet-GAP 67.69% 88.13% 8.32 M 9.34 B

1 In some papers (e.g. [9], [20]), VGG-16 accuracy (68.34/88.44 percent) was
tested on resized 256� 256 images. But, this model was not trained using this
resolution. Here, we use the result reported in MatConvNet: http://www.
vlfeat.org/matconvnet/pretrained/.
2 The original paper did not report their accuracy on VGG-16. We reimple-
ment it, and report the results using our pruning framework.
3 https://github.com/yihui-he/channel-pruning/releases/tag/channel_pruning_5x.
4 We train the ThiNet-Conv-1 model from scratch.
Here, M/B means million/billion (106=109), respectively.
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ThiNet versus other Filter Pruning Methods. Next, we com-
pare the proposed ThiNet with other filter level pruning
methods. APoZ [20] aims at reducing parameter numbers,
but only prunes last few convolution and FC layers. Such a
strategy has little effect onmodel acceleration, since almost all
FLOPs are spent on convolution layers. As shown in Section
4.1.1, ThiNet is better than APoZ. As for Taylor methods [21],
they obtain much worse results than ThiNet. We reimple-
mented weight sum using our ThiNet pipeline since the
results on VGG16 are not reported. Note that different fine-
tuning framework may lead to very different results. Hence,
the accuracy may be different if Li et al. [19] had done this
using their own framework. Because the rest setups are the
same, it is fair to compare weight sum with ThiNet, and Thi-
Net has obtained better results. Finally, we compare ThiNet
with Channel-Pruning [41], which is very similar to ours with
the same design idea: minimizing reconstruction error. The
major difference is the selection strategy: they use LASSO
regression while ours is a greedy based method. As shown in
Table 2, ThiNet is much better than Channel-Pruning with
evenmore FLOPs reduction.

4.1.3 ResNet-50 on ImageNet

We also explore the performance of ThiNet on the compact
CNN architecture: ResNet [3].We select ResNet-50 as a repre-
sentative of the ResNet family, which has exactly the same
architecture and little differencewith others.

Implementation Details. Similar to VGG-16, we prune
ResNet-50 from block 2a to 5c iteratively. In addition to fil-
ters, the corresponding channels in batch normalization

layer are also discarded. After pruning, the model is fine-
tuned in one epoch with fixed learning rate 10�4. And 9
epochs fine-tuning with learning rate changing from 10�3 to
10�5 is performed at the last round. Other parameters are
kept the same as those in our VGG-16 pruning experiment.

Performance on ResNet-50. Table 3 shows the results of Thi-
Net. We prune ResNet-50 with 3 different compression rates
(preserve 70, 50, 30 percent filters in each block, respectively).
Unlike VGG-16, ResNet is more compact. There exists less
redundancy, thus pruning a large amount of filters seems to
be more challenging. In spite of this, our model ThiNet-50 can
still obtain 2:26� acceleration (FLOPs reduction) with 1.21
percent top-5 accuracy drop. Further pruning can also be car-
ried out, leading to a much smaller model at the cost of more
accuracy drop.

We also report the inference speed of these pruned mod-
els in Table 3. To be consistent with our speed test settings
(in Table 4, we test model speed on mobile phone using the
caffe2 libraries), each caffe model is first converted into a
caffe2 model using the official scripts. We then test the infer-
ence speed of these four models with batch size 32.

In this experiment, we only prune the first two layers of
each block in ResNet for simplicity, leaving the block output
and projection shortcuts unchanged. Pruning these parts
would lead to further compression, but can be quite diffi-
cult, if not entirely impossible. And this exploration seems
to be a promising extension for the future work.

4.2 Part 2 of ThiNet: gcos

To explore the limits of small models that can be supported
by off-the-shelf deep learning libraries (i.e., we do not want
to change the original network structures), we can further
reduce model size via the proposed gcos method.

Small Models. As discussed in Section 3.3, we first use nor-
mal group convolution to reducemodel parameters, followed
by 1� 1 convolution to solve the information blocking prob-
lem. This processing is also performed layer by layer with the
same fine-tuning hyper-parameters as in Section 4.1.2. We get
two small models using our ThiNet pipeline. The settings are
summarized as follows.

� ThiNet-Small (4.67MB): Given the original VGG-16
model, we prune it from conv1-1 to conv5-3 with 0.5
compression rate (i.e., only half of the filters are pre-
served) and replace the FC layers with global aver-
age pooling as we have done in Section 4.1.2. Then,
we use gcos to further reduce model size. We divide

TABLE 3
Performance of Pruning ResNet-50 on ImageNet Using

Different Compression Rates

Model Top-1 Top-5 #Param. #FLOPs
Speed

(images/s)

Original1 75.30% 92.20% 25.56 M 7.72 B 295.12
ThiNet-70 74.03% 92.11% 16.94 M 4.88 B 334.87
ThiNet-50 72.03% 90.99% 12.38 M 3.41 B 373.92
ThiNet-30 68.17% 88.86% 8.66 M 2.20 B 397.86

1 The accuracy of ResNet is tested using official 1-crop validation setting: cen-
ter 224 � 224 crop from resized image with shorter side=256 (https://github.
com/KaimingHe/deep-residual-networks).
M/B means million/billion, respectively. Inference speed is tested on one GTX
1080 GPUwith batch size 32. Here, speed ¼ 1000� ðmillisecond=iterationÞ �
ðbatchsize=iterationÞ.

TABLE 4
ImageNet Performance of Small ThiNet Models Generated from VGG16

Accuracy Model Information Inference Speed (images/s)

Model Top-1 Top-5 #Param. #FLOPs model size Nvidia GTX 1080 Ti Intel Core i7-7700 iPhone 6S

ThiNet-Tiny 57.41% 80.52% 694.96 K 1.16 B 2.66 MB 1406.59 20.35 8.47
ThiNet-Small 62.97% 85.06% 1.22 M 2.62 B 4.67 MB 678.33 10.24 3.71
SqueezeNet [42] 57.67% 80.39% 1.24 M 1.72 B 4.76 MB 1201.20 29.32 8.62
SqueezeNet-DSD [43] 61.80% 83.50% 1.24 M 1.72 B 4.76 MB 1201.20 29.32 8.62
AlexNet [1] 57.28% 80.27% 60.95 M 1.45 B 232.57 MB 2745.60 23.90 5.261

1 In caffe2, the default protobuf limit is only 64 MB, which is much smaller than AlexNet. In order to load AlexNet, we increase the limit to 300 MB. However,
larger protobuf limit will slightly slow down inference speed.
We also show the results of other small CNN models. Inference speed is tested with batch size 64, except for mobile phone which is tested using single image. Here,
speed ¼ 1000� ðmillisecond=iterationÞ � ðbatchsize=iterationÞ.
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the first few layers (from conv1-2 to conv3-3) into 4
groups, but divide the rest layers into 8 groups due
to the larger memory consumption. Each group
convolution layer is followed by 1� 1 convolution.
We do not change conv1-1, because its input has
only 3 channels (the RGB image).

� ThiNet-Tiny (2.66MB):This processing pipeline is simi-
lar to ThiNet-Small with only two differences. First, we
prune it from conv1-1 to conv5-2 with 0.25 compres-
sion rate to get a smaller model. As for conv5-3, which
is directly related to the final feature representation,
we only prune half of the filters. Second, we divide the
last few layers (from conv3-1 to conv5-3) into 4 groups.

Results. Table 4 shows the performance of these two
small models. ThiNet-Tiny is a very small model, which
takes only 2.66 MB disk space (1MB = 220 bytes) but still has
AlexNet-level accuracy. In contrast, the recently proposed
compact network, SqueezeNet [42], has 1:78� parameters
and 1:48� FLOPs. Similarly, AlexNet is much larger, it takes
more than 232 MB space and needs 1:25� FLOPs during
inference compared with ThiNet-Tiny. These three models
have the same level of accuracy, but ThiNet-Tiny shows
higher computational efficiency.

Han et al. [43] proposed a dense-sparse-dense (DSD) train-
ing flow to regularize deep neural networks, and achieved
better performance on SqueezeNet. This model is denoted by
“SqueezeNet-DSD”. It has exactly the same structure as the
original SqueezeNet. The only difference exists in its training
flow. Here, we compare this model with ThiNet-Small.
ThiNet-Small achieves higher classification accuracy even
with less parameters than SqueezeNet-DSD.

Actual Running Speed. Finally, we report the inference
speed of each model in Table 4, which is tested using caffe2.
We run these 5 models on 3 different devices: GPU, CPU
and mobile phone. As we can see, AlexNet has the fastest
running speed on GPU, but will slow down when applied
on CPU or mobile phone. It may be that caffe2 does not sup-
port group convolution well on CPU or embedded devices.
The same phenomenon can also be observed on ThiNet-
Tiny, which shows faster speed on GPU, but slightly slower
on CPU and mobile phone compared with SqueezeNet.
SqueezeNet shows pretty good performance on different
devices. In contrast, ThiNet-Tiny achieves comparable
speed-up as SqueezeNet with fewer parameters. Note that,
SqueezeNet adopts a special structure, namely the “Fire
module”, which is parameter efficient but relies on manual
network structure design. However, ThiNet is a unified
framework, and higher accuracy can be obtained if we start
from a more accurate model. In fact, this is a tradeoff among
inference speed, model size and manual network design
effort. As shown in Figs. 6 and 7, this tradeoff can be real-
ized via different compression ratio. In real applications,
the speed and model size constraints can vary significantly,
and our pruning method provides a flexible solution.

4.3 Applications

We then study some real applications of our pruned model.
In this section, we will compare ThiNet with SqueezeNet
and AlexNet in several different computer vision tasks,
including classification, image retrieval, object detection,
semantic segmentation and style transfer. We show that

our pruned ThiNet models achieve impressive performance
on these tasks.

4.3.1 Image Classification

We first consider a more practical scenario: image recogni-
tion with small models on some domain-specific datasets.
This is a very common requirement in real-world applica-
tions, since we will not directly apply ImageNet model in a
real application. The comparison is performed on 5 popular
benchmark datasets, which are summarized as follows:

� Caltech101 [44]:A typical dataset for object recognition.
We randomly select 30 images per category to consti-
tute the training set, and regard the rest of images as
test set. Hence, there are total 5994/5794 images for
training/test respectively.

� CUB200 [35]: A popular fine-grained dataset, which
has been introduced in Section 4.1.1.

� Indoor67 [36]: A popular indoor scene dataset, which
has been introduced in Section 4.1.1.

� Action40 [45]: The Stanford 40 Action dataset contains
images of humans performing 40 actions. We follow
the official suggested train/test split to organize this
dataset, which contains 4000/5532 images.

� Event8 [46]: The UIUC Event8 dataset contains 8
sports event categories. We randomly select 70 images
per category (560 images) as the training set, and
take the rest (1014 images) as the test set.

For each dataset, the images are first resized into 224 �
224. Then each model is fine-tuned using the same hyper-
parameters.We use SGD to trainmodel, and change learning
rate from 10�3 to 10�6.

Table 5 shows the comparison results (top-1 accuracy) on
these 5 benchmarks. As expected, due to the structure con-
straint, AlexNet has very limited generalization ability. Except
for Caltech101, AlexNet is worse than ThiNet-Tiny even with
87� more parameters. As for SqueezeNet and ThiNet-Tiny,
although these two models have similar performance on
ImageNet, ThiNet-Tiny can outperform SqueezeNet on some
domain-specific datasets (Action40 and Event8), and shows
comparable results on others. Since our tiny model only takes
up 2.66 MB space (almost half the size of SqueezeNet), we
think it is acceptable with some negligible accuracy drop.
And we believe this model is small enough to be loaded in
any small device (mobile phones or embedded gadgets).

We then compare the performance of two more accurate
models: SqueezeNet-DSD and ThiNet-Small. Both of them
have similar model size and accuracy on ImageNet accord-
ing to Table 4. However, ThiNet-Small presents much
stronger generalization ability when transferring to other

TABLE 5
Image Classification on 5 Benchmark Datasets Using

Different Networks

Model Size Caltech101 CUB200 Indoor67 Action40 Event8

AlexNet 232.57 MB 92.00% 57.28% 59.55% 62.00% 93.39%
SqueezeNet 4.76 MB 90.74% 65.34% 62.99% 65.76% 93.69%
ThiNet-Tiny 2.66 MB 90.07% 64.67% 62.69% 67.32% 94.28%
SqueezeNet-DSD 4.76 MB 90.28% 66.97% 63.81% 68.08% 93.10%
ThiNet-Small 4.67 MB 91.68% 68.33% 67.01% 72.07% 94.48%

Our two pruned ThiNet models achieve impressive performance, showing
powerful generalization ability.
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domain-specific tasks. As shown in Table 5, ThiNet-Small
outperforms SqueezeNet-DSD on all five datasets, and in
some cases by a large margin (Indoor67 and Action40).

4.3.2 Image Retrieval

We have shown that our pruned models (ThiNet-Small and
ThiNet-Tiny) present impressive performance on image
recognition tasks. Now, we are interested in other computer
vision tasks to see how explicit improvement could be
achieved within the ThiNet models.

First, we will explore the performance of fine-grained
image retrieval using the SCDA method [47], which aims to
query the same species images (e.g., birds, flowers or dogs) in
the pure unsupervised setting.1 We replace the base feature
extractor with our 5models (without fine-tuning), and use the
base SCDA setting in [47] to generate useful deep descriptors.
The base setting means only the last convolution features are
used in our experiment without any other tricks (such as
image flipping or aggregating earlier layer) for simplicity.
Then, the extracted features are pooledwith globalmax/aver-
age pooling, and concatenated to form the final SCDA feature.

We compare different base models on one popular fine-
grained benchmark: Oxford-IIIT Pets [48]. This dataset con-
sists of 37 different category of pets (cats or dogs) with
roughly 200 images for each class. We follow the official
suggestion to split the training/test set (3680/3669 images).
Only raw images are used, excluding any supervision infor-
mation. We use the test images to query the training set,
and report retrieval performance using mAP values. Since
fine-grained retrieval is a novel and challenging task, only
top-1 and top-5 mAP values are reported here.

Table 6 shows the retrieval results using different base
models. Again, AlexNet has the worst mAP values because of
the limited feature generalization ability. As for SqueezeNet
and ThiNet, our two ThiNet models present consistently bet-
ter retrieval performance than SqueezeNet with 0.85/2.65
higher top-1 mAP values. This is reasonable, because image
retrieval is closely related to feature generalization ability
(SCDA is an unsupervised method). Our ThiNet achieves
stronger generalization on the classification task, thus have a
high probability of showing better retrieval results.

4.3.3 Object Detection

Fromnow on,we studywhether ThiNet can generalizewell to
other high level vision tasks. In this section, we study its object
detection performance. To construct different detectors, we
followed the strategy proposed in [49], which means we

append the same blocks (conv- 6; 7; 8; 9f g) on the top of differ-
ent pretrainedmodels. All the models are trained on the train-
val set of VOC2007 and VOC2012, then tested on VOC2007
test images.We set the batch size to 8 in training, and fine-tune
the model with 10�3 learning rate for the first 120k iterations,
then 10�4 and 10�5 for next two 30k iterations, respectively.
We use SGD to optimize the training processwhere theweight
decay is set to 0.0005,momentum is 0.9 and gamma is 0.1.

Experimental results are reported in Table 7. Interest-
ingly, SqueezeNet shows pretty good result, while Squeeze-
Net-DSD fails in our experiment with 15.2 lower mAP. The
only difference between these two models is the training
method. It seems that the DSD approach may hurt a model’s
generalization performance. The mAP of ThiNet-Tiny is
slightly lower than SqueezeNet, but still higher than Alex-
Net. ThiNet-Small shows the best performance among these
five models at the cost of slightly lower inference speed.

We also provide 3 popular detection benchmarks for a
rough comparison, namely SSD300 [49], Fast-YOLO [51]
and Tiny-YOLO [52]. As we can see, the performance of
ThiNet-Small is much higher than two YOLO models, but
lower than SSD300. However, the model size of ThiNet-Small
is 3:9 � 11:2� smaller than these threemodels. And its infer-
ence speed is also 2� faster than SSD300.

4.3.4 Semantic Segmentation

Semantic segmentation is another high level vision task we
use to test ThiNet. We use the fully convolutional networks
(FCNs) [53] as our segmentationmethod. Atrous spatial pyra-
mid pooling (ASPP) [54], which aims to capture objects and
image context at multiply scales, is also adopted to further
improve the performance. The official code of FCNs is used in
our experiment.2 We fine-tune the models on the VOC2011

TABLE 6
Fine-Grained Image Retrieval Using the SCDA Method [47]

Model Size top-1 top-5

AlexNet 232.57 MB 65.09 71.09
SqueezeNet 4.76 MB 71.87 77.47
ThiNet-Tiny 2.66 MB 72.72 78.03
SqueezeNet-DSD 4.76 MB 76.42 80.88
ThiNet-Small 4.67 MB 79.07 83.31

Performance is evaluated by top-1/ top-5 mAP values (higher is better).

TABLE 7
Object Detection Comparison on the VOC2007
Test Dataset [50] Using the SSD Method [49]

Model Size FPS mAP

AlexNet 21.3 MB 93 51.7
SqueezeNet 17.1 MB 68 59.1
ThiNet-Tiny 13.5 MB 69 55.0
SqueezeNet-DSD 17.1 MB 68 43.9
ThiNet-Small 16.1 MB 45 66.4
SSD300 [49] 105.2 MB 22 77.2
Fast-YOLO [51] 180 MB 89 52.7
Tiny-YOLO [52] 63.5 MB 66 57.1

Speed is tested on one Nvidia Tesla K80 GPU card (images/s).

TABLE 8
Semantic Segmentation on VOC2011 [50]

Model Size FPS MeanIU

AlexNet 223.9 MB 15.86 49.53
SqueezeNet 6 MB 22.76 42.7
ThiNet-Tiny 4.2 MB 22.52 46.43
SqueezeNet-DSD 6 MB 22.77 39.56
ThiNet-Small 6.2 MB 16.66 51.39

Speed (images/s) is tested on one Nvidia Tesla K80 GPU card with 500� 500
resized images.

1. http://lamda.nju.edu.cn/code_SCDA.ashx 2. https://github.com/shelhamer/fcn.berkeleyvision.org
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dataset [50]. All the images are resized to 500� 500. For Alex-
Net, we follow the same setting of FCNs except for adding the
ASPP block. As for ThiNet and SqueezeNet, we remove the
global average pooling and fully-connected layer first, then
add a ASPP block. All the training hyperparameters are kept
the same as default FCNs codes.More details about the exper-
imental settings can be referred to the FCNs paper.

Table 8 shows the segmentation results. One interesting
observation is that the SqueezeNet-DSD model fails again,
much worse than the original one. This phenomenon indi-
cates the weakness of the DSD training method [43]: it may
force the network to pay more attention to the classification
task, which is harmful for model generalizing. In contrast,
our ThiNet shows consistently better performance. ThiNet-
Tiny is 3.73 percent higher than SqueezeNet with even
smaller model size. And ThiNet-Small even outperforms
AlexNet with 1.86 percent meanIU values as well as faster
speed! This is a reasonable phenomenon. In AlexNet, the
fully-connected layers are replaced by convolution layers.
For a 500� 500 input image, these replaced layers are still
computation intensive. On the other hand, due to structure
issues, the ASPP and upsampling operations are more time-
consuming compared with ThiNet models. Hence, ThiNet-
Small achieved higher performance with fewer parameters
and faster inference speed thanAlexNet.

4.3.5 Style Transfer

Finally, we would like to see how the proposed ThiNet could
accelerate a more visually attractive vision task: style transfer.
We use a recently proposed arbitrary style transfer algorithm
AdaIN-Style [6] in our experiment. Since the VGG19 net-
work [2] is more effective in style transfer, we pruned

a VGG19 network first. The experiment setting is kept the
same as what we presented in Section 4.1.2. We start from
conv1-1, prune layer by layer using our ThiNet scheme with
0.5 compression rate, and finally stop at the conv5-1 layer.

Then the pruned VGG19 model is compared with the
original VGG19 using the official AdaIN-Style codes.3

For fairness of comparison, both models are trained with
default hyperparameters. After that, we use the trained
model to generate several transfer examples (all the tested
content and style images are never used during training),
and compare the different inference speed.

Fig. 8 shows some transfer results. We randomly select 2
content images with 4 different art styles. As we can see,
there are no obvious winner between our ThiNet model and
the original VGG19 network. Since art is one of the most
subjective matters, it is hard to say which is better, though
ThiNet results may lose some details slightly like color
brightness. Overall, the compressed network can still gener-
ate acceptable images with different art styles.

We then test the actual acceleration ratio of our pruned
model using the default 12 contents and 21 style images,
hence there are in total 252 transfered results. The speed is
calculated by the averaged inference time (exclude model
loading cost). Table 9 shows the comparison results. On
GPU, our ThiNet model can bring 1:5� acceleration com-
pared with the original one. On CPU, the speed-up ratio is
improved to 2:5� with a single thread. As for model size,
the ThiNet model only takes up 14 MB disk space, while
VGG model is 56.2 MB here. In a nutshell, our ThiNet
method could do indeed aid in reducing computational
time and storage footprint.

Fig. 8. Example style transfer results using different base models. There is no obvious winner between our ThiNet model and VGG19 according to the
transfer results, but ThiNet model is 1:5=2:5� faster in GPU/CPU. (This figure is best viewed in color and zoomed in.)

3. https://github.com/xunhuang1995/AdaIN-style
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5 CONCLUSIONS

In this paper, we proposed ThiNet, an effective channel-wise
pruning method for deep model acceleration and compres-
sion. We showed that the proposed scheme can significantly
improve model pruning performance over existing methods.
Furthermore, our pruned model can be combined with any
existing model compression methods. We proposed gcos, an
efficient group convolution approach to further reducemodel
size. The effectiveness of ThiNet was evaluated in several
challenging computer vision tasks. Experimental results dem-
onstrated the excellent performance of ThiNet.
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