
Towards Good Practices for Action Video Encoding

Jianxin Wu

National Key Laboratory for Novel Software Technology

Nanjing University, China

wujx2001@nju.edu.cn

Yu Zhang

Nanyang Technological University

Singapore

roykimbly@hotmail.com

Weiyao Lin

Shanghai Jiao Tong University

China

wylin@sjtu.edu.cn

Abstract

High dimensional representations such as VLAD or FV
have shown excellent accuracy in action recognition. This
paper shows that a proper encoding built upon VLAD can
achieve further accuracy boost with only negligible com-
putational cost. We empirically evaluated various VLAD
improvement technologies to determine good practices in
VLAD-based video encoding. Furthermore, we propose
an interpretation that VLAD is a maximum entropy linear
feature learning process. Combining this new perspective
with observed VLAD data distribution properties, we pro-
pose a simple, lightweight, but powerful bimodal encod-
ing method. Evaluated on 3 benchmark action recognition
datasets (UCF101, HMDB51 and Youtube), the bimodal en-
coding improves VLAD by large margins in action recogni-
tion.

1. Introduction
The past decade has witnessed increasing interests on

action recognition in videos (e.g., [10, 21, 20, 12, 9, 24]).
Many methods in this vast literature are based on the bag-
of-features video encoding scheme. Without loss of gen-
erality, we can decompose a bag-of-features based action
recognition pipeline into three steps:
• Raw motion feature extraction. We want to encode

motion, arguably the most important cues for action
recognition. Examples of popular raw motion feature
include the space-time interest points (STIP) [10] and
dense trajectory features (DTF) with motion boundary
histograms (MBH) [24].

• Action video encoding. After raw motion features are
extracted from a video, bag-of-features encodes this set
into a single vector (e.g., [21, 11, 9, 24]).

• Learning. Various classifiers (e.g., support vector ma-
chines) learn action recognition models.

Among these steps, motion features have enjoyed the
most attentions in the past. The DTF features in [24] signif-

icantly outperformed previous state-of-the-art results on 9
benchmark datasets. As one example, recognition accuracy
on the challenging HMDB51 dataset jumped from 26.9%
(in [17]) to 48.3% (in [24]). Finding good motion features
may continue to maintain its central role in action recog-
nition research, e.g., the ω-flow features further increased
accuracy on HMDB51 to 52.1% [6].

The VLAD encoding framework was used in [6] in-
stead of the classic bag-of-features, a fact that contributed
a lot to its accuracy gain. One very recent trend is that
high-dimensional encoding frameworks such as Fisher Vec-
tor (FV) [18] or VLAD [7] are gradually gaining popular-
ity in video representation—mainly due to their excellent
recognition accuracies [25]. For example, VLAD exhibited
significant improvements on two difficult datasets (Holly-
wood2 and HMDB51) over bag-of-features [6]. In [23],
using FV or VLAD can both improve the event classifica-
tion accuracy by a large margin.

In this paper, through empirical evaluations, we show
that proper video encoding can further boost action recog-
nition accuracy, and the gains are achieved with negligible
increase of computational cost. Specifically,

• Empirical VLAD evaluation. Many improvements
have been proposed for FV/VLAD image encoding, in-
cluding at least power normalization [16], root descrip-
tors [1], spatio-temporal pyramid (STP) [11] (an exten-
sion of SPM to videos, see also [24, 23]) and residue
normalization [3]. We evaluated these techniques and
show that: except for power normalization and STP,
they not always improve action recognition rates (dif-
ferent from previously reported image classification /
retrieval results). Note that the aspects evaluated in this
paper are complementary to those evaluated in [25, 14].

• VLAD is maxent feature learning. We propose a
novel interpretation for VLAD: as a maxent (maximum-
entropy) feature learning process. Combining with em-
pirical properties of generated VLAD vectors, this new
perspective provides explanations for the success and
deficiency of the techniques evaluated above. We then
provide practical suggestions on when to use (or not to
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use) these techniques.
• Bimodal encoding. Based on the maxent interpretation,

we propose bimodal encoding. Empirical evaluations
show that this simple transformation buys us good ac-
curacy gains with almost no computational overhead.

Overall, the goal of this paper is to provide a set of good
practices for action video encoding. When we are given a
type of raw motion feature (or set of motion features), good
video encoding can make the best of its representational
power. And, when we are comparing different motion fea-
tures, proper video encodings can remove the bias of video
encodings to ensure fair comparisons between features.

We start by introducing video encoding techniques and
their evaluations in Sec. 2, followed by the maxent inter-
pretation and observations of VLAD vectors in Sec. 3. The
proposed encodings, evaluations, and comparisons are pre-
sented in Sec. 4. Sec. 5 concludes this paper.

2. Background and VLAD Evaluation
Given an action video, suppose a set of N motion fea-

tures are extracted from it and a codebook of size K is
learned by the k-means clustering algorithm, we denote the
code words in the codebook as c1, . . . , cK and the motion
features as xji , where i = 1, . . . ,K and j = 1, . . . , ni. In
this notation, x1

i , . . . ,x
ni
i are all the motion features that

belong to the i-th code word (i.e., whose nearest neighbor
in the codebook is ci). We assume that ci,x

j
i ∈ Rd for all i

and j, and
∑K
i=1 ni = N .

The classic bag-of-features encoding will encode this
video as a vector in RK , as

(n1, n2, · · · , nK)T ∈ RK ; (1)

while the VLAD encoding is

v =
(∑n1

j=1(xj1 − c1), . . . ,
∑nK

j=1(xjK − cK)
)
∈ Rd×K .

(2)
VLAD vectors are usually `2 normalized by v ← v/‖v‖.

There are several improvements to the VLAD encoding
in the image classification or retrieval community:
• Power normalization [16]. Apply v ← sgn(v)|v|α, 0 ≤
α ≤ 1 after Eq. 2, but before `2 normalization.

• Root descriptors [1]. Apply xji ←
√
xji before Eq. 2,

assuming xji is a non-negative vector for all i and j.

• Residue normalization [3]. Replace xji − ci by xj
i−ci

‖xj
i−ci‖

in Eq. 2 for all i.
• Spatio-temporal pyramid (STP) [11]. We use the fol-

lowing setup: split the video horizontally into 2 halves,
apply Eq. 2 to extract VLAD from the both the original
video and these two halves, leading to a 3 × d × K
dimensional video encoding.

Note that in VLAD xji are not raw motion features. They
are after PCA dimension reduction because PCA is essential
for the success of FV and VLAD [18, 7].

We evaluate the performance of these techniques using
three benchmark datasets. They cover different scales and
difficulty levels for action recognition:

UCF101 [22]: A large scale dataset with 101 action cat-
egories and 13320 clips. The protocol of [8] is used: run on
3 predefined splits and report the average accuracy.

HMDB51 [9]: A medium scale dataset with 51 actions
in 6766 clips. We use the original (not stabilized) videos
and follow [9] to report average accuracy of its 3 splits.

Youtube [12]: A small scale dataset with 11 action
types. Following the original protocol, we report 25-fold
cross validation accuracy rates.

Because our focus is video encoding, we fix the raw mo-
tion feature to the dense trajectory features (DTF) [24] and
the classifier to linear SVM. In DTF, we use all its five fea-
ture types (trajectory, HOG, HOF, mbhX and mbhY). We
first sample roughly 106 raw motion features from 10%
videos in each dataset, then perform PCA to keep 90% en-
ergy. The PCA operations are performed separately for each
of the 5 feature types. We use default parameters of DTF
which results in 426 dimensions in total. After PCA, the
motion features reduce to approximately 200 dimensions in
different runs of all 3 datasets. We use LIBLINEAR [4]
with default parameters for classification. When perform-
ing power normalization, we set α = 0.5.

Evaluation results are summarized in Table 1, in which
K stands for the codebook size, PM for power normaliza-
tion, RD for root descriptors, RN for residue normalization,
and STP for spatio-temporal pyramid. We not only list the
average accuracy in different runs, but also individual run’s
accuracy rate. The following observations can be drawn
from this table:

• Both power normalization and increasing K are always
useful. Comparing within blocks 1–3 and within 4–
6 clearly shows that when K increases, accuracy con-
sistently increases in every run (and of course leads to
higher averages). It is also obvious that increasing K is
more effective in difficult datasets (HMDB51). Its effect
in UCF101 is smaller than that in HMDB51 and even di-
minishes in the easy Youtube dataset (c.f . blocks 4–6).
Power normalization seems equally effective. Compar-
ing block 1 vs. 4, 2 vs. 5 and 3 vs. 6, power normal-
ization brings around 2.5% accuracy gains, except when
K = 256 (but still with 1% higher accuracy).

• Root descriptors and residue normalization are some-
times useful. Comparing block 7 to block 6, root de-
scriptors slightly improves accuracy in UCF101, is a
little bit worse in HMDB51, but incurs 3% loss in
Youtube. Since the changes are small in 2 datasets, we
performed additional experiments (e.g., with STP) and
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Table 1. Comparison of VLAD improvement techniques. ‘#’ is
a block number in the table, which helps refer to different experi-
ments. ‘Ave’ is the average of train/test split 1, 2, and 3 in UCF101
and HMDB51, or the cross-validation accuracy in Youtube.

# Run K PM RD RN STP UCF HMDB Youtube

1

1 64 72.88% 42.75%
2 64 74.58% 42.29%
3 64 75.60% 44.31%

Ave 64 74.35% 43.12% 84.09%

2

1 128 75.13% 46.14%
2 128 76.97% 46.27%
3 128 77.73% 46.21%

Ave 128 76.61% 46.21% 84.64%

3

1 256 77.06% 48.63%
2 256 77.34% 49.02%
3 256 78.60% 49.35%

Ave 256 77.67% 49.00% 85.45%

4

1 64 X 75.76% 45.62%
2 64 X 76.81% 44.84%
3 64 X 78.08% 46.67%

Ave 64 X 76.88% 45.71% 88.09%

5

1 128 X 77.77% 48.82%
2 128 X 78.82% 48.10%
3 128 X 80.33% 48.95%

Ave 128 X 78.97% 48.63% 88.09%

6

1 256 X 79.49% 49.54%
2 256 X 80.18% 49.67%
3 256 X 80.52% 51.18%

Ave 256 X 80.06% 50.13% 88.09%

7

1 256 X X 79.41% 49.41%
2 256 X X 80.45% 50.00%
3 256 X X 80.65% 50.71%

Ave 256 X X 80.17% 50.04% 85.00%

8

1 256 X X 78.98% 49.41%
2 256 X X 79.99% 49.54%
3 256 X X 81.09% 51.05%

Ave 256 X X 80.02% 50.00% 86.82%

9

1 256 X X 83.19% 53.92%
2 256 X X 83.88% 54.77%
3 256 X X 84.71% 55.10%

Ave 256 X X 83.93% 54.60% 89.82%

observed the same trend: better for UCF101, but worse
for others. Residue normalization, however, leads to
lower accuracy rates in all 3 datasets.

• STP is useful in all 3 datasets. Comparing blocks 9 with
block 6, STP improves the accuracy by 3.7%, 4.5% and
1.8%, respectively.

We make the following suggestions of good practices based
on evidences from Table 1:

• Complexity is an important factor. Techniques that im-
prove performance by introducing longer features (i.e.,
increasingK and using STP) is usually effective, but the
scale of improvement is related to difficulty of the prob-
lem at hand. Thus, it is good to start with smaller K,
and gradually increase the codebook size or the number
of divisions in STP, until the performance is saturated.

• Residue normalization likely will not change video en-

coding quality. Thus, we will not further experiment
with this technique in this paper.

However, important questions remain: 1) Why root de-
scriptors have mixed results and when will it help? 2) Why
is power normalization always effective in video encoding?
We will handle both questions in the next section.

3. VLAD: Distribution of values & A MaxEnt
Interpretation

In this section, we will have a closer look of the VLAD
framework to understand root descriptors and power nor-
malization better. Given a raw motion feature x̃ ∈ Rd̃, we
first perform the PCA to get our motion feature x

x← P (x̃− E(x̃)) , (3)

where P ∈ Rd×d̃ and E(x̃) are eigenvectors of the covari-
ance matrix of x̃ and its mean, respectively. Further as-
suming we center the raw motion features (i.e., minus E(x̃)
from them), Eq. 3 reduces to x← P x̃.

In order to simplify the notations, in this section we as-
sumeK = 1 without loss of generality. All the raw features
from a video are denoted as x̃j , j = 1, . . . , N ; and after
PCA they become xj = P x̃j . There is only one code word,
which we call c.1 Then, the VLAD vector is

v =
∑N
j=1(xj − c) = P

(∑N
j=1 x̃

j
)
−Nc . (4)

Eq. 4 states that given the input (sum of raw motion fea-
tures belonging to a given code word), the VLAD vector
v contains values of several linear feature functions, whose
projection directions are determined by PCA eigenvectors.

In other words, given an input video, VLAD is in effect a
two step process: 1) reduce the set of raw features belonging
to a code word into a single vector (sum of raw features);
and, 2) compute values of linear feature functions.2

Linear feature functions have been widely used, e.g., in
natural language processing. In the literature, maximum-
entropy (maxent) is a widely used method for supervised
and unsupervised linear feature function learning [13]. The
maxent principle indicates that in an unsupervised case (i.e.,
without prior knowledge or constraint), we should seek lin-
ear projections that lead to maximum entropy of the pro-
jected data (P

∑
j x̃

j in our case).
It is well known that if the input data (x̃j) follows a

normal distribution, then the PCA eigenvectors with largest
eigenvalues are the optimal maxent solutions [5].3 Thus,
we arrive at the conclusion that VLAD can be viewed as a
maximum-entropy linear feature learning process, which is
optimal when the raw motion features are Gaussian.

1Since K = 1, we will drop the subscripts from c and x.
2Here we do not take into account the effect of `2 normalization, which

can be viewed as a subsequent postprocessing step.
3For completeness, we provide a sketch of proof in the Appendix.
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3.1. Normality and root descriptors

Since normality is the assumption for optimal maxent so-
lutions and for PCA to produce statistically independent di-
mensions (which is suitable for linear classifiers), it is thus
desirable to have Gaussian raw features. However, normal-
ity rarely holds for either image or motion features, as will
be shown by the examples in Fig. 1. These facts lead to a
conjecture that the success or deficiency of root descriptors
hinges on whether it can improve the normality.

Although there is no intuitive way to check normality
of multivariate distributions (in our case

∑
j x̃

j), we can
check normality of a single linear feature function (i.e., one
dimension in P

∑
j x̃

j). If normality holds for raw features,
the extracted features must also be normal, because linear
combination of Gaussians is once again a Gaussian.

The normality of a one-dimensional random variable can
be tested intuitively using the normal probability plot [2].
In Fig. 1 we show normal probability plots for all three
datasets, with and without power normalization, in the first
row inside each subfigure. The plots are using data from
a randomly chosen VLAD dimension (dimension 36441 in
Fig. 1). A normal probability plot has the data value in the
x-axis, and the data percentiles in the y-axis in log-scale.
When the empirical distribution (blue ‘+’ signs) fits well to
the groundtruth normal probability line (red dashed line),
the data follows a normal distribution. It is easy to observe
that in all datasets, the VLAD vector dimension (i.e., one
linear projection feature) deviates from the red line signifi-
cantly (Fig. 1a, 1c, and 1e).

The application of root descriptors, however, can some-
times improve normality, as shown in Fig.1b, 1d and 1f. In
UCF101, except for the tail (data above the 0.9 percentile),
the curve fits well to a normal distribution, that is, the nor-
mality is dramatically improved. There is no clear differ-
ence for HMDB51 and Youtube. Another intuitive indica-
tor of normality is the histogram of data values, as shown
in the top-left plot in every subfigure. Without root de-
scriptors, most distributions have sharper modes than what
a normal distribution expects (e.g., having closer shape to
a Laplace than to a normal distribution). The root descrip-
tors, however, is similar to a Gaussian in UCF101. These
observations all coincide well with the results in Table 1:
root descriptors help in UCF101, but in neither HMDB51
nor Youtube.

Fig. 1 only visualizes one dimension in the VLAD vec-
tor. We use statistical tests to examine the normality of a
large number of dimensions. We group all dimensions in
the VLAD vector into groups, with each group containing
128 contiguous dimensions. Then we use the Jarque-Bera
test in Matlab to examine the first dimension in each group.
This function sets any p-value less than 0.001 to 0.001. Be-
cause of the heavy tails and the spikes at zero (c.f . Fig. 1),
we remove all values that exactly equal 0 and those data

Table 2. Normality test results: mean and max of Jarque-Bera
tests’ p-values, and the number of non-trivial p-values. A large
p-value indicates that the distribution is likely a normal distribu-
tion.

mean max #non-trivial
UCF101 0 0.38 16
UCF101-Root 0.01 0.45 20
HMDB51 0.02 0.5 56
HMDB51-Root 0.02 0.5 47
Youtube 0.04 0.5 112
Youtube-Root 0.04 0.5 103

points outside of the [0.01 0.99] percentile range in this
test. We count the number of non-trivial p-values (bigger
than 0.001) as the indicator—we are not expecting an ex-
act normal distribution, instead, we care about some VLAD
dimensions that are close to normal except in the tails.

Table 2 summarizes the normality results. When root de-
scriptors are applied to raw motion features, UCF101 shows
more non-trivial p-values and increased mean and maxi-
mum p-values than the case where root descriptors are not
used. The reverse phenomena are observed in HMDB51
and Youtube. Again, we see that the trends in normality
tests (Table 2) coincide well with the trends in accuracy
rates (Table 1).

In short, putting these observations together, we have
reasons to conjecture that root descriptors are improving
action recognition accuracy through improving normality
of the raw motion features—that is, make the normality as-
sumption of maxent feature learning more realistic.

The normality of root descriptors, however, are still
weak. Average p-values in Table 2 are all less than 0.05
(mainly due to the heavy tails); and it does not seem easy
to find data transformation that could make motion features
more Gaussian-like. Thus, it might be advantageous to di-
rectly explore the maxent linear projections to replace the
PCA eigenvectors. We leave this topic to future research.

Although we focus on VLAD in this paper, we want to
add a note that the maxent analyses also readily apply to
Fisher Vectors.

3.2. Side information, power normalization and bi-
modal distribution

We also visualize histograms after power normalization
in the top right corner in every subfigure of Fig. 1. These
plots reveal some video VLAD encoding properties that are
different from their image counterparts.

3.2.1 Missing code words as side information

One obvious common pattern in Fig. 1 is the existence of a
tall bar at the x-axis’ zero point, i.e. many values are exactly
0. Table 3 shows the percentages of zero entries in VLAD
vectors. From Table 3, all datasets have 15% to 20% zero
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(a) UCF101
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(b) UCF101 (Root descriptors)
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(c) HMDB51
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(d) HMDB51 (Root descriptors)
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(e) Youtube
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(f) Youtube (Root descriptors)
Figure 1. Distribution of one dimension (36441-th) of all videos in a dataset in the VLAD vector: 1a, 1c and 1e are for the UCF101,
HMDB51 and Youtube without using root descriptors, respectively; while 1b, 1d and 1f are with the root descriptors technique. In the first
row of a subfigure, the left plot shows a histogram without power normalization; while the right plot is after power normalization. The
second row shows the normal probability plot [2]. Plots are based on VLAD vectors without the `2 normalization. (Best if viewed in color.)

Table 3. Percentages of zero entries in VLAD vectors. Datasets are
generated using the setup of block 6 and 7 in Table 1, respectively.

UCF HMDB Youtube
15.59% 18.44% 14.21%

UCF-RD HMDB-RD Youtube-RD
16.95% 20.33% 15.17%

entries.
In Eq. 2, if nj > 0 (i.e., number of raw motion features

belonging to a code word is non-zero), it is rarely possible
that its corresponding entires in v will be zero. Thus, Ta-
ble 3 indicates that on average, more than 15% code words
are missing in any single video—a fact that carries useful
side information for categorizing a video’s action type. A
common VLAD practice is to encode a missing code word
as 0 ∈ Rd. However, this practice completely ignores the
useful side information.
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3.2.2 Bimodality from power normalization

If we ignore the tall bars at zero, the histograms using power
normalization in Fig. 1 clearly show bimodal distributions
for all datasets. Although Fig. 1 only visualizes one di-
mension, we observe the same phenomenon in all 10 other
randomly chosen VLAD dimensions. This property makes
video encoding different from some image encoding results.
In Fig. 1 of [16], distributions before power normalization
are sharp and long-tailed, similar to our Fig. 1a, 1c and 1e.
However, after power normalization, its Fig. 1d is still uni-
modal, unlike our Fig. 1b, 1d and 1f.

In the unimodal histograms, almost all values squeeze
in a small range around the zero point, meaning that the
features have small discriminative power. The bimodal dis-
tributions are more discriminative, which explains why the
simple power normalization technique has significantly im-
proved action recognition results.

3.2.3 Scale = Importance?

One final important fact we observe is that the scales of dif-
ferent dimensions in the VLAD vector are diverse. Fig. 2
shows the histograms of maximum values of all VLAD di-
mension for the 3 datasets. It is clear that the scales of dif-
ferent dimensions vary significantly.

A dimension with larger scale will (in practice) be more
important in classification than a dimension with smaller
scales. However, there is no evidence that dimension scale
variations are directly related to their importance levels for
categorizing actions. For example, we examined the scales
of only those dimensions corresponding to the eigenvec-
tor with the largest eigenvalue. This subset are consid-
ered as containing the most information in PCA, but the
resulting histogram has similar shape and range as those
shown in Fig. 2. Thus, we believe that in VLAD, scale 6=
importance, and it is a good practice to remove the scale
differences.

In short, based on careful analyses of VLAD’s data dis-
tribution properties and the maxent interpretation, we sug-
gest the following good practices: 1) use root descriptor if
it can improve normality; 2) make good use of the side in-
formation (i.e., which code words are missing in a video);
3) take advantage of the bimodal distribution in power nor-
malization; and, 4) remove the scale differences.

4. Bimodal encoding

In this section, we propose a few simple encoding meth-
ods that incorporate various practices suggested in Sec. 3,
and empirically evaluate their performance. We show that
what we name as the bimodal encoding is the most effective
in experiments.

Table 4. Evaluation results (average accuracy) of different encod-
ing choices, comparison with state-of-the-art results, and feature
compression results. We fix K = 256 and use STP for all datasets,
and use root descriptors only in UCF101. These choices are based
on discussions in Sec. 3.

UCF101 HMDB51 Youtube
none 84.12% 54.60% 89.82%
Even-Scale 83.73% 55.80% 90.82%
Side-Info 83.98% 56.36% 90.18%
Bimodal 84.16% 56.14% 90.36%
2-bit Bimodal 82.41% 53.88% 89.00%
1-bit Bimodal 81.24% 51.90% 88.18%
bag-of-features 78.43% 48.3 % [24] 85.4 % [24]
[19] (FV) n/a 37.21% 84.52%
[6] (VLAD) n/a 52.1 % n/a

4.1. Encoding transformations

These encodings are all per-dimension transformations.
Suppose x a variable representing one dimension in VLAD
(after power and `2 normalization), we denote x(> 0) and
x(< 0) as the maximum and minimum value of this dimen-
sion observed in the training set, respectively. The encoding
transformations are defined as:
• Even-Scale. x ← x

x−x . The new x has varying mini-
mum and maximum values in each dimension, but the
difference between minimum and maximum in each di-
mension is always 1. Note that 0 remain unchanged.

• Side-Info. x ← x−x
x−x . Note that 0 will be transformed

to −x
x−x , thus it is a simple way to incorporate the side

information. The new range is [0 1] in all dimensions.
• Bimodal. x is transformed as follows: x ← x/x if x ≥

0 and x ← x/|x| if x < 0. This encoding handles the
bimodality explicitly and fix scales in both sides of 0.
The new range is [−1 1]. Note that 0 remain unchanged.

All three transformations are computational efficient. In or-
der to get the parameters x and x, we just need 1 comparison
and 1 assignment operation for each feature value x. In or-
der to apply the transformations, only 1 or 2 minus and 1
division operation are needed for each x.

4.2. Comparison of encodings and comparison with
state-of-the-art

Evaluation results for different encoding transformations
are presented in the first block of Table 4. The first row
in Table 4 (“none”) are accuracy rates without transfor-
mations. Note that in UCF101, using root descriptors in-
creased the STP accuracy from 83.93% (block 9 of Table 1)
to 84.16%.

The following 3 rows transform data in the first row’s
experiments using the proposed transformations. Except in
the UCF101 dataset, all transformations can improve ac-
curacy rates, and the bimodal encoding is the most effec-
tive. These results confirms our observations: scale 6=
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Figure 2. Distribution of maximum values of all VLAD dimensions. Because in every dimension the distribution is almost symmetric (c.f .
Fig. 1), we do not show histograms of minimum values.

importance, and both bimodal and side information are
useful. In the UCF101 dataset, even-scale and side-info
slightly reduces the accuracy by 0.39% and 0.14%, respec-
tively; while the bimodal encoding has almost the same ac-
curacy (0.04% higher). On the other two datasets, the trans-
formations improved the categorization accuracy by up to
1.76% and 1.00%, respectively. Given the fact that all three
transformations incur only negligible computational costs
and are very easy to implement, we recommend that they
should be adopted in the encoding of action videos, espe-
cially the bimodal encoding.

Comparing with bag-of-features, the VLAD encoding is
obviously more effective.4 The improvements by the pro-
posed transformations are relatively smaller when compar-
ing with the BOF-VLAD shift, but are not trivial. For exam-
ple, in the Youtbue dataset, a paired t-test shows that the im-
provement of even-scale is significant with p-value 0.0268.
The bimodal encoding rates also compare favorably with
the state-of-the-art results on these datasets, as shown in the
third block.

4.3. Compress high-dimensional vectors

VLAD and FV vectors are usually very high dimensional
(e.g., when K = 256, VLAD is around 51200 dimensions
in this paper). When a large number of videos are available
(e.g., UCF101 has 13320 videos), memory storage and CPU
time requirements might make VLAD and FV become too
costly for practical use. Many feature compression methods
have been proposed to handle this problem (e.g., product
quantization [18]).

However, since there are far more images than videos,
we probably do not need a very large compression ratio
or sophisticated feature compression methods in the video
domain. Two encodings on top of bimodal can compress

4First row in the third block. HMDB51 and Youtube results are
from [24]. For UCF101, we used K = 4000 in bag-of-features and the
PmSVM classifier [26] with the histogram intersection kernel (p = −16,
C = 0.1 in PmSVM).

VLAD with satisfactory results:

1-bit : x ←

 1 x≥0

−1 x<0
, (5)

2-bit : x ←



1 x>0.4

0.5 0≤x≤0.4

−0.5 −0.4≤x<0

−1 x<−0.4

. (6)

They quantize a real-value into 2 and 4 discrete values (i.e.,
1 and 2 bits to store), respectively, corresponding to 32 and
16 times compression. The 1-bit encoding is the sign code
in [15], and 2-bit is a simple extension of 1-bit. As shown in
the second block of Table 4, although 1-bit rates are not sat-
isfactory, 2-bit (with bimodal encoding) is close to VLAD
without the encodings proposed in this paper.

Note that x = 0 is quantized into discrete value 1 or 0.5
in 1-bit and 2-bit, respectively. If we use 5 discrete values
(2-bit plus x = 0, which requires 3 bits though), the ac-
curacy is increased to 82.94% for UCF101 and 55.49% for
HMDB51.

5. Conclusions

We empirically evaluated various improvement tech-
niques for VLAD based video encoding, proposed a novel
maxent interpretation, and proposed new encoding tech-
niques to improve video encoding for action recognition.
As a summary of our evaluations and findings, we suggest
the following good practices for action video encoding:

• Use VLAD or FV instead of bag-of-features;
• Do not use large codebook size or large number of re-

gions if your data is not complex. K = 256 and a small
STP seems appropriate.

• Always use power normalization (because it changes
unimodal features into bimodal, hence increasing their
discriminative power), but only use root descriptors if it
can improve normality;

• Use the bimodal encoding proposed in this paper. It is
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simple, light-weight, yet effective;
• Use the 2-bit compression proposed in this paper if the

dataset has a large number of videos.
Some future research topics are already discussed. For

example, instead of using PCA for dimension reduction,
we want to find maximum entropy linear feature function,
which may improve the feature quality and consequently
recognition accuracy. The bimodal encoding does not use
the side information (x = 0), which can be further im-
proved. We also want to extend our empirical evaluations
to the Fisher Vector and to more benchmark datasets.

There is one final note and future topic: applying what
we learned from encoding videos back to encode images.
For example, we would like to test how the bimodal encod-
ing will affect image encoding results.

Appendix
Given x ∼ N(0,Σ) (i.e., a multivariate zero-mean normal
distribution), we want to find a maxent linear projection w
such that ‖w‖ = 1 and y = xTw has the maximum differ-
ential entropy H(y) = −

∫
p(y) log p(y) dy.

Using properties of the normal distribution, it is easy to
derive that y ∼ N(0,wTΣw). Since the entropy of a stan-
dard normal distributionN(0, σ2) is 1

2 ln
(
2πeσ2

)
, we have

that H(y) = 1
2 ln

(
2πewTΣw

)
. Thus, finding maxent lin-

ear projections for zero-mean Gaussian data is equivalent to
solve the following PCA problem:

maxw wTΣw s.t. ‖w‖ = 1. (7)

The generalization to multiple linear projections is trivial if
we require the linear projections are perpendicular to each
other—which is exactly the PCA requirement.
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[1] R. Arandjelović and A. Zisserman. Three things everyone

should know to improve object retrieval. In CVPR, pages
2911–2918, 2012.

[2] J. M. Chambers, W. S. Cleveland, P. A. Tukey, and
B. Kleiner. Graphical Methods for Data Analysis. Duxbury
Press, 1983.

[3] J. Delhumeau, P.-H. Gosselin, H. Jégou, and P. Pérez. Revis-
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