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Weak to Strong Detector Learning for Simultaneous
Classification and Localization
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Abstract— This paper aims at learning discriminative part
detectors with only image-level labels. To this end, we need
to develop effective technologies for both pattern mining and
detection learning. Different from previous methods, which train
part detectors in one step, we divide the detector learning process
into two stages and formulate it as a weak to strong learning
framework. In particular, we first learn exemplar detectors from
the unaligned patterns and perform a detector-based spectral
clustering to produce weak detectors that are only responsible
for a few discriminative patterns. In this way, the weak detectors
are able to offer right initial patterns for strong detector learning.
Second, we learn strong detectors with patterns discovered from
the weak detectors, which we formulate as a confidence-loss
sparse multiple instance learning (cls-MIL) task. The cls-MIL
considers the diversity of positive samples while avoiding drifting
away from the well localized ones by assigning a confidence value
to each positive sample. The responses of the learned detectors
produce an effective mid-level image representation for both
image classification and object localization. Experiments con-
ducted on benchmark data sets well demonstrate the superiority
of our method over existing approaches.

Index Terms— Mid-level pattern mining, exemplar-SVM, mul-
tiple instance learning, image classification, object localization.

I. INTRODUCTION

OBJECT parts that capture crucial characteristics of an
image are important in a variety of object recognition

and related applications. For instance, in Deformable Part
Model (DPM) [13], an object is modeled as a set of deformable
parts organized in a tree structure. In face verification [46],
a part-based feature representation is learned under the super-
vision of face identities through a deep model. In fine-grained
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recognition [48], distinctive parts such as the head of
birds are detected out to enable part-based representation.
Nevertheless, obtaining informative parts usually requires
object-level [13] or even part-level annotations [2], which
is tedious and costly for large-scale datasets. Accordingly,
it is desirable to discover these parts with minimal human
supervision.

The success of Convolutional Neural Network (CNN) [19]
has shed light on the possibility of automatically discovering
object parts. It has been revealed that the CNN filters at
different layers are sensitive to patches with varying receptive
fields, i.e., from low-level cues such as the edges and corners
in earlier layers to semantically meaningful parts or even the
whole object in deeper layers. From the point of detection,
the outputs of the convolutional layers can be interpreted as
detection scores of multiple detectors. However, the CNN is
trained from ImageNet dataset where objects are typically
centered in images, while in practical applications such as
PASCAL VOC [12] and MS COCO [25] datasets, images
usually contains multiple objects embedded in complex scenes.
Due to the significant differences in image statistics, CNN
pretrained on ImageNet performs poor on these datasets.
An intuitive method is to perform network fine-tuning to
enhance the representative ability of the pretrained CNN.
However, fine-tuning methods can well handle images with
well-aligned objects, but may get relatively inaccurate predic-
tions over multi-label images where objects often suffer severe
mis-alignment or partial occlusion. As a result, fine-tuning
methods are short of automatically discovering discriminative
patterns from images with complex scenes.

An alternative method of discovering informative parts
automatically is to learn detectors explicitly, which we refer
to weakly supervised detector learning. As shown in Fig. 1,
the standard approach for detector learning requires initial
patterns (object parts) for detector initialization, and an opti-
mization strategy for detector learning. It is of vital importance
to develop effective pattern mining and detector learning
strategies to enhance the representative ability. However, learn-
ing part detectors automatically is a classical chicken-and-egg
problem: without an accurate appearance model, examples of a
part cannot be discovered, while an accurate appearance model
cannot be learned without appropriate part exemplars. To solve
this challenge, this paper proposes to learn detectors in a weak
to strong framework. Since consistent patterns are hard to
obtain, we first learn exemplar detectors from the unaligned
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Fig. 1. Image representation based on the part responses. Given a set of
training images which are only provided with image-level labels, our goal is
to mine mid-level patterns (object parts) that capture crucial aspects of an
object, and learn a set of part detectors for image representation.

patterns, producing weak detectors that are only responsible
for a few discriminative patterns. Then, we learn strong
detectors with patterns discovered from the weak detectors.
The motivation is that we hope the weak detectors offer right
initial patterns for strong detector learning, which makes the
final detectors more generalized.

For weak detector learning, the first contribution of our
method is the use of spectral clustering for consistent and
discriminative pattern mining. To this end, a selection strategy
is first utilized to sample discriminative patches of the corre-
sponding category, followed by exemplar-SVM [26] detector
training for each sampled patch, finally, these exemplar-SVM
detectors are grouped via a spectral clustering strategy for
pattern mining. Comparing with traditional clustering methods
which are conducted on the original patches, the clustered
detectors are able to focus on discriminative details, and dis-
cover the most representative patterns based on the detection
scores. Furthermore, an entropy coverage criterion is utilized
to measure the discriminativeness of each cluster, which
enables us to greedily select clusters for detector learning.

As a second contribution, we develop a confidence loss
sparse Multiple Instance Learning (cls-MIL) strategy for
strong detector learning. Different from conventional MIL
methods which represents each positive image with a single
instance and treats each image equally important, cls-MIL
represents each positive image as a sparse linear combination
of its member instances, and considers the diversity of the
positive images, while avoid drifting away the well localized
ones by assigning a confidence value to each positive image.
The responses of the learned detectors formulate an effective
mid-level image representation for recognition. Another inter-
esting finding is that different from most previous methods
which treat image classification [40], [54] and object localiza-
tion [3], [6], [23] separately, the proposed approach is able to
effectively integrate the two tasks into a whole framework.
Benefit from the pattern mining process, we are able to
perform spectral clustering with reduced number and learn
the corresponding discriminative part detectors accordingly.
As a result, the detector responses by our approach are able to
indicate the locations of the objects. Experiments conducted
on benchmark datasets demonstrate the superiority of the
proposed representation.

The rest of this paper is organized as follows. Sec. II reviews
related works on weakly supervised detector learning. The
details of our proposed detector learning method are elaborated
in Sec. III. In Sec. IV, we apply the learned detectors for
classification and localization. Experiments and discussions
are given in Sec. V. Finally, Sec. VI concludes the paper.

II. RELATED WORKS

Over the past years there has been a lot of researches
aiming at learning part models in an unsupervised or weakly
supervised way. Most methods target at improving the two
modules: pattern mining technologies for model initialization,
and optimization strategies for detector learning. The learned
part models offer a promising way for feature representation,
which is beneficial for image recognition and other related
applications. In the following, we organize the discussions
related to part model learning with the above aspects.

A. Pattern Mining Methods

Since the ground truth annotations are not available in a
weakly supervised paradigm, a number of strategies have been
proposed to discover the discriminative patches for model ini-
tialization [52]. A simple method, taken in [29], [38], and [40],
starts by randomly sampling a large pool of patches, and
employs unsupervised clustering to generate initial patterns for
detector learning. Such methods are clumsy and most returned
clusters are with inhomogeneous appearances. Hence, many
pattern mining technologies are developed to offer better ini-
tialization. Song et al. [39] formulate a constrained submodu-
lar algorithm to identify discriminative configurations of visual
patterns. Wang et al. [43] propose to discover these latent parts
via a probabilistic latent semantic analysis on the windows
of positive samples and further employ these clusters as sub-
categories. Li et al. [24] combine the activations of CNN
with the association rule mining technique to discover the
representative mid-level patterns. Doersch et al. [10] formulate
part discovery from the perspective of the well-known mean-
shift algorithm to maximize the density ratio in the feature
space. There is a special case in which we do not need to worry
about exemplar alignment, i.e., a training set consisting exactly
of one part instance [26]. However, training detectors based on
a single exemplar is with limited discriminative power, and the
number of detectors scales with the training samples, which
is tremendous for large-scale datasets.

Different from previous approaches which aim at grouping
the original patches, this paper performs clustering in terms
of the corresponding weak detectors, and makes use of the
grouped detectors for pattern mining. In order to generate
weak detectors, a selection strategy is first utilized to sample
discriminative patches, and each patch is associated with
a detector via exemplar-SVM training. Though a single
exemplar-SVM detector is weak, a collection of such
detectors offer relatively satisfactory localization capacity for
pattern mining.

B. Optimization for Detector Learning

Based on these discovered patterns, most methods employ
an iterative learning approach to refine the detectors.
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Juneja et al. [18] employ an LDA accelerated version [16]
of the exemplar-SVMs [26], which reduces the training cost
substantially comparing with the standard SVM procedure that
involves hard negative mining [13]. However, the detectors are
trained with only one positive instance, which results in limited
discriminative powers. Singh et al. [38] split the training set
into two disjoint parts, and a part model is refined via an
iterative procedure which alternates between clustering on one
dataset and training discriminative classifiers on the other to
avoid overfitting. Parizi et al. [29] propose a jointly training
method which optimizes part models and class specific weights
iteratively. Sun and Ponce [40] propose a latent SVM model
to learn detectors, which tends to select the discriminative
parts by enforcing group sparsity regularizer. However, these
methods suffer from complex jointly optimization, e.g., [29]
takes over five days to train detectors on MIT Indoor-67 [32].

The majority of related works treat weakly supervised
detector learning as a Multiple Instance Learning (MIL) task,
in which labels are assigned to bags (sets of patterns), instead
of individual patterns. MIL is originally introduced to solve a
problem in biochemistry [9], and a variety of MIL algorithms
have been developed over the years. Andrews et al. [1]
present a new formulation of MIL as a max-margin SVM
problem. Bunescu and Mooney [5] develop an MIL method
which is particularly effective when the positive bags are
sparse. Standard MIL proceeds by an iterative procedure which
alternates between selecting the highest scoring detection per
bag as positive instance and refining the detectors. However,
such simplified setting is sensitive to initialization and easy to
getting stuck in a local minimum.

This paper also formulates the weakly supervised detec-
tor learning as a MIL task. Different from previous works,
we introduce a confidence loss term in MIL problem when
determining the classifier hyperplane. The key insight is that
due to the occlusion, illumination variation, and viewpoint
variation, it is suboptimal to treat instances from different
bags equally important for detector learning. The introduced
confidence loss term measures the reliability of each instance
for MIL learning. As a result, the detectors are able to focus
on more confident samples and downweights those samples
with lower reliability. Furthermore, a cross-validation strategy
is introduced to avoid overfitting the initial patterns.

C. Mid-Level Image Representation

A collection of detector responses can be used as mid-
level image representation. The paradigm is inspired by
object bank [22], a pioneering work of using detector
responses for image representation. The object bank rep-
resents an image as a scale-invariant response map of
a large number of pre-trained generic object detectors.
Following that, most technologies employ detection scores
as image representation, and improve the performance by
incorporating part responses [36], [38] or via multiple scale
pooling [29], [40], [49].

Over the past years, CNN has become a powerful tool for
image representation [50], [51]. Due to the domain mismatch
between ImageNet and the target dataset, previous works

attempt to enhance CNN representation by transferring learn-
ing [27], [14], [48]. However, these methods need substantial
object / part annotations of the target dataset, which is tedious
and impractical in real applications. Zhang et. al [48] propose
an alternative method to fine tune the network via saliency-
based sampling, which is free of the object annotations. Never-
theless, such method is only limited to datasets with relatively
simple backgrounds (such as fine grained dataset [42]). It may
obtain limited performance improvement on datasets with
complex scenes such as Pascal VOC [12] datasets.

Our approach follows the pipeline of using detector
responses as feature representation. Different from previous
works which learn a large number of detectors for classifica-
tion [18], [24], [29] or focus on learning a single detector for
localization [6], [39], [43], this paper integrates classification
and localization into a whole framework, i.e., we not only
solve the problem of whether an object is present in an image,
but also focus on where the object (if exists) is. We find that it
is possible to use only a few detectors for both classification
and localization. Such an integrated framework is beneficial
to close the gap between these two tasks.

III. LEARNING PART DETECTORS

In this section, we target at learning a collection of discrim-
inative part detectors automatically for image representation.
Our framework includes two steps of detector learning: weak
detector learning for consistent pattern mining and strong
detector learning for feature representation. The weak detector
learning module first selects patches which are representative
and discriminative, then a series of exemplar-SVM [26] detec-
tors are trained from each selected patch. This is followed
by a spectral clustering procedure which groups exemplar-
SVM detectors for pattern mining. Furthermore, an entropy
coverage criterion is proposed to measure the generalization
ability of each cluster. The strong detector learning module
formulates the optimization issue as a confidence loss sparse
MIL (cls-MIL) task, which considers the reliability of each
positive sample via alternating between mining new positive
samples and retraining the part model. The whole framework
of the proposed approach is illustrated in Fig. 2. In the
following, we present the detailed design for each module.

A. Weak Detector Learning for Pattern Mining

Discovering groups of mid-level patterns that are discrim-
inative and representative is crucial for detector learning.
To solve this issue, we first introduce a sampling strategy
which aims at selecting the discriminative patches, and pro-
pose a detector-based spectral clustering approach to mine
consistent patterns. Furthermore, we present an entropy cov-
erage criterion to measure the discriminativeness of each
cluster, which enables us to greedily select detectors for image
representation. These steps are described as follows:

1) Discriminative Patch Selection: For each image, there
only exist a few patches that are discriminative for this
category (the patches around the target object), and also many
patches that are non-discriminative (the cluttered background).
Here, we introduce a sampling strategy to first pick out those
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Fig. 2. The proposed weak to strong detector learning (WSDL) framework. Given a set of training images, we first learn a set of exemplar-SVM detectors
from the selected patches, followed by detector clustering to discover patterns which are consistent and discriminative. The mined patterns are seeded for
strong detector learning, which we formulate as a cls-MIL task. The detector responses are applied for both image classification and object localization.
(a) Training images. (b) Weak detectors. (c) Strong detectors. (d) Classification & Localization.

discriminative and representative patches without object / part
annotations. Specifically, given an image I with label y ∈
{−1, 1}C , where yc = 1 (yc = −1) indicates the presence
(absence) of an object class c, and C is the number of cate-
gories, we first generate M region proposals X = {x1, ..., xM }
with edge boxes [53], which probably includes the object
of interest with a high recall. Denote the features extracted
from region proposals as {φ(I, x1), ..., φ(I, xM )}, and the
image level representation of I is obtained by sum pooling
the features over M regions: φ(I ) = 1

M

∑M
m=1 φ(I, xm).

For each category c, we select images containing object c
(i.e., yc = 1) as the positive instances, and take all other
images as the negative ones, and train a one-vs-rest SVM
classifier based on the sum pooled features. Benefiting from
the non-negativity of CNN features (we extract CNN features
after ReLU layer) and the additivity of the linear classifier,
we are able to select the patches which contribute the most
to the classification score. These patches are denoted as
discriminative patches, while other non-discriminative patches
usually have low classification scores and are filtered out
during the selection process. Specifically, given one category
c and its classification model βc, the discriminative patch set
X Dc of an image I corresponding to category c is denoted as

X Dc = {xi | βT
c φ(I, xi ) > τ },

where τ denotes the threshold which enforces selecting the
discriminative patches for classification. In all experiments we
set τ to 1, i.e., each selected patch strictly follows the SVM
classification hyperplane.

In order to avoid the classifier overfitting the training set D,
we equally divide D into K disjoint and complementary
subsets D = {D1, ...,DK }. The classifier is trained on K − 1
subsets and validated on the rest one. Fig. 3 illustrates some
discriminative patches selected on Pascal VOC 2007 dataset.
It can be seen that the selected patches probably locate around
the object of interest, and skip other irrelevant backgrounds.

2) Detector-Based Clustering: The patch selection process
usually generates tens of thousands of patterns per cate-
gory, and most of them are highly correlated, e.g., there
exists some patches describing the head of dogs, and some

Fig. 3. Examples of the selected discriminative patches (shown in red
bounding boxes) on Pascal VOC 2007 [12].

others describing the legs of dogs. It is necessary to clus-
ter these patterns into smaller and representative groups for
detector initialization. To this end, an alternative method is
to employ some form of unsupervised clustering such as
k-means [29], [38], [40]. However, k-means behaves poorly in
high dimensional space due to the disturbance of unimportant
entries, and often produces clustered instances which are in no
way visually similar. Instead of clustering the original patches,
this paper proposes a detector-based spectral clustering strat-
egy, which discovers similar patterns via the grouped detectors.

Inspired from exemplar-SVMs [26], we start learning detec-
tors from only one instance, which avoids the issue of exem-
plar misalignment. For each selected discriminative patch x
from Eq. (1), we train an exemplar-SVM detector d. Since
the negative samples are too large, standard hard mining
method [13] is quite expensive. We use instead Linear Dis-
criminant Analysis (LDA) [16] to train a detector, which is
an accelerated version of the exemplar-SVMs. Specifically,
the detector template d is learned simply by:

d = �−1(x p − μ0), (1)

where x p is the mean features of the positive examples,
μ0 denotes the mean of the features in the whole dataset,
and

∑
is the corresponding covariance matrix. Since each

exemplar-SVM detector is supposed to fire only on visu-
ally similar examples, we cannot expect it to generalize too
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Fig. 4. Examples of the discovered mid-level patterns with clustered weak detectors on (a) Pascal VOC 2007 [12] and (b) MIT Indoor-67 [32].

much. To solve this issue, we follow an iterative procedure [18]
which adds new positive samples to enhance the exemplar
detectors. At each round, we run the current detector on all
other images with the same label, and retrain it by augmenting
the positives with the top scored patches. The idea behind
this process is using detection score as a similarity metric,
which emphasizes the distinctive details and suppresses those
irrelevant ones.

Using exemplar-SVMs, each selected patch is associated
with a detector. The key insight of the proposed strategy is that
instead of clustering the original patches, we group the corre-
sponding detectors. Specifically, given nc exemplar detectors
{d i }nc

i=1 trained from one certain class c, we perform spectral
clustering on the similarity matrix S generated from the detec-
tors {d i }nc

i=1, and obtain K clusters {Ck}Kk=1 corresponding to
category c, where S(i, j) denotes the cosine similarity of d i

and d j . Thus, detectors sharing similar response distributions
are grouped together. Inspired by the boosting strategy [41],
each cluster acts as an integrated detector to discover similar
patterns, i.e., the detection score of a patch x with respect to
a cluster Ck is denoted as

s(Ck |x) =
∑

dk⊆Ck

dT
k φ(x). (2)

For simplicity, each category shares the same number of
clusters, and as a result, we obtain KC detectors in total.
As an illustration, Fig. 4 shows some examples of the
discovered patterns using the clustered detectors. It can be
shown that although a single detector is weak, a collection of
such detectors offer satisfactory localization capacity. Another
advantage of the detector-based pattern mining method is
that we can select the most discriminative and representa-
tive patterns according to the top responses of the grouped
detectors.

3) Entropy Coverage: The detector-based clustering gener-
ates a series of clusters with varying discriminative capacities.
The notation of discriminative clusters is that the detectors
within a cluster should be trained from as many images
as possible. Such clusters include detectors corresponding
to repeated patterns among varying images. We propose an
entropy coverage criterion to measure the discriminativeness
of each cluster. Given N images {Ii }N

i=1 belonging to the same
class and the corresponding K clustered detectors {Ck}Kk=1,
the entropy coverage of cluster Ck is defined as:

H(Ck) = −
N∑

i=1

p(Ii |Ck) log2 p(Ii |Ck), (3)

where p(Ii |Ck) denotes the probability of detectors coming
from image Ii . H(Ck) is large if the clustered detectors within
Ck are trained from diverse images, and reaches its maximum
when the detectors are trained from patterns with equal dis-
tribution. The larger H(Ck) is, the more frequent patterns the
detectors in Ck could find. Such an entropy coverage criterion
enables us to greedily select clusters for detector initialization,
while not worrying about choosing appropriate number of
clusters. In the experimental section, we would find that the
optimal number of clusters is determined by the classification
performance.

B. Strong Detector Learning via cls-MIL

The clustered exemplar detectors are rather weak, since
each exemplar detector is quite specific to its exemplar, and
only performs well on visually similar examples. We cannot
expect these weak detectors to generalize well on all examples
that have the same part. In order to enhance the detectors,
we develop a confidence loss sparse Multiple Instance Learn-
ing (cls-MIL) strategy for strong detector learning. Compared
with standard MIL, cls-MIL makes three improvements:
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• First, the standard MIL mines a single instance for pos-
itive image representation, which is highly dependent on the
detectors and is not robust. To tackle this issue, we introduce
a pooling strategy which represents the positive image as a
weighted linear combination of its mined positive instances.

• Second, the standard MIL treats each mined instance
equally important, which is often not the case. Due to occlu-
sion, illumination variation, and viewpoint variation, the same
part from different images suffers varying confidence of being
positive. Comparatively, we introduce a regularized term to
measure the confidence of each bag containing the positive
samples, which considers the diversity of the positive sam-
ples while avoiding drifting away from the well localized
ones.

• Third, the standard MIL alternatively selects the highest
detection per image as the positive instance and refines the
detection model within the same dataset. This would easily
make the detectors latch on to the initial patches they are
trained from and prefer them during the following iterations.
In contrast, we introduce a multi-fold cross-validation to avoid
overfitting the initial training samples in cls-MIL.

1) Problem Formulation: To use MIL for detector learning,
each image is considered as a bag, and the patches within
it as instances. Given a set of training images, we treat
images of one particular category as positive bags, and the
rest images as negative bags. For each image, if it is labeled
as positive, then at least one patch within it should be treated
as a positive instance; when it is labeled as negative, then
all patches within it should be treated as negative instances.
Specifically, let X be the set of bags used for training, which
consists of a set of positive bags Xp and negative bags Xn ,
i.e., X = Xp ∪ Xn . Denote X as a bag of images, and
X̃p = {x |x ∈ X ⊆ Xp} and X̃n = {x |x ∈ X ⊆ Xn} as the set
of instances from positive bags and negative bags, respectively.
For any instance x ∈ X from a bag X ⊆ X , let φ(x) be the
feature representation of x (for brevity, we include the bias
term into feature representation). The cls-MIL problem can
be formulated as solving the following objective:

min
1

2
||β||2 + C

∑

X⊆Xp

�XξX + C
∑

x∈X̃n

ξx

s.t. βT �(X) ≥ 1 − ξX , ∀X ⊆ Xp,

βT φ(x) ≤ −1 + ξx , ∀x ∈ X̃n,

ξX ≥ 0, ξx ≥ 0, ∀X ⊆ Xp,∀x ∈ X̃n, (4)

where �(X) is the feature representation of positive bag X ,
�X is the latent variable which measures the positiveness
of a bag X ⊆ Xp , ξX , ξx are the slack variables, and
C is the control parameter of the loss term. For positive
bag representation, �(X) is denoted as the weighted linear
combination of its mined top scored positive instances,

�(X) =
∑

m∈s(X) wmφ(xm)
∑

m∈s(X) wm
, (5)

where wm is a weight assigned to each instance and is
determined by previous round detector scores, and s(X) is an
indicator which denotes the selected patterns as the positive

“witness” in a positive bag X . In our experiments, only a few
instances per positive bag are selected.

2) Optimization: The cls-MIL leads to a non-convex opti-
mization problem due to the introduction of implicit feature
representation �(X) for the positive bags and the latent con-
fidence variables �X . However, this problem is semi-convex
since optimization problem becomes convex once these latent
variables are fixed. In the following, we solve Eq. (4) via an
iterative procedure which alternates between fixing the latent
variables and optimizing the detectors. In order to avoid focus-
ing on the initial positive samples, the optimization procedure
is processed via cross-validation. Specifically, the training
set D is equally divided into K disjoint and complementary
subsets {D1, ...,DK }. Starting from the patterns discovered
by the clustered exemplar-SVM detectors, the detector β

is optimized via iteratively Updating the latent variables
and Optimizing Eq. (4). In the Updating step, the latent
variables in Dk are determined by detectors βD\Dk

trained on
{D \ Dk}, i.e., each instance weight wm of �(X) is updated
by: wm = σ [βT

D\Dk
φ(xm)], and the confidence loss term

�X = σ [βT
D\Dk

�(X)], where σ is a sigmoid function which
maps the value into the range of (0, 1). In the Optimizing
step, the detector is optimized according to the updated latent
variables via hard negative mining [13].

Proposition: The solution β of Eq. (4) is a linear combina-
tion of the positive instances φ(X) and the negative instances
φ(x), i.e., β = ∑

X⊆Xp
αX φ(X) + ∑

x∈X̃n
αxφ(x), where the

coefficients αX and αx are bounded by: 0 ≤ αX ≤ C�X ,
0 ≤ αx ≤ C, respectively.

Proof: The constrained minimization problem in Eq. (4)
can be solved with a classical Lagrangian method. The
Lagrangian operator can be represented as:

L = 1

2
||β||2 + C

∑

X⊆Xp

�XξX + C
∑

x∈X̃n

ξx

+ αx(β
T φ(x) + 1 − ξx ) −

∑

x∈X̃n

γxξx

− αX (βT �(X) − 1 + ξX ) −
∑

X⊆Xp

γXξX , (6)

where αX , αx , γX , and γx denote Lagrange multipliers. The
minimization of Lagrangian operator in Eq. (6) with respect
to β, ξX , ξx is obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂β
= 0 ⇒ β =

∑

X⊆Xp

αX φ(X) −
∑

x∈X̃n

αxφ(x),

∂L

∂ξX
= 0 ⇒ γX = �X C − αX ,

∂L

∂ξx
= 0 ⇒ γx = C − αx .

(7)

Due to the nonnegativity of γX and γx , we have 0 ≤ αX ≤
C�X and 0 ≤ αx ≤ C . Given a test example x̃ , the detection
score can be represented as:

f (x̃) =
⎛

⎝
∑

X⊆Xp

αX φ(X) −
∑

x∈X̃n

αxφ(x)

⎞

⎠φ(x̃), (8)
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It can be seen that the final detection score f (x̃) is a weighted
combination of the inner product between training features
φ(X), φ(x) and test feature φ(x̃), and is only determined by
samples with nonzero coefficients αi (i = X, x). These αi s are
called support vectors, since they are the only training samples
necessary to define the separating hyperplane. Note that for
positive samples, the coefficient αX is bounded by C�X , with
KKT conditions, it is also possible to see when an example
is a support vector, this happens only if the example is on
the margin, or it does not respect the separation conditions
in Eq. (4). According to [7], the coefficient αX for positive
samples in different locations is defined as:

⎧
⎪⎨

⎪⎩

αX = 0, βT φ(X) > 1,

αX = C�X , βT φ(X) < 1,

0 < αX < C�X , βT φ(X) = 1.

(9)

For positive bags which do not respect the classification
hyperplane, the corresponding coefficient αX is bounded by
C�X , which takes the reliability of X into consideration. The
regularized term �X helps to boost the detection performance.
If a positive bag X is not reliable at previous round, its contri-
bution to the classification hyperplane at current round would
be lowered. As a result, MIL introduces diverse samples for
detector learning, while the confidence loss term encourages
the detector focusing on positive instances which are good
enough and downweighting those instances with lower relia-
bility. The whole procedure of the proposed weakly supervised
detector learning algorithm is summarized in Algorithm 1.

IV. APPLICATIONS: IMAGE CLASSIFICATION

AND OBJECT LOCALIZATION

The learned detectors are discriminative for the correspond-
ing category, and an ensemble of the detectors across different
categories offers an effective mid-level image representation.
In this section, we apply such mid-level representation for
image classification and object localization.

A. Image Classification

Unsupervised clustering methods have been used for feature
representation [31], [44]. Since our learned detectors can
be considered as the true visual patterns corresponding to
a certain category (as opposed to the clustered ambiguous
visual letters in [31] and [44]), it makes sense to apply such
detectors for image coding. Denote all the learned detectors
across different categories as � = {β i }K

i=1, where K is the
total number of detectors. Our mid-level feature representation
is based on the maximal responses of a collection of detec-
tors. Specifically, given an image I and the corresponding
region proposals X , the feature representation is denoted
as: f (I, �) = [βT

1 φ(I, z1), ... , βT
K φ(I, zK )], where zk is a

latent variable indicating the region with maximum response
corresponding to detector βk , i.e., zk = argmaxz∈XβT

k φ(I, z).
An illustration of image representation is shown in Fig. 5.

Given the image representation, a conventional SVM clas-
sifier is performed to produce the final classification results.
Note that the complexity of the feature coding using detector

Algorithm 1 Weakly Supervised Detector Learning
Input: Positive bags Xp , negative bags Xn , the number of
spectral clusters K per category, and iterations T;
Pattern Mining with Weak Detectors: For instances in the
positive bags Xp , mining patterns with weak detectors.
a). Select discriminative patches {xi }m

i=1 with Eq. (1) via
cross-validation.
b). For each selected patch x p ∈ {xi}m

i=1, learn exemplar-
SVM detector via Eq. (1).
c). Spectral clustering of detectors {d i }m

i=1 into K clusters
{Ck}Kk=1.
d). For each cluster, pattern mining on Xp according to
scores s(Ck |x) = ∑

dk⊆Ck
dkφ(x).

Strong Detector Learning via cls-MIL: For each cluster,
given initial patterns discovered by weak detectors, solving
cls-MIL in Eq. (4) via iteratively updating and optimizing.
For iteration t=1 to T
a). Updating: Updating the latent variables via cross-
validation. The latent variables in Dk are determined by
detectors βD\Dk

trained on {D \Dk}, i.e., updating instance
weights wm of �(X) by: wm = σ [βT

D\Dk
φ(xm)], and the

confidence loss term �X = σ [βT
D\Dk

�(X)].
b). Optimizing: solving Eq. (4) via hard negative mining on
negative bags Xp with the updated latent variables �(X)
and �X .
end

Output: Detector set {βk}Kk=1.

Fig. 5. An illustration of how to compute image representation and object
heat maps according to the detector responses.

responses is very low, which includes no more than a dot
product operation once the features (e.g., CNN) are extracted.
On the other hand, we greedily select detector responses
based on the entropy coverage criterion, and find that the
performance saturates as the first few detectors are added in,
which decreases the feature dimension by one order. In the
experimental section, we will demonstrate the effectiveness of
the proposed feature coding approach.

B. Object Localization

The learned part detectors are discriminative for the cor-
responding category, and a collection of them offers rough
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Fig. 6. Examples of localization process on Pascal VOC 2007 trainval
split. We generate the object heat map and perform grabcut [34] to obtain
segmentation mask of the object. Then a tight object bounding box (shown
in red) is obtained via enclosing the segmentation mask.

position of the object of interest. In this section, we present a
simple object localization technology based on the learned part
detectors. The basic idea is to accumulate the part responses
into a whole object heat map, which indicates the potential
position of an object. Specifically, starting from a collection
of part detectors {βk}Kk=1 corresponding to a category, we first
define a part map Ok based on detector βk , the confidence of
a pixel p which is contained in an object part is denoted as:

Ok(p) =
∑

xm⊂p
σ [βT

k φ(I, xm)]
Z

, (10)

where p denotes the patch set that includes pixel p, σ is a
sigmoid function, and Z is a normalization constant such that
maxOk(p) = 1. Finally, the object map is a weighted linear
combination of the part maps obtained by all part detectors,
i.e., O(p) = ∑K

k=1
wkOk(p)∑

k wk
, where wk is a weight factor which

denotes the reliability of each detector, and is given by wk =
maxm∈X σ [βT

k φ(I, xm)]. Fig. 5 illustrates examples of how to
compute the object heat maps.

The object heat map indicates the most discriminative
details of an object, and usually focuses on object parts
(e.g., the head of dogs), instead of the whole object. Inspired
from [30] which casts localization as a segmentation task,
we perform grabcut [34] on the object heat map to generate the
segmentation mask. The goal is to propagate the discriminative
part details to the whole object with color continuity cues.
To this end, the foreground and background are set to be
gaussian mixture models. The foreground model is estimated
from heat map values higher than 0.8, and the background
model is estimated from values lower than 0.2. Finally, we take
the bounding box that covers the largest connected component
in the generated segmentation mask as localization result.
Some example localization processes are shown in Fig. 6.
In the experimental section, we will show that as a byprod-
uct of the learned discriminative detectors, such localization
technique achieves satisfactory localization performance.

V. EXPERIMENTS

In this section, we present an evaluation of the proposed
weakly supervised image classification and object localization
framework. We also perform ablation study to understand how
various design choices impact the recognition performance.

A. Datasets and Evaluation Metrics

We evaluate the proposed approach on four publicly avail-
able benchmarks, ranging from different scales. The details of
the datasets are briefly summarized as follows:

Pascal VOC 2007 and 2012: The Pascal VOC datasets are
widely used benchmarks for multi-label image classification
and object localization. We choose VOC 2007 and VOC
2012 for evaluation. The VOC 2007 [12] contains a total
of 9,963 images spanning 20 generic object classes, of which
5,011 images are used for trainval and the rest 4,952 images
for test. The VOC 2012 [11] is an extended version of the
Pascal VOC 2007, which contains a total of 22,531 images,
including 11,540 images for trainval and 10,991 images for
test. For image classification, we choose trainval split as
training set and test split as test set, and the evaluation metrics
is mean Average Precision (mAP).

MIT Indoor-67: The MIT Indoor-67 [32] dataset consists
of 15,620 images belonging to 67 categories of indoor scenes.
It is challenging because of the large ambiguities between
categories. We follow the standard train/test split as in [32],
i.e., approximately 80 images per class for train and 20 images
per class for test. The evaluation metric for MIT Indoor dataset
is the mean classification accuracy.

MS COCO 2014: The MS COCO [25] is a large scale
dataset which contains over 135k images spanning 80 cate-
gories. We choose the 80k train split for training and the 40k
val split for test. The evaluation criterion is mean Average
Precision (mAP).

In addition to classification, we also evaluate the localization
performance of the proposed approach. For PASCAL VOC,
we evaluate the performance on trainval set with CorLoc [8].
While for MS COCO, a point-based object localization met-
ric [28] is chosen. This metric is widely used on MS COCO
and we choose it for fair comparisons with previous works.

B. Implementation Details

1) Models and Features: We choose two widely used CNN
models for feature extraction, a typical network CaffeNet [17]
and a more accurate but deeper one VGG-VD [37] (the
16-layer model). We extract features from the fc6 layer
(FC-CNN) after the rectified linear unit (ReLU), which is a
4096-d nonnegative vector for each region. Edge boxes [53]
are used for generating candidate region proposals. In addition
to region proposals, edge boxes also provide an objectness
score for each region. For computation efficiency, we dis-
regard regions which occupy less than 1% areas of an
image, and retain the top scored 500 region proposals as
candidates.

2) Parameter Settings: In pattern mining, the number of
spectral clustering per category K is set as 50, and the top
scored 100 patches per clustered detectors are selected as
patterns for detector initialization. In detector optimization,
the number of iterations T is set as 3, as we find that the
performance of the detectors do not need more to converge.
For simplicity, the number of detectors is equally selected
among categories, and the optimal number of detectors per
category is obtained by cross validation on the training set.
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Fig. 7. The classification performance with respect to the number of detectors
per category on (a) VOC 2007 and (b) MIT Indoor-67. The solid lines indicate
the greedily selected detectors via entropy coverage criterion, while the dashed
lines indicate the randomly selected detectors.

TABLE I

RECOGNITION PERFORMANCE ON VOC 2007 WITH DIFFERENT NUMBER

OF REGION PROPOSALS. RESULTS ARE BASED ON MODEL CAFFENET

For all situations where cross-validation is needed, we use
typical 5-fold cross-validation.

C. Ablation Study

To better understand the relative contribution of each
module, we analyze the performance of our approach with
different configurations. As the localization can be regarded as
a byproduct of the learned detectors, we mainly measure how
different designs affect the discriminativeness of the detectors
in terms of classification performance.

1) Effects of Number of Detectors: An advantage of the
proposed approach is that detectors are trained from patterns
with different entropy coverages. This enables us to greed-
ily select detectors based on the entropy coverage criterion.
As shown in Fig. 7, we add detectors orderly to probe how
the number of detectors affects the classification performance.
It can be seen that the performance improves fast when a small
number of detectors are added. For example, on PASCAL
VOC 2007 with CaffeNet model, the performance boosts
from 79.1% to 82.7% when the number of detectors per
category increases from 1 to 10, which demonstrates the
discriminativeness of the learned detectors. Comparatively,
the performance of randomly selected detectors is inferior
to our greedily selected detectors with the same dimension.
Notably, we achieve an accuracy of 79.1% when the number of
detectors per category is only 1 (total feature dimension is 20),
which demonstrates that the entropy coverage criterion is able
to select more discriminative detectors first. The performance
tends to be stable and even drops sightly when more detectors
are added. This is mainly because the subsequent detectors
are not discriminative enough for classification. Similar results
can be found on MIT-67 dataset. We obtain accuracy of 69.0%
with CaffeNet model, and 77.9% with VGG-VD model when
the number of detectors is 30 per category.

2) Effects of Number of Region Proposals: In order to
probe the performance with respect to the number of candidate
region proposals, we select the number of region proposals in
different settings. Table I shows the results on VOC 2007 by

Fig. 8. The classification performance comparisons with different configura-
tions on Pascal VOC 2007 test split. BL refers to baseline which max pooling
CNN region features, KM is short for standard k-means pattern initialization
algorithm, PM denotes the proposed pattern mining approach, MIL stands for
standard multiple instance learning, and cls-MIL is the proposed confidence
loss sparse MIL method. Results are based on model CaffeNet.

varying the number of region proposals. The performance are
relatively stable (from 2000 to 300 region proposals, only
1.3% drop). Considering the performance and computational
efficiency, we choose the number of region proposals as 500.

3) Effects of Different Modules: We now compare the
results with different configurations to analysis how each
module affect the final classification performance. Different
modules are summarized as follows:

• BL: This is the baseline method which directly max
pooling multiple region proposal features for classification.
It is introduced to help understand how the proposed approach
improve the discriminative power of the detectors.

• PM & KM: PM denotes the proposed pattern mining
method in Sec. III A, while KM is the standard k-means
clustering method that is widely used for detector initialization
in previous algorithms [29], [38], [40]. For fair comparisons,
we perform k-means clustering on the selected patches with
the number of clusters setting as 20.

• MIL & cls-MIL: MIL stands for standard multiple
instance learning method which mines new positive sample
without considering the confidence of each bag, and cls-MIL is
the confidence loss sparse MIL detector optimization strategy
proposed in Sec. III B.

As shown in Fig. 8, both k-means and multiple instance
learning do help to improve the classification performance,
nevertheless with limited gains. The proposed pattern min-
ing and cls-MIL method surpass the counterparts consis-
tently, e.g., pattern mining improves the accuracy from 79.9%
(k-means) to 81.2%, and cls-MIL obtains an accuracy
improvement of 2% (83.2% vs 81.2%) comparing with stan-
dard MIL. We also find that detector initialization really counts
for multiple instance learning, even for the modified cls-
MIL (79.9% with k-means, and 83.2% with pattern mining).
This is widely discussed in previous approaches which aim
to develop efficient pattern mining methods [24], [3] for
detector initialization. However, few works emphasis detector
optimization. We demonstrate that both modules are essential,
and a combination of them achieves considerable performance
improvement.



ZHANG et al.: WEAK TO STRONG DETECTOR LEARNING FOR SIMULTANEOUS CLASSIFICATION AND LOCALIZATION 427

TABLE II

RECOGNITION AVERAGE PRECISION (%) ON VOC 2007 Test SPLIT. WE REPORT PERFORMANCE
WITH TWO MODELS: CAFFENET [17] AND VGG-VD [37]

TABLE III

RECOGNITION AVERAGE PRECISION (%) ON VOC 2012 TEST.

D. Image Classification

1) PASCAL VOC: Table II and III show the object recog-
nition results of the proposed approach on Pascal VOC
2007 and 2012 test splits, respectively. In order to make fair
comparisons, we extract CNN features from multiple region
proposals, and max-pooling the region features into a final
representation, which we refers to MR-CNN. Then the only
difference between MR-CNN and our method is the detectors
since they make use of the same region proposals. From
Table II we can see that the proposed detectors improve the
classification performance considerably, achieving accuracies
of 83.2% with CaffeNet, and 91.3% with very deep model,
which bring 5.6% and 2.2% gains comparing with using
CNN features.

There exist many previous approaches that report clas-
sification results on Pascal VOC dataset, and we compare
our results with some most recent ones. Most of previous
approaches that achieve high classification results are based on
network fine tuning [4], [27], [45]. Since network fine tuning
is hard for multi-label images, previous works [27] rely on
object annotations to find category specific patches. In [45],
the authors proposed a weakly supervised classification frame-
work via two-steps of network fine tuning, while it is trained
using extended ILSVRC datasets, enriched with additional
categories semantically close to the ones in PASCAL VOC.
Our result (91.3%) is slightly better than the best performing
one (90.9%) [45], demonstrating that the traditional opti-
mization approaches are able to achieve competing results
with CNN fine tuning. Furthermore, the proposed features are
complementary with CNN features, and achieve an accuracy of
92.2% when combined. For VOC 2012, our method obtains an
accuracy of 89.9%, which is slightly worse than [45] (90.5%)
that makes use of additional training images and late fusion

TABLE IV

COMPARISONS OF RECOGNITION PERFORMANCE ON MIT INDOOR-67.
CLUSTERED DETECTORS REFER TO DIRECTLY USING CLUSTERED

EXEMPLAR-SVM DETECTOR RESPONSES AS FEATURES

with a complex hand-crafted method [47]. The reason lies in
that CNN-based methods are powerful as the training data
grow, while MIL-based methods are relatively robust to the
amount of data.

2) MIT-67: Table IV compares the recognition results
on MIT Indoor-67. MR-CNN denotes max-pooling multi-
ple region features for representation, and FC-CNN refers
to directly extract a single global feature from the whole
image. Weak detectors denote the method which relies on the
responses of the clustered exemplar-SVM detectors as features.
From Table IV we observe that: 1) MR-CNN is much better
than FC-CNN. Using CaffeNet model, the accuracy is 65.1%
with MR-CNN, and 60.3% with FC-CNN. This demonstrate
that local features are crucial for scene recognition. 2) The fea-
tures using clustered detector responses (66.3%) is better than
MR-CNN (65.1%), even with half dimension (2K versus 4K).
This is mainly because CNN is primarily trained from the
object centric images, instead of the scene centric images.
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TABLE V

CLASSIFICATION (val SPLIT) AND POINT LOCALIZATION
(train SPLIT) PERFORMANCE ON MS COCO 2014.

THE MODEL IS BASED ON CAFFENET

As a result, the weak exemplar-SVM detectors still out-
perform MR-CNN due to the data specific representation.
3) The proposed WSDL is much better than the features with
clustered responses. Benefit from the detector optimization
strategy, our method obtains an accuracy of 69.0%, which
brings about a 2.7% improvement comparing with the clus-
tered responses. The performance is boosted to 77.9% when
switching to the very deep model. Another observation is that
the proposed features are complementary with CNN features,
and achieve an accuracy of 80.1% when combined.

There are some approaches which also aim at learning
discriminative part detectors for recognizing indoor scenes.
The method of [29] integrates detector learning and classi-
fication by jointly training, and [10] poses mid-level pattern
discovery as discriminative mode seeking via developing an
extension of the classic mean-shift algorithm to density ratio
estimation. Our method is closely related to [24], which
also makes use of CNN activations for pattern mining. Our
method achieves slightly better result comparing with the
best performing method (77.9% vs 77.6%). There exists a
majority of algorithms which employ multiple region pooling
for final feature representation. A typical representation is
MOP-CNN [15] which uses VLAD to encode CNN activations
into bag of words representation, and achieves an accuracy of
68.9%, our results (69%) is comparable with [15] using the
same model, but with much lower dimension (2K vs 13K).

3) MS COCO: We also conduct experiments on MS COCO
to test whether the proposed method scales well on large
scale datasets. We simply follow the settings of PASCAL
VOC 2007, i.e., setting the number of detectors per category
as 20. Table V shows the classification results on MS COCO
with CaffeNet model. From this table we find that our pro-
posed WSDL method achieves a classification accuracy of
62.2%, which is about 4.1% improvement over MR-CNN,
and is comparable with [28] (62.8%) which uses a more deep
Overfeat [35] model. Again, WSDL is complementary to the
MR-CNN and the result is 63.9% when combining them. The
results demonstrate that WSDL scales well on the large scale
dataset MS COCO.

4) Visualizing Mid-Level Patterns: As an illustration, Fig. 9
shows some discovered patterns on VOC 2007 (top row)
and MIT-67 (bottom row) test splits. We show the highest
activation region per image, which offers a clue indicating
why it is classified as the corresponding category. Specifically,
given a test image and the category label that the image is
classified with (no matter correct or not), we employ category
specific detectors to find which region responds most to the

Fig. 9. Some visualizations of the correct and incorrect classification.
We show the top detection that makes it look like the corresponding category,
and some patches that the detectors are trained on.

given category, and show some patches that the detector
is trained on. For correctly classified images, there often
exist discriminative patches that respond significantly to the
corresponding detectors, e.g., on VOC 2007, the head of a
train is important for recognizing the trains, and the upper
body of a person is important for recognizing the persons.
Similar results can be found on MIT-67, it is the pillar of a
cloister that makes it look like a cloister, and the slide rail that
makes bowling look like bowling. It is helpful to investigate
why incorrect results happen, on VOC 2007, a classifier mis-
classifies chair as the plant, or horse as bicycle, probably
because there exist corresponding details, e.g., the wheel of
the carriage is similar with bicycle wheels. Similar results can
be found on MIT-67, the window of the office is misclassified
as the bar of the baby bed, which is most discriminative for
recognizing nursery. Actually, these details look similar, and it
is hard to recognize them. However, these observations offer
a direction to further improve the recognition performance.

E. Object Localization

1) PASCAL VOC: Table VI shows the image localization
results on Pascal VOC 2007 trainval split. Benefit from
the learned part detectors, the proposed localization strategy
(47.7%) is better than recent methods that is specifically
designed for localization [3], [23], and is comparable with [43]
(48.5%) which uses latent category learning for object local-
ization. Another observation is that different from recogni-
tion, using deeper model does not bring about localization
improvement (46.9%). This can be explained with the fact
that deeper models frequently focus on parts of the object
instead of the whole object. Note that all these comparing
methods are designed for localization, which often makes use
of context information for better localization, while we rely
on detectors which are learned for classification to uncover
the connection between these two basic tasks. The results
demonstrate that image classification and localization can be
done simultaneously.

2) MS COCO: Table V shows the localization results on MS
COCO. In our implementation, the point-based localization is
obtained by selecting pixels with the maximal response of the
object heat map (as shown Fig. 6). WSDL obtains an accuracy
of 44.7%, which is about 8 point improvement over MR-CNN.
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TABLE VI

OBJECT LOCALIZATION PRECISION (%) ON VOC 2007 TRAINVAL IMAGES IN TERMS OF CORLOC METRIC

Fig. 10. An illustration of the error distribution of the proposed localization method on Pascal VOC 2007 trainval split.

Fig. 11. Examples of localization results on Pascal VOC 2007 trainval split. The correct localization are marked with red bounding boxes, while the failed
ones are marked with green. The failed results often come from localizing object parts or grouping multiple objects from the same class.

This is achieved by the enhanced localization ability of the
learned detectors. The localization is better than [28] (42.1%)
and slightly inferior to [20] (45.8%) which are well-designed
models based on CNN fine-tuning.

3) Localization Error Analysis: In order to better under-
stand the localization errors, following [6], [23], we summarize
the errors to uncover the pros and cons of our localization
method. Each predicted bounding box is categorized into
the following five cases: 1) correct localization, IoU overlap
is greater than 50% with the ground truth. 2) hypothesis
completely inside ground truth, 3) ground truth is completely
inside the hypothesis, 4) no overlap, IoU equals to zero, and 5)
low overlap, none of the above. Fig. 10 shows the error distri-
bution of the proposed method across 20 categories on Pascal
VOC 2007 trainval set. It can be noted that among the failed

modes, the most important failure modality of our method is
that an object part is localized instead of the whole object.
This is intuitive since in most situations, correct classification
only demands catching local discriminative details.

4) Visualizations and Limitations: Fig. 11 shows some
localization results on Pascal VOC 2007 trainval split. The
correct localizations are marked with red bounding boxes,
while the failed ones are marked with green. It can be shown
that the proposed localization method is able to find objects
where there is only one object from the same category, but
is short of localizing multiple objects of the same category.
Actually, it is the main challenge for weakly supervised local-
ization [6], and is a promising direction for future research.

5) Classification Versus Localization: Comparing classifi-
cation (Table II) with localization (Table VI), we find that
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the least successfully recognized objects are bottle (79.1%)
and chair (78.0%), which are also hard for localization
(24.8% and 12.2%). This is because they usually occupy
a small fraction of the image, and are within cluttered
backgrounds. The exception is person, which suffers a low
localization accuracy (29.7%), but with a high recognition
accuracy (98.7%). This can be explained by the fact that
person is easy to be recognized by face, and usually, there exist
multiple persons in an image, which offers abundant cues for
recognition. In contrast, localization is failed when focusing
on the face, and it is hard to tell apart individual person from
the crowd.

F. Discussions

1) Comparing With RCNN: Our proposed detector learning
needs to extract region proposal features and train detectors
with SVM classifiers, which shares similar spirit with RCNN.
However, these two methods are totally different in terms of
experimental setups and application scenarios. RCNN is used
for detection, which requires object bounding box annotations
at training, while our proposed method is targeted at classifi-
cation and localization, which only needs image level labels
for training. As a result, these two methods differ a lot during
detector training and performance evaluation:

• For detector learning, RCNN can easily define the positive
and negative samples based on the ground truth annotations,
while it is very hard to learn detectors in our scenario. To solve
this issue, we propose a weak-to-strong detector learning
strategy. For weak detector learning, we propose an exemplar-
SVM based spectral clustering technology for pattern mining.
While for strong detector learning, we propose a confidence
loss sparse Multiple Instance Learning (cls-MIL) strategy. As a
result, we train dozens of part detectors for each category,
instead of one single object detector in RCNN.

• For performance evaluation, since our method and RCNN
are developed to solve different tasks, their performance
cannot be compared directly. Therefore, to compare their
performance, we train a detection model following RCNN
framework with only image-level labels, using the localized
objects (Part B, Sec. IV) on the training images as ground
truth. This configuration formulates a weakly supervised object
detection task. On PASCAL VOC 2007, we obtain a detection
accuracy of 32.4% with CaffeNet model, which is comparable
with state-of-the-arts [4] (34.5%), [21] (31.0%), [43] (30.9%)
using the same model. Comparatively, RCNN achieves a
detection accuracy of 58.5%, which is better than ours because
RCNN uses the ground truth object annotations during train-
ing. This demonstrates that object annotations are crucial in
current detection models.

2) Comparing With CNN-Based Fine-Tuning: It is worth
noting that our method is different from the CNN-based fine-
tuning methods [4], [27], [45]. The main differences are:

• Our method is more powerful when the number of
training samples is limited. Due to the large number of
parameters, CNN-based fine-tuning requires abundant training
samples to avoid overfitting. In contrast, our proposed detector
learning is based on SVM classifiers, where each classifier

Fig. 12. The classification performance comparisons with different config-
urations on Pascal VOC 2007 test split.

is only determined by a few support vectors. To prove this,
we conduct a comparative experiment on PASCAL VOC
2007 by randomly selecting a subset of training images for
network fine-tuning and our detector learning. For CNN-based
fine-tuning, we choose the end-to-end learning framework
WSDDN [4]. For fair comparison, we only retain the top
scored 500 edge boxes and do not use data augmentation dur-
ing fine-tuning. The recognition results are shown in Fig. 12.
WSDDN achieves an accuracy of 84.1% when fine-tuning
with all the training samples, which is 0.9% better than our
detector learning method. However, as the number of training
samples decreases, the performance of WSDDN drops fast.
For example, the accuracy is 80.7% when using half samples
for training, and is only 67.5% when only using 10% samples
for training. In contrast, our proposed detector learning is
relatively robust to the varying number of training samples.
The results are 82.3% with half training samples, and 79.8%
with only 10% training images.

• Our method learns detectors by category, which conve-
niently enables parallel processing to accelerate the learning
process. Another advantage is that the proposed method enjoys
good transplant characteristics, we only need to learn extra
category specific detectors when a new kind of category is
added. However, the network has to be fine-tuned from the
pretrained network again when adding a new category.

• The complexity of the detector learning is irrespective of
the backbone network once the features are extracted, this is
beneficial for learning detectors from a deeper network such as
VGG-VD. However, the network fine-tuning methods highly
dependent on the CNN structures. For example, on PASCAL
VOC 2007 dataset, with parallel processing, the strong detector
learning can be done in about 20 hours regardless of the
networks used. However, it costs about 13 hours (a single
GeForce GTX TITAN X is used) to fine-tune the CaffeNet
network (the method of [4] is used), and over 60 hours to
fine-tune the VDD-VD network.

3) Computational Complexity: The weak to strong detector
learning requires iteratively updating detectors, which is the
most time consuming module of the proposed method. The
good news is that we can learn detectors with parallel process-
ing since they are category independent. In weak detector
learning, since the mean feature μ0 and covariance matrix �−1

in Eq. (1) are fixed, each iteration only requires updating x p .
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Note that we only search the new positive samples from
the selected discriminative patches, and the process is high-
efficiency, e.g., it takes around 2 hours to learn weak detectors
on Pascal VOC 2007 dataset. In strong detector learning,
the hard negative mining should be processed from all the
negative images, which costs most of the time. With parallel
processing, it takes about 20 hours for strong detector learning
on PASCAL VOC 2007. Note that the whole detector learning
is an off-line process, once we have the learned detectors,
the extra computation of WSDL is no more than dot products
between CNN features and the learned detectors.

VI. CONCLUSION

In this paper, we propose an effective mid-level image
representation approach for visual applications. The proposed
framework aims at learning a collection of discriminative
part detectors in a weakly supervised paradigm, which only
needs the labels of training images, while does not need
any object / part annotations. Our approach tackles several key
issues in automatic part detector learning. First, we propose
an efficient pattern mining technique via spectral clustering of
exemplar-SVM detectors. Second, we formulate the detector
learning as a confidence loss sparse MIL (cls-MIL) task,
which considers the diversity of the positive instances, while
avoid drifting away the well localized ones by assigning
a confidence value to each positive instance. The proposed
method shows notable performance improvements on several
recognition benchmarks. Furthermore, we simultaneously con-
sidering classification and localization based on the learned
detectors, and find that the accumulated responses of part
detectors offer satisfactory localization performance, which
bridges these two widely studied visual tasks.
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