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Abstract. This paper addresses the problem of unsupervised domain
adaptation on the task of pedestrian detection in crowded scenes. First,
we utilize an iterative algorithm to iteratively select and auto-annotate
positive pedestrian samples with high confidence as the training samples
for the target domain. Meanwhile, we also reuse negative samples from
the source domain to compensate for the imbalance between the amount
of positive samples and negative samples. Second, based on the deep
network we also design an unsupervised regularizer to mitigate influence
from data noise. More specifically, we transform the last fully connect-
ed layer into two sub-layers — an element-wise multiply layer and a
sum layer, and add the unsupervised regularizer to further improve the
domain adaptation accuracy. In experiments for pedestrian detection,
the proposed method boosts the recall value by nearly 30% while the
precision stays almost the same. Furthermore, we perform our method
on standard domain adaptation benchmarks on both supervised and
unsupervised settings and also achieve state-of-the-art results.

Keywords: Unsupervised Domain Adaptation, Unsupervised Regular-
izer, Deep Neural Network, People Detection

1 Introduction

Deep neural networks have shown great power on traditional computer vision
tasks, however, the labelled dataset should be large enough to train a reliable
deep model. The annotation process for the task of pedestrian detection in crowd-
ed scenes is even more resource consuming, because we need to label concrete
locations of pedestrian instances. In modern society, there are over millions of
cameras deployed for surveillance. However, these surveillance situations vary in
lights, background, viewpoints, camera resolutions and so on. Directly utilizing
models trained on old scenes will result in poor performance on new situations
due to data distribution changes. It is also unpractical to annotate pedestrian
instances for every surveillance situation.

When there are few or no labelled data in the target domain, domain adapta-
tion helps to reduce the amount of labelled data needed. Basically, unsupervised
domain adaptation aims to shift the model trained from the source domain to
the target domain for which only unlabelled data are provided. Most traditional
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works [1–5] either learn a shared representation between the source and target
domain, or project features into a common subspace. Recently, there are also
works [6–8] proposed to learn a scene-specific detector by deep architectures.
However, heuristic methods are needed either for constructing feature space
or re-weighting samples. Our motivation of developing a domain adaptation
architecture is to reduce heuristic methods required during the adaptation
process.

In this paper, we propose a new approach for unsupervised deep domain
adaptation for pedestrian detection. First, we utilize an iterative algorithm to
iteratively auto-annotate target examples with high confidence as positive pedes-
trian instances on the target domain. During each iteration, these auto-annotated
data are regarded as the training set to update the target model. However, these
auto-annotated samples still have the limitations of lack of negative samples and
existence of false positive samples, which will no doubt lead to exploration of
predictions on non-pedestrian instances. Therefore, in order to compensate for
the quantitative imbalance between positive and negative samples, we randomly
sample negative instances from the source domain and mix into training set.
Second, based on deep network, we further design an unsupervised regularizer
to mitigate influence from data noise and avoid overfitting. More specifically,
in order to have a better regularization effect during the adaptation process,
we propose to transform the last fully connected layer of the deep model into
two sub-layers, an element-wise multiply layer and a sum layer. Thus, the
unsupervised regularizer can be added on the element-wise multiply layer to
adjust all weights in the deep network and gain better performance.

The contributions of our work are three folds.

– We propose an adaptation framework to learn scene-specific deep detectors
for target domains by unsupervised methodologies, which adaptively selects
positive instances with high confidence. This can be easily deployed to
various surveillance situations without any additional annotations.

– Under this framework, we combine both supervised term and unsupervised
regularizer into our loss function. The unsupervised regularizer helps to
reduce influence from data noise in the auto-annotated data.

– More importantly, for better performance of the unsupervised regularizer we
propose to transform the last fully connected layer of the deep network into
two sub-layers, an element-wise multiply layer and a sum layer. Thus, all
weights contained in the deep network can be adjusted under the unsuper-
vised regularizer. To the best of our knowledge, this is the first attempt to
transform fully connected layers for the purpose of domain adaptation.

The remainder of this paper is organized as follows. Section 2 reviews related
works. Section 3 presents the details of our approach. Experimental results are
shown in Section 4. Section 5 concludes the paper.
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2 Related Work

In many detection works, the generic model trained from large amount of samples
on the source domain is directly utilized to detect on the target domain. They
assume that samples on the target domain are subsets of the source domain.
However, when the distribution of data on the target and source domain vary
largely, the performance will drop significantly. Domain adaptation aims to
reduce the amount of data needed for the target domain.

Many domain adaptation works try to learn a common representation space
shared between the source and target domain. Saenko et al. [1, 2] propose
both linear-transform-based techniques and kernel-transform-based techniques
to minimize domain changes. Gopalan et al. [3] project features into Grassmann
manifold instead of operating on features of raw data. Alternatively, Mesnil et al.
[9] use transfer learning to obtain good representations. However, these methods
have limitations since scene-specific features are not learned to boost accuracy.

Another group of works [4, 5, 10, 11] on domain adaptation is to make the
distribution of the source and target domain more similar. Among these works,
Maximum Mean Discrepancy (MMD)[12] is used to as a metric to reselect
samples from the source domain in order to have similar distribution as target
samples. In [13], MMD is added on the last feature vector of the network as a
regularization. Different from these methods, our work transforms the last fully
connected layer into two sub-layers, an element-wise multiply layer and a sum
layer. As the element-wise multiply layer is the last layer that contains weights
before output layers, our unsupervised regularizer on the element-wise multiply
layer can adjust all weights of the deep network during training.

There are also works on deep adaptation to construct scene-specific detectors.
Wang et al.[6] explore context cues to compute confidence, [7] learn distributions
of target samples and propose a cluster layer for scene-specific visual patterns.
These works re-weight auto-annotated samples for their final object function and
additional context cues are needed for reliable performance. However, heuristic
methods are required to select reliable samples. Alternately, Hattori el al. [8]
learn scene-specific detector by generating a spatially-varying pedestrian appear-
ance model. And Pishchulin et al. [14] use 3D shape models to generate training
data. However, synthesis for domain adaptation is also costly. Compared with
these methods, our approach does not include the heuristic pre-processing steps.
Thus, the performances of our approach are not affected by the pre-processing
steps.

3 Our Approach

In this section, we introduce our unsupervised domain adaptation architecture
on the task of pedestrian detection in crowded scenes. Unsupervised domain
adaptation aims to shift the model trained from the source domain to the target
domain for which only unlabelled data are provided. Under the unsupervised
setting, we use an iterative algorithm to iteratively auto-annotate target samples
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and update the target model. As the auto-annotated samples may contain noises,
the performances may be affected by the wrongly annotated samples. Therefore,
an unsupervised regularizer is introduced to mitigate the influence from data
noise on the target model. More specifically, based on the assumption that
the source domain and the target domain should share the same feature space
after feature extraction layers, we encode the unsupervised regularizer to make
a constraint that the distribution of data representation on the element-wise
multiply layer should be similar between the source domain and the target
domain.

The adaptation architecture of our approach consists of three parts – the
source stream, the target stream and an unsupervised regularizer, as shown
in Fig 1. The source stream takes samples from the source domain as input,
while the target stream is trained from auto-annotated positive samples from
the target domain and negative samples from the source domain. These two
streams can utilize any deep detection network as their basic model, as well as
their detection loss function as supervised loss functions of two streams. In our
experiments, we use the detection network mentioned in Section 4.1 as the basic
model. The unsupervised regularizer is integrated into the loss function of the
target stream.

In the following, we will first describe our iterative algorithm which itera-
tively selects samples from the target domain, and updates the target model
accordingly (Section 3.1). Then, we will introduce the loss function we designed
for updating the target model (Section 3.2), as well as the proposed unsupervised
regularizer for improving the domain adaptation performance (Section 3.3).

3.1 Iterative Algorithm

In this section, we introduce the iterative algorithm which is the training method
of the target stream of our adaptation architecture. There are two reasons to
employ the iterative algorithm. First, auto-annotated data on the target domain
vary for every adaptation iteration and new positive samples will be auto-
annotated as training set. Compared to methods without the iterative algorithm,
it helps to avoid overfitting caused by lack of data. Second, unsupervised reg-
ularizer performs better with more training data as it’s a distribution based
regularizer.

There are two stages for the iterative algorithm. The source stream and
the target stream are separately trained at different stages. At initialization
stage, the source model of the source stream are trained under a supervised
loss function with abundant labelled data, (XS ,YS), from the source domain.
After its convergence, the weights of the source model θS are taken to initialize
the target stream. At adaptation stage, the target model is trained from auto-
annotated positive samples (XT,n,YT,n) from the target domain and randomly-
selected negative samples (XS,n,YS,n) from the source domain under both
supervised loss function and unsupervised regularizer. Since auto-annotated
data are all regarded as positive samples, negative samples from the source
domain are randomly selected to compensate for lack of negative instances,
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Fig. 1. The adaptation architecture consists of three parts, the source stream, the
target stream and an unsupervised regularizer. The last fully connected layers of both
source and the target stream are transformed into element-wise layer and sum layer
for the purpose of the unsupervised regularizer. Best view in colors.

which are human annotated and can thus provide true negative samples. Note
that we do not jointly train two streams at adaptation stage and the weights
of the source model stay static which serves as a distribution reference for
the unsupervised regularizer at the adaptation stage. The complete adaptation
process is illustrated in Algorithm 1. After a predetermined iteration limit N I

is reached, we obtain our final detection model on the target domain.

3.2 Loss function for the target stream

In this section, we introduce our loss function on the target stream of our
adaptation architecture, which is composed of a supervised loss and an unsu-
pervised regularizer. The supervised loss is to learn the scene-specific bias for
the target domain, while the unsupervised regularizer introduced in Section 3.3
plays an important part in reducing influence from data noise as well as avoiding
overfitting.

We denote training samples from the source domain as XS = {xSi }N
S

i=1.
For training samples on the source domain, we have corresponding annotations

YS = {ySi }N
S

i=1 with ySi = (bSi , l
S
i ), where bSi = (x, y, w, h) ∈ R4 is the bounding

box location and lSi ∈ {0, 1} is the label indicating whether xSi is a pedestrian in-
stance. At the nth adaptation iteration, we have two set of training samples,NT,n

auto-annotated positive samples from the target domain XT,n = {xT,n
j }N

T,n

j=1

and NT,n negative samples from the source domain XS,n = {xS,nk }N
T,n

k=1 . Their

corresponding annotations can be denoted as YT,n = {yT,n
j }NT,n

j=1 and YS,n =
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Algorithm 1 Deep domain adaptation algorithm

1: procedure Deep domain adaptation
2: Train the source model MS on the source stream with abundant annotated data

(XS ,YS)
3: Use MS to initialize the target model on the target stream as M0

4: for i = 0:NI do
5: Mi generate auto-annotated positive samples (XT,n,YT,n) of the target

domain
6: Randomly sampled negative instances (XS,n,YS,n) from the source domain
7: Xn = {XT,n,XS,n}
8: Yn = {YT,n,YS,n}
9: Take (Xn, Yn) as training data to upgrade Mi into Mi+1

10: end for
11: MNI : final model.
12: end procedure

{yS,nk }N
T,n

k=1 with yT,n
j = (bT,n

j , lT,n
j ≡ 1, cT,n

j ), and yS,nk = (bS,nk , lS,nk ≡ 0),

respectively. cT,n
∗ is the confidence given by the auto-annotation tool and N I

is the maximum number of adaptation iterations. Now we can formulate the
combination of supervised loss and unsupervised regularizer as follows:

L(θT,n|XT,n,YT,n,XS,n,YS,n,XS , θS) = LS + α ∗ LU (1)

LS =
NT,n∑

j=1

H(cT,n
j ) ∗ (R(θT,n|xT,n

j , bT,n
j ) + C(θT,n|xT,n

j , lT,n
j ))

+
NT,n∑

k=1

(R(θT,n|xS,nk , bS,nk ) + C(θT,n|xS,nk , lS,nk )) (2)

LU = LEWM (θT,n|XT ,XS , θS) (3)

where LS is the supervised loss to learn scene-specific detectors and LU is the
unsupervised regularizer part. α = 0.8 is the coefficient balancing the effect of
supervised and unsupervised loss. θT,n denote the coefficients of the network in
the target stream at nth adaption and θS denote the coefficients of the network
in the source stream. H(·) is a step function in order to select positive samples
with high confidence among auto-annotated data on the target domain. R(·) is
a regression loss for bounding box locations, such as norm-1 loss, and C(·) is a
classification loss for bounding box confidence, such as cross-entropy loss. And
LEWM (·), to be introduced in Section 3.3, is a MMD-based loss added on the
element-wise multiply layer for unsupervised regularization.

3.3 Unsupervised weights regularizer on Element-wise Multiply
Layer

As mentioned before, the unsupervised regularizer plays an important role in
reducing influence from data noise and avoiding overfitting. In this paper, we
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propose to transform the last fully connected layer in order to have better effect
on unsupervised regularization.

Fig. 2. Illustration of transformation of the fully connected layer C into element-wise
multiply layer and sum layer. After the transformation, the element-wise layer become
the last layer which contains weights before output layer p. Thus, an unsupervised
regularizer can be added on mo.

Element-wise Multiply Layer In deep neural network, the data of the last
feature vector layer is taken as an important data representation of input images.
However, in this paper, we take one step further to focus on the last fully
connected layer which serves as an decoder to decode rich information of the last
feature vector into final outputs. As the source model is trained with abundant
labelled data on the source domain, the weights of the last fully connected layer
are also well converged. A regularizer on the last fully connected layer can adjust
all weights of the network compared with that on the last feature vector layer.
Denote the last feature vector, the weights of the last fully connected layer
and the final outputs as f (1×ND), C(ND×NO) and p(1×NO). N

D, NO are the
dimension of feature vector and the dimension of output layer, respectively. Thus
the operation of the fully connected layer can be formulated as matrix multiply:

p = f ∗C (4)

where

po =
∑

d

fd ∗ Cd,o (5)

Inspired by this form, we separate the above formula into two sub-operations
– the element-wise multiply operation and the sum operation, which can be
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formulated as:

mo = [fd ∗ Cd,o]N
D

d=1 (6)

po = mo ∗
−→
1 (7)

where M(NO×ND) = [mo] is the intermediate results of the element-wise mul-

tiply operation. mo is a vector with ND dimensions, which will be the object
of the unsupervised regularizer. Finally, we can equivalent-transform the last
fully connected layer into an element-wise multiply layer and a sum layer. The
transformed element-wise multiply layer is thus the last layer with weights before
output layers. Fig 2 illustrates the transformation.

Unsupervised regularizer on Element-wise Multiply Layer This section
introduces our unsupervised regularizer. As stated in Section 3.1, there are false
positive samples among auto-annotated data, which will mislead the network and
result in worse performance. Thus, we designed an unsupervised regularizer to
mitigate the influence. We have the assumption that the weights of the element-
wise multiply layer of the last fully connected layer have well converged under
the training of abundant source samples. Thus, when tasks are similar, the
distribution of data representations of the element-wise multiply layer on the
source domain and the target domain should also be similar. While false samples
are easier to mutate the distribution of data representations. This observation
can be illustrated in Fig 3, where the center of mo of true target samples is far
closer to the center of source samples, compared to that of false target samples.
Confining that the distribution of data representations between the source and
target domain to be similar helps to reduce the influence caused by data noise
to some extent.

0 5 10 15 20
Dimensions

−0.05

0.00

0.05

0.10

0.15

Va
lu

e

Comparison of center(mo) between true and false samples

center(mo) of source samples
center(mo) of false target samples
center(mo) of true target samples

Fig. 3. Comparison of the center of mo between true and false samples on the first
20 dimensions. The center of mo of true target samples is far closer to the center of
source samples, compared to that of false target samples. This observation supports our
assumption that false instances among auto-annotated target samples tend to mutate
the distribution of data representations on the element-wise multiply layer.
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To encode this similarity, we utilize MMD (maximum mean discrepancy)[12]
to compute distance between distributions of the element-wise multiply layers
of the source domain and the target domain:

LEWM (θT,n|XS ,XT,n, θS) =
1

NO

NO∑

o=1

‖
∑NT,n

j=1 (mT,n
o |xT,n

j )

NT,n
−

∑NS

i=1 (mS
o |xSi )

NS
‖2

(8)
which can also interpreted as the Euclidean distance between the center of mT,n

o

and mS
o across all output dimensions. As a comparison, the MMD regularizer

on feature vector layer can be formulated as:

LFV (θT,n|XS ,XT,n, θS) =‖
∑NT,n

j=1 (fT,n|xT,n
j )

NT,n
−

∑NS

i=1 (fS |xSi )

NS
‖2 (9)

where f is data of the feature vector layer in Equation 4 and mo is the data of
the element-wise multiply layer in Equation 6.

Since it’s unpractical to get the distribution of the whole training set, while
too few images cannot obtain a stable distribution for regularization. In our
experiments, the LEWM (·) loss is calculated for every batch. An example com-
parison of centers of mS

o of different batches are shown in Fig 4.

0 5 10 15 20
Dimensions

−0.04
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0.02
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e

Comparison of center(mo) between batch i and j

center(mo) of batch i
center(mo) of batch j

Fig. 4. Comparison of the center of mo between two different batches on the first 20
dimensions. These two centers are close to each other, which supports our assumption
that data distributions on the element-wise multiply layer between the source and
target domain should be similar.

4 Experiment Results

In this section, we introduce our experiment results on both surveillance ap-
plications and the standard domain adaptation dataset. We firstly evaluate
our approach on video surveillance. Then we employ our approach to standard
domain adaptation benchmarks on both supervised and unsupervised settings
to demonstrate the effectiveness of our method.
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Fig. 5. Precision-recall curve of 5 comparison methods on target scene 1.

4.1 Domain Adaptation on Crowd Dataset

Dataset and evaluation metrics To show the effectiveness of our domain
adaptation approach for pedestrian detection, we collected a dataset1 consisting
of 3 target scenes for the target domain. These three scenes contain 1308, 1213
and 331 unlabelled images, respectively. For each scene, 100 images are annotated
for evaluation. Instead of labelling the whole body of a person, we label the head
of a person as bounding box during training. The motivation for labelling only
pedestrian heads comes from detection of indoor pedestrian or in crowded scenes,
where the body of a person may be invisible. The dataset for the source domain
are Brainwash Dataset[15].

Our evaluation metrics for detection uses the protocol defined in PASCAL
VOC [16]. To judge a predicted bounding box whether correctly matches a
ground truth bounding box, their intersection over their union must exceed
50%. And Multiple detections of the same ground truth bounding box are
regarded as one correct prediction. For overall performance evaluation, the F1
score F1 = 2∗precision∗ recall/(precision+ recall) [17] are utilized. Higher F1
score means better performance. At the same time, the precision-recall curves
are also plotted.

Experimental settings Our generic detection model of adaptation architec-
ture can be implemented by many deep detection models. In our experiment, we
use the model proposed by Stewart et al. [15], which is an end to end detection
network without any precomputed region proposals needed. For each iteration,
100 auto-annotated images from the target domain and 1000 annotated images

1 Our dataset will be made available on http://wylin2.drivehq.com/.
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from the source domain are alternatively used for training. The outputs of our de-
tection network include bounding box locations and corresponding confidences,
thus there are two fully connected layers between the last feature vector layer
and the final outputs. In our experiments, when an unsupervised regularizer on
the element-wise multiply layer predicting box confidence is added already, the
unsupervised regularizer on the element-wise multiply layer predicting bounding
box locations have little performance improvement. Experiments on 3 target
scenes are executed separately.
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Adaptation iteration number
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F1 Score changes during adaptation on target scene 1

LS(XT,n)

LS(XT,n) + LEWM

LS(XT,n,XS,n) + LFV

LS(XT,n,XS,n) + LEWM

Fig. 6. F1 score changes of 5 comparison methods during adaptation on target scene 1

Comparison with different methods To demonstrate the effectiveness of
our approach, 5 methods are compared among which method LS(XT,n,XS,n) +
LEWM is our final approach:

LS(XS) Source model only trained from the source domain.
LS(XT,n) Only auto-labeled samples on the target domain are used for training,

and without any unsupervised regularizer.
LS(XT,n) + LEWM Only auto-labeled samples on the target domain are used for

training, with an unsupervised MMD regularizer added on the last element-
wise multiply layer.

LS(XT,n,XS,n) + LFV Both auto-labeled images from the target domain and
labeled images from the source domain are alternately sampled for training,
with an unsupervised MMD regularizer [13] added on the last feature vector
layer.

LS(XT,n,XS,n) + LEWM Both auto-labeled images from the target domain and
labeled images from the source domain are alternately sampled for training,
with an unsupervised MMD regularizer added on the last element-wise
multiply layer.



12 L. Liu, W. Lin, L. Wu et. al

Fig 5 plots the precision-recall curves of the above comparison methods in target
scene 1. Also, the changes of F1 score of every adaptation iteration are also
depicted in Fig 6. Table 1 gives concrete precision and recall value of the 5
comparison methods on three target scenes when the F1 scores are at their
highest. Examples of adaptation results are shown in Fig 7.

Table 1. Detection results of 5 compared methods on 3 target scenes

Scene 1 Scene 2 Scene 3
1-Pr Re F1 1-Pr Re F1 1-Pr Re F1

LS(XS) 0.101 0.187 0.309 0.015 0.683 0.807 0.035 0.412 0.577
LS(XT,n) 0.245 0.408 0.530 0.632 0.905 0.524 0.176 0.778 0.800
LS(XT,n) + LEWM 0.284 0.476 0.572 0.012 0.837 0.906 0.078 0.653 0.764
LS(XT,n,XS,n) + LFV 0.109 0.496 0.637 0.002 0.721 0.838 0.044 0.611 0.746
LS(XT,n,XS,n) + LEWM 0.140 0.530 0.656 0.006 0.811 0.893 0.097 0.778 0.836

Performance evaluation From the Table 1, we have the following observa-
tions:

– Compared to method LS(XS), the recall values of other methods, which all
utilize iterative algorithm for training, are explicitly larger. This implies the
effectiveness of our iterative algorithm on boosting recall.

– The average F1 score of LS(XT,n) + LEWM are larger than that of method
LS(XT,n). Also, the average (1-precision) value of LS(XT,n) +LEWM is far
smaller. Their difference in whether the unsupervised regularizer is added in-
to loss function demonstrates that our unsupervised regularizer can mitigate
the influence of data noise and thus boost F1 score.

– Compared to method LS(XT,n) + LEWM , the average F1 score of method
LS(XT,n,XS,n) + LEWM is higher. This demonstrate the effectiveness of
negative source samples added into the training set during adaptation pro-
cess.

– Compared to method LS(XT,n,XS,n) + LFV , the recall values of method
LS(XT,n,XS,n)+LEWM are further increased. This shows that unsupervised
regularizer added on the element-wise layer will provide better regularizer
effect compared to that on the feature vector layer.

– Our final method LS(XT,n,XS,n) + LEWM achieves best results on target
scene 1 and target scene 3. The performance on target scene 2 is rather close
to the best result, which may result from large discrepancy of background
between the source and target domain.

4.2 Domain Adaptation on Standard Classification Benchmark

In order to further demonstrate the effectiveness and generalization of our
adaptation architecture, we test our method on the standard domain adaptation
benchmark Office dataset[1].
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Fig. 7. Example results of 5 comparison methods on 3 target scenes.

Fig. 8. Example images on Office dataset.
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Office dataset and Experimental settings The Office dataset comprises
31 categories of objects from 3 domains (Amazon, DSLR, Webcam). Example
images are depicted in Fig. 8. We take Amazon domain as the source domain and
Webcam domain as the target domain. We follow the standard protocol for both
supervised and unsupervised settings. We reused the architecture in pedestrian
detection and utilize AlexNet [18] as the generic model of both streams.

Performance evaluation In Table 2, we compare our approach with other
seven recently published works in both supervised and unsupervised settings.
The outstanding performance on both settings confirms the effectiveness of our
iterative algorithm and MMD regularizer on the element-wise multiply layer.

Table 2. Multi-class accuracy evaluation on Office dataset with supervised and
unsupervised settings.

A → W
Supervised Unsupervised

GFK(PLS,PCA)[19] 46.4 15.0
SA [20] 45.0 15.3
DA-NBNN [21] 52.8 23.3
DLID [22] 51.9 26.1
DeCAF6S [23] 80.7 52.2
DaNN [11] 53.6 35.0
DDC[13] 84.1 59.4

Ours 85.4 69.3

5 Conclusions

In this paper, we introduce an adaptation architecture to learn scene-specific
deep detectors for the target domains. Firstly, an iterative algorithm is utilized
to iteratively auto-annotate target samples and update the target model. As
auto-annotated data are lack of negative samples and contain data noise, we
randomly sample negative instances from the source domain. At the same time,
an unsupervised regularizer is also designed to mitigate influence from data noise.
More importantly, we propose to transform the last fully connected layer into
an element-wise multiply layer and a sum layer for better regularizer effect.
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