
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010 1533

A Computation Control Motion Estimation Method
for Complexity-Scalable Video Coding
Weiyao Lin, Krit Panusopone, David M. Baylon, and Ming-Ting Sun, Fellow, IEEE

Abstract—In this paper, a new computation-control motion
estimation (CCME) method is proposed which can perform mo-
tion estimation (ME) adaptively under different computation or
power budgets while keeping high coding performance. We first
propose a new class-based method to measure the macroblock
(MB) importance where MBs are classified into different classes
and their importance is measured by combining their class
information as well as their initial matching cost information.
Based on the new MB importance measure, a complete CCME
framework is then proposed to allocate computation for ME. The
proposed method performs ME in a one-pass flow. Experimental
results demonstrate that the proposed method can allocate
computation more accurately than previous methods and, thus,
has better performance under the same computation budget.

Index Terms—Computation-control video coding, macroblock
(MB) classification, motion estimation (ME).

I. Introduction and Related Work

COMPLEXITY-scalable video coding (CSVC) (or
computational-scalable/power-aware video coding) is

of increasing importance to many applications [1]–[5], [11],
[13], [14], [18], such as video communication over mobile
devices with limited power budget as well as real-time
video systems, which require coding the video below a fixed
number of processor computation cycles.

The target of the CSVC research is to find an efficient
way to allocate the available computation budget for different
video parts [e.g., group of pictures, frames, and macroblocks
(MBs)] and different coding modules [e.g., motion estimation
(ME), discrete cosine transform, and entropy coding] so that
the resulting video quality is kept as high as possible under
the given computation budget. Since the available computation

Manuscript received March 4, 2009; revised October 30, 2009; accepted
May 18, 2010. Date of publication September 27, 2010; date of current version
November 5, 2010. This paper was supported in part by the Chinese National
973 Program, under Grants 2010CB731401 and 2010CB731406, in part by the
Chinese National 863 Program, under Grant 2009AA01Z331, and in part by
the National Science Foundation of China, under Grants 60632040, 61001146,
60928003, 60702044, 60933006, and 60973067. The main part of this work
was performed while the authors were employed at Motorola.

W. Lin is with the Institute of Image Communication and Information
Processing, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
wylin@sjtu.edu.cn).

K. Panusopone and D. M. Baylon are with the Department of
Advanced Technology, CTO Office, Home and Networks Mobility,
Motorola, Inc., San Diego, CA 92121 USA (e-mail: krit@motorola.com;
david.baylon@motorola.com).

M.-T. Sun is with the Department of Electrical Engineering, University of
Washington, Seattle, WA 98195 USA (e-mail: mts@u.washington.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2010.2077773

budget may vary, the CSVC algorithm should be able to
perform video coding under different budget levels.

Since ME occupies the major portion of the whole cod-
ing complexity [6], [12], we will focus on the computation
allocation for the ME part in this paper [i.e., computation-
control motion estimation (CCME)]. Furthermore, since the
computation often can be roughly measured by the number
of search points (SPs) in ME, we will use the term SP and
Computation, interchangeably.

Many algorithms have been proposed for CCME [1]–[5],
[14]. They can be evaluated by two key parts of CCME: 1) the
computation allocation, and 2) the MB importance measure.
They are described as follows.

A. Computation Allocation Order

Two approaches can be used for allocating the compu-
tations: one-pass flow and multi-pass flow. Most previous
CCME methods [2]–[4] allocate computation in a multi-pass
flow, where MBs in one frame are processed in a step-
by-step fashion based on a table which measures the MB
importance. At each step, the computation is allocated to the
MB that is measured as the most important among all the
MBs in the whole frame. The table is updated after each
step. Since the multi-pass methods use a table for all MBs
in the frame, they can have a global view of the whole
frame while allocating computation. However, they do not
follow the regular coding order and require the ME process
to jump between MBs, which is less desirable for hardware
implementations. Furthermore, since the multi-pass methods
do not follow the regular coding order, the neighboring MB
information cannot be used for prediction to achieve better
performance. Compared to the multi-pass flow approach, one-
pass methods [5], [14] allocate computation and perform ME
in the regular video coding order. They are more favorable for
hardware implementation and can also utilize the information
from neighboring MBs. However, it is more difficult to develop
a good one-pass method since:

1) a one-pass method lacks a global view of the entire
frame and may allocate unbalanced computations to
different areas of the frame;

2) it is more difficult to find a suitable method to measure
the importance of MBs.

B. MB Importance Measure

In order to allocate computation efficiently to different MBs,
it is important to measure the importance of the MBs for

1051-8215/$26.00 c© 2010 IEEE

1534 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

the coding performance, so that more computation will be
allocated to the more important MBs (i.e., MBs with larger
importance measure values). Tai et al. [2] used the current sum
of absolute difference (SAD) value for the MB importance
measure. Their assumption is that MBs with large matching
costs will have more room to improve, and thus more SPs will
be allocated to these MBs. Chen et al. [5], [14] used a similar
measure in their one-pass method. However, the assumption
that larger current SAD will lead to bigger SAD decrease is not
always guaranteed, which makes the allocation less accurate.
Yang et al. [3] used the ratio between the SAD decrease and
the number of SPs at the previous ME step to measure the MB
importance. Kim et al. [4] used a similar measure except that
they use rate-distortion cost decrease [4] instead of the SAD
decrease. However, their methods can only be used in multi-
pass methods where the allocation is performed in a step-by-
step fashion and cannot be applied to one-pass methods.

In this paper, a new one-pass CCME method is proposed.
We first propose a class-based MB importance measure (CIM)
method where MBs are classified into different classes based
on their properties. The importance of each MB is measured by
combining its class information as well as its initial matching
cost value. Based on the CIM method, a complete CCME
framework is then proposed which first divides the total
computation budget into independent sub-budgets for different
MB classes and then allocates the computation from the class
budget to each step of the ME process. Furthermore, the
proposed method performs ME in a one-pass flow, which
is more desirable for hardware implementation. Experimental
results demonstrate that the proposed method can allocate
computation more accurately than previous methods while
maintaining good quality.

The rest of this paper is organized as follows. Section II
describes our proposed CIM method. Based on the CIM
method, Section III describes the proposed CCME algorithm
in detail. The experimental results are given in Section IV.
Section V gives some discussions, and Section VI concludes
this paper.

II. Class-Based MB Importance Measure

In this section, we discuss some statistics of ME and
describe our CIM method in detail. For convenience, we use
COST [10] as the ME matching cost in the rest of this paper.
The COST [10] is defined in (1) as follows:

COST = SAD + λMOTION · R(MV) (1)

where SAD is the sum of absolute difference for the block
matching error, R(MV) is the number of bits to code the
motion vector, and λMOTION is the Lagrange multiplier [19].

In this paper, the CIM method and the proposed CCME
algorithm is described based on the simplified hexagon search
(SHS) [7] algorithm. However, our algorithms are general and
can easily be extended to other ME algorithms [9], [10], [15]–
[17].

The SHS is a newly developed ME algorithm which can
achieve performance close to full search with comparatively
low SPs. The SHS process can be described as in Fig. 1.

Fig. 1. SHS process.

Before the ME process, the SHS algorithm first checks the
init−COST, which is defined as follows:

init−COST = min
(
COST(0,0), COSTPMV

)
(2)

where COST(0,0) is the COST of the (0, 0) MV, and COSTPMV

is the COST of the predictive MV (PMV) [7]. If init−COST is
smaller than a threshold th1, the SHS algorithm will stop after
performing a small local search, search four points around the
position of the init−COST, which we call the upper path. If
init−COST is larger than the threshold, the SHS algorithm
will proceed to the steps of small local search, cross search,
multiple hexagon search, small hexagon search, and small
diamond search [7], which we call the lower path. Inside the
lower path, another threshold th2 is used to decide whether or
not to skip the steps of cross search and multi-hexagon search.

A. Analysis of ME Statistics

In order to analyze the relationship between the COST
value and the number of SPs, we define two more COSTs:
COST−mid, the COST value right after the small local search
step in the lower path, and COST− final, the COST value after
going through the entire ME process, as in Fig. 1. Three MB
classes are defined as follows:

Classcur−MB =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if init−COST < th1

2, if init−COST ≥ th1 and
|COST−mid−COST−final| > c

3, if init−COST ≥ th1 and
|COST−mid−COST−final| ≤ c

(3)
where cur−MB is the current MB, th1 is the threshold defined
in the SHS algorithm [7] to decide whether the init−COST
is large or small [7], and c is another threshold to decide
the significance of the cost improvement between COST−mid
and COST−final. MBs in Class 1 are MBs with small
current COST values. Class 2 represents MBs with large
current COST values where additional searches can yield
significant improvement. Class 3 represents MBs with large
current COST values but where further searches do not pro-
duce significant improvement. If we can predict Class 3 MBs,
we can save computation by skipping further searches for the
Class 3 MBs. It should be noted that since we cannot get
COST−final before actually going through the lower path, the
classification method of (3) is only used for statistical analysis.
A practical classification method will be proposed later in
this section. Furthermore, since MBs in Class 1 have small
current COST value, their MB importance measure can be
easily defined. Therefore, we will focus on the analysis of
Class 2 and Class 3 MBs.

LIN et al.: A COMPUTATION CONTROL MOTION ESTIMATION METHOD FOR COMPLEXITY-SCALABLE VIDEO CODING 1535

Table I lists the percentages of Class 1, Class 2, and Class 3
MBs over the total MBs for sequences of different resolutions
and under different quantization parameter (QP) values where
c of (3) is set to be different values of 0, 2% of COST−mid,
and 4% of COST−mid. It should be noted that 0 is the smallest
possible value for c. We can see from Table I that the number
of Class 3 MBs will become even larger if c is relaxed to
larger values.

Fig. 2 shows the COST value distribution of Class 2 MBs
and Class 3 MBs, where c of (3) is set to be 0. We only
show results for Foreman−QCIF with QP = 28 in Fig. 2.
Similar results can be observed for other sequences and other
QP values. In Fig. 2, 20 frames are coded. The experimental
setting is the same as that described in Section V. In order to
have a complete observation, all the three COST values are
displayed in Fig. 2, where Fig. 2(a)–(c) shows the distributions
of init−COST, COST−mid, and COST−final, respectively.

From Fig. 2 and Table I, we can observe that: 1) a large
portion of MBs with large current COST values can be
classified as Class 3 where only a few SPs are needed and
additional SPs do not produce significant improvement, and
2) the distributions of all the three COSTs for Class 2 and
Class 3 are quite similar. This implies that Class 2 or Class 3
cannot be differentiated based only on their COST value.

Based on the above observations, we can draw several
conclusions for the computation allocation as follows.

1) The number of SPs needed for keeping the performance
for each MB is not always related to its current COST
value. Therefore, using the COST value only as the MB
importance measure, which is used by many previous
methods [3], [5], [14], may not allocate SPs efficiently.

2) Further experiments show that for Class 2 MBs, the
number of SPs needed for keeping the performance is
roughly proportional to their init−COST value, although
it is not true if Class 2 and Class 3 MBs are put together.

These imply that we can have a better MB importance
measure if we use the class and COST information together.

As mentioned, since we cannot get COST−final before
going through the lower path, Class 2 and Class 3 can-
not be differentiated by their definition in (3) in practice.
Furthermore, since the COST distribution of Class 2 and
Class 3 is similar, the current COST value cannot differentiate
between these two classes. Therefore, before describing our
MB importance measure method, we first propose a practical
MB classification method which we call the PMV accuracy-
based classification (PAC) algorithm. The PAC algorithm will
be described in the following section.

B. PAC Algorithm

The proposed PAC algorithm converts the definitions of
Class 2 and Class 3 from the COST value point of view to
the PMV accuracy point of view.

The basic idea of the PAC algorithm is described as follows.

1) If the motion pattern of a MB can be predicted accu-
rately (i.e., if PMV is accurate), then only a small local
search is needed to find the final MV (i.e., the MV
of COST−final). In this case, no matter how large the

Fig. 2. COST value distribution for Class 2 and Class 3 MBs for
Foreman−QCIF sequence (left: Class 2, right: Class 3). (a) Init−COST distri-
bution comparison. (b) COST−mid distribution comparison. (c) COST−final
distribution comparison.

COST is, additional SPs after the small local search are
not needed because the final MV has already been found
by the small local search. This corresponds to Class 3
MBs.

2) On the contrary, if the motion pattern of a MB cannot
be accurately predicted, a small local search will not
be able to find the final MV. In this case, a large area
search (i.e., the lower path) after the small local search
is needed to find the final MV with a lower COST value.
This corresponds to Class 2 MBs.

Since the MV−final (MV for COST−final) cannot be ob-
tained before going through the lower path, the final MV of
the co-located MB in the previous frame is used instead to
measure the accuracy of motion-pattern prediction. Therefore,
the proposed PAC algorithm can be described as follows:

Classcur−MB =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if init−COST < th

2, if init−COST ≥ th and
|PMVcur−MB − MVpre−final| > th

3, if init−rmCOST ≥ th and
|PMVcur−MB − MVpre−final| ≤ th

(4)
where |PMVcur−MB-MVpre−final| is the measure of the motion-
pattern-prediction accuracy, PMVcur−MB is the PMV [7] of the

1536 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

TABLE I

Percentage of Class 1, Class 2, and Class 3 MBs Over the Total MBs (100 Frames for QCIF and 50 Frames for CIF and SD)

Sequence QP = 23 QP = 28 QP = 33

Class 1 MB (%) Class 2 MB (%) Class 3 MB (%) Class 1 MB (%) Class 2 MB (%) Class 3 MB (%) Class 1 MB (%) Class 2 MB (%) Class 3 MB (%)

Foreman−QCIF (c = 0) 50 5.5 44.4 33.8 6.7 59.4 14.9 8.2 76.7

Q
C

IF

Akiyo−QCIF (c = 0) 96 0 4 89 0 10 68.7 0 31.2

(1
76

×1
44

)

Mobile−QCIF (c = 0) 6.9 0.7 92.2 1.5 0.8 97.6 0.6 0.8 98.4

Bus−CIF c = 0 21.6 21.8 56.8 14.6 22.2 63.1 4.2 25.7 70

c = 2% Cost−mid 21.6 20.5 57.9 14.6 20.8 64.6 4.2 22.9 72.8

c = 4% Cost−mid 21.6 19.5 58.9 14.6 19.4 66 4.2 20.6 75.1

Football−CIF (c = 0) 22.4 53.1 24.5 15.3 54.1 30.5 2.3 58 39.7

C
IF

Container−CIF (c = 0) 90.6 0 9.3 65.6 0.2 34.2 48.8 2.6 48.6

(3
52

×
28

8)

Mobile−CIF c = 0 11 8.1 80.9 7.2 8.5 84.3 4.3 9.7 86

c = 2% Cost−mid 11 7.3 81.7 7.2 7.7 85.1 4.3 8.4 87.3

c = 4% Cost−mid 11 6.6 82.4 7.2 6.8 86 4.3 7.3 88.4

Foreman−CIF (c = 0) 61.6 12 26.4 51.5 13.3 35.2 32.9 17.1 50

Mobile−SD (c = 0) 37.6 7.4 55 22.5 7.9 69.6 12 9 79

SD Football−SD (c = 0) 41.7 29.4 28.9 32 30 38 20.1 32.1 47.8

(7
20

×5
76

)

Flower−SD (c = 0) 28.7 8.7 62.6 25.1 9.6 65.3 22.7 11.4 65.9

CIF: common intermediate format, QCIF: quarter common intermediate format, SD: standard definition.

TABLE II

Detection Rates of the PAC Algorithm

Sequence Class 2 Detection Rate (%) Class 3 Detection Rate (%)
Mobile−QCIF 80 82
Football−CIF 71 90
Foreman−QCIF 75 76

current MB, MVpre−final is the final MV of the co-located
MB in the previous frame, and th is the threshold to check
whether the PMV is accurate or not. th can be defined based
on different small local search patterns. In the case of SHS, th
can be set as 1 in integer pixel resolution. According to (4),
Class 1 includes MBs that can find good matches from the
previous frames. MBs with irregular or unpredictable motion
patterns will be classified as Class 2. Class 3 MBs will include
areas with complex textures but similar motion patterns to the
previous frames.

It should be noted that the classification using (4) is very
tight (in our case, any MV difference larger than 1 integer
pixel will be classified as Class 2 and a large area search
will be performed). Furthermore, by including MVpre−final

for classification, we also take the advantage of including
the temporal motion-smoothness information when measuring
motion-pattern-prediction accuracy. Therefore, it is reasonable
to use MVpre−final to take the place of MV−final. This will
be demonstrated in Table II and Fig. 3 and will be further
demonstrated in the experimental results.

Table II shows the detection rates for Class 2 and Class 3
MBs with our PAC algorithm for some sequences, where the
class definition in (3) is used as the ground truth and c in (3)
is set to be 0. Table II shows that our PAC algorithm has high
MB classification accuracy.

Fig. 3 shows the distribution of MBs for each class of two
example frames by using our PAC algorithm. Fig. 3(a) and
(e) are the original frames. Blocks labeled gray in Fig. 3(b)
and (f) are MBs belonging to Class 1. Blocks labeled black
in Fig. 3(c) and (g) and blocks labeled white in Fig. 3(d) and
(h) are MBs belonging to Class 2 and Class 3, respectively. Fig. 3. (a), (e) Original frames. Distributions of (b), (f) Class 1, (c),

(g) Class 2, and (d), (h) Class 3 MBs for Mobile−CIF and Bus−CIF.

LIN et al.: A COMPUTATION CONTROL MOTION ESTIMATION METHOD FOR COMPLEXITY-SCALABLE VIDEO CODING 1537

Fig. 3 shows the reasonableness of the proposed PAC
algorithm. From Fig. 3, we can see that most Class 1 MBs
include backgrounds or flat areas that can find good matches in
the previous frames [Fig. 3(b) and (f)]. Areas with irregular or
unpredictable motion patterns are classified as Class 2 [e.g.,
the edge between the calendar and the background as well
as the bottom circling ball in Fig. 3(c), and the running Bus
as well as the down-right logo in Fig. 3(g)]. Most complex-
texture areas are classified as Class 3, such as the complex
background and calendar in Fig. 3(d) and the Flower area in
Fig. 3(h).

C. MB Importance Measure

Based on the discussion above and the definition of MB
classes in (4), we can describe our proposed CIM method as
follows.

1) MBs in Class 1 will always be allocated a fixed small
number of SPs.

2) MBs in Class 2 will have high importance. They will
be allocated more SPs, and each Class 2 MB will
have a guaranteed minimum SPs for coding performance
purposes. If two MBs both belong to Class 2, their com-
parative importance is proportional to their init−COST
value and the SPs will be allocated accordingly.

3) MBs in Class 3 will have lower importance than MBs
in Class 2. Similar to Class 2, we make the comparative
importance of MBs within Class 3 also proportional
to their init−COST value. By allowing some Class 3
MBs to have more SPs rather than fixing the SPs for
each MB, the possible performance decrease due to the
misclassification of MBs from (4) can be avoided. This
will be demonstrated in the experimental results.

With the CIM method, we can have a more accurate MB
importance measure by differentiating MBs into classes and
combining the class and the COST information. Based on
the CIM method, we can develop a more efficient CCME
algorithm. The proposed CCME algorithm will be described
in detail in the following section.

III. CCME Algorithm

The framework of the proposed CCME algorithm described
in Fig. 4 has four steps as follows.

1) Frame-level computation allocation (FLA): given the
available total computation budget for the whole video
sequence, FLA allocates a computation budget to each
frame.

2) Class-level computation allocation (CLA): after one
frame is allocated a computation budget, CLA further
divides the computation into three independent sub-
budgets (or class budgets) with one budget for each class
defined in (4).

3) MB-level computation allocation (MLA): when perform-
ing ME, each MB will first be classified into one of
the three classes according to (4). MLA then allocates
the computation to the MB from its corresponding class
budget.

Fig. 4. Framework for the proposed CCME algorithm.

4) Step-level computation allocation (SLA): After an MB
is allocated a computation budget, SLA allocates these
computations into each ME step.

It should be noted that the CLA step and the MLA step
are the key steps of the proposed CCME algorithm where
our proposed CIM method is implemented. Furthermore, we
also investigated two strategies for computation allocation
for CLA and MLA steps: the tight strategy and the loose
strategy. For the tight strategy, the actual computation used
in the current frame must be lower than the computation
allocated to this frame. Due to this property, the FLA step
is sometimes not necessary for the tight strategy. In some
applications, we can simply set the budget for all frames
as a fixed number for performing the tight strategy. For the
loose strategy, the actual computation used for some frames
can exceed the computation allocated to these frames, but
the total computation used for the whole sequence must be
lower than the budget. Since the loose strategy allows frames
to borrow computation from others, the FLA step is needed
to guarantee that the total computation used for the whole
sequence will not exceed the available budget.

Since the performances of the loose-strategy algorithm and
the tight-strategy algorithm are similar based on our experi-
ments, we will only describe our algorithm based on the tight
strategy in this paper. It should be noted that since the basic
ideas of the CLA and MLA processes are similar for both the
tight and loose strategies, a loose-strategy algorithm can be
easily derived from the description in this paper. Furthermore,
as mentioned, the FLA step is sometimes unnecessary for
the tight strategy. In order to prevent the effect of frame
level allocation and to have a fair comparison with other
methods, we also skip the FLA step by simply fixing the target
computation budget for each frame in this paper. In practice,
various frame-level allocation methods [2]–[5] can be easily
incorporated into our algorithm.

A. Class-Level Computation Allocation

The basic ideas of the CLA process can be summarized as
follows.

1) In the CLA step, the computation budget for the whole
frame CF is divided into three independent class budgets
[i.e., CClass(1), CClass(2), and CClass(3)]. MBs from different
classes will be allocated computation from their corre-
sponding class budget and will not affect each other.

1538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

2) Since the CLA step is based on the tight strategy in
this paper, the basic layer BLClass(i) is first allocated to
guarantee that each MB has a minimum number of SPs.
The remaining SPs are then allocated to the additional
layer ALClass(i). The total budget for each class consists
of the basic layer plus the additional layer. Furthermore,
since the MBs in Class 1 only performs a local search,
the budget for Class 1 only contains the basic layer [i.e.,
CClass(1) = BLClass(1) and ALClass(1) = 0].

3) The actual computation used for each class in the
previous frame (CA

pre

Class(i)) is used as the ratio parameter
for class budget allocation for the additional layer.

Therefore, the CLA process can be described as in (5) and
Fig. 5

CClass(i) = BLClass(i) + ALClass(i) i = 1, 2, 3 (5)

where BLClass(i) = BLMB−Class(i) · NM
pre

Class(i),
BLF = (BLClass(1) +BLClass(2) +BLClass(3)), ALF = CF −BLF ,

CClass(i) is the computation allocated to Class i, and BLClass(i)

and ALClass(i) represent the computation allocation for the
Class i basic layer and additional layer, respectively. CF is the
total computation budget for the whole frame, and BLF and
ALF represent the basic-layer computation and the additional-
layer computation for the whole frame, respectively. NM

pre

Class(i)
is the total number of MBs belonging to Class i in the previous
frame and CA

pre

Class(i) is the number of computation actually
used for the Class i in the previous frame. BLMB−Class(i) is the
minimum number of computations guaranteed for each MB
in the basic layer. In the case of SHS, we set BLMB−Class(1)

= BLMB−Class(3) = 6 SPs for Class 1 and Class 3, and
BLMB−Class(2) = 25 SPs for Class 2. As mentioned, since
Class 2 MBs have higher importance in our CIM method, we
guarantee them a higher minimum SP. Furthermore, in order
to avoid too many useless SPs allocated to Class 2 MBs, a
maximum number of SPs [ALMB−max−Class(2)] is set. SPs larger
than ALMB−max−Class(2) are likely wasted and, therefore, are
allocated to Class 3 MBs [ALF –ALClass(2)].

From (5) and Fig. 5, we can summarize several features of
our CLA process as follows.

1) Since Class is newly defined in this paper, the CLA step
is unique in our CCME method and is not included in
the previous CCME algorithms [1]–[5], [14].

Fig. 5. Tight strategy-based CLA process.

2) When performing CLA, the information from the previ-
ous frame (NM

pre

Class(i)and CA
pre

Class(i)) is used. NM
pre

Class(i)
provides a global-view estimation of the MB class
distribution for the current frame, and CA

pre

Class(i) is used
as a ratio parameter for class budget allocation for the
additional layer.

3) The CIM method is implemented in the CLA process
where:

a) the CA for Class 2 is normally larger than other
classes;

b) Class 2 MBs have a larger guaranteed minimum
number of SPs [i.e., BLMB−Class(2) in the tight
SLA].

B. MB-Level Computation Allocation

The MLA process can be described in (6). Similar to the
CLA process, a basic layer (BLMB) and an additional layer
(ALMB) are set. When allocating the additional layer compu-
tation, the initial COST of the current MB (COSTinit

cur−MB) is
used as a parameter to decide the number of computations
allocated. The MLA process for Class 2 or Class 3 MBs is
described in Fig. 6 and ∗∗ shown at bottom of page.

Ccur−MB = BLcur−MB + ALcur−MB (6)

where BLcur−MB =

⎧
⎨

⎩

BLMB−Class(1), if Classcur−MB = 1
BLCMB−Class(2), if Classcur−MB = 2
BLMB−Class(3), if Classcur−MB = 3

Ccur−MB is the computation allocated to the current MB,
COSTinit

cur−MBis the initial COST of the current MB as in (2),

ALClass(i)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if i = 1

min

(

ALF · CA
pre

Class(2)

CA
pre

Class(2) + CA
pre

Class(3)

, ALMB− max− Class(2) · NM
pre

Class(i)

)

if i = 2

ALF − ALClass(2) if i = 3

ALcur−MB=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Classcur−MB = 1

min

(
max

(
COSTinit

cur−MB

Avg−COSTinit
Class(2)

· ab
Class (2)

nm
pre

Class (2)
, 0

)
, ALMB−max−Class(2)

)
if Classcur−MB = 2

min

(
max

(
COSTinit

cur−MB

Avg−COSTinit
Class(3)

· ab
Class (3)

nm
pre

Class (3)
, 0

)
, ALMB−max−Class(3)

)
if Classcur−MB = 3.

LIN et al.: A COMPUTATION CONTROL MOTION ESTIMATION METHOD FOR COMPLEXITY-SCALABLE VIDEO CODING 1539

and Avg−COST init
Class(i) is the average of the initial COST for

all the already-coded MBs belonging to Class i in the current
frame. “abClass(i)” is the computation budget available in the
additional layer for Class i before coding the current MB and
“nm

pre

Class(i)” is the estimated number of remaining uncoded
MBs for Class i before coding the current MB. BLCMB−Class(2)

is equal to BLMB−Class(2) if either abClass(2)>0 or nmClass(2)

>1, and equal to BLMB−Class(3) otherwise. It should be noted
that BLCMB−Class(2) is defined to follow the tight strategy
where a larger ML–BL budget [BLMB−Class(2)] is used if the
available budget is sufficient and a smaller ML–BL bud-
get [BLMB−Class(3)] is used otherwise. ALMB−max−Class(2) and
ALMB−max−Class(3) are the same as in (5) and are set in order
to avoid too many useless SPs allocated to the current MB.
In the experiments of this paper, we set ALMB−max−Class(i) +
BLMB−Class(i) = 250 for a search range of ±32 pixels. It
should be noted that since we cannot get the exact number of
remaining MBs for each class before coding the whole frame,
nm

pre

Class(i) is estimated by the parameters of the previous frame.
“abClass(i)” and “nm

pre

Class(i)” are set as ALClass(i) and NM
pre

Class(i),
respectively, at the beginning of each frame and are updated
before coding the current MB as in

⎧
⎪⎨

⎪⎩

abClass(i) = abClass(i)

−(CApre−MB − BLpre−MB), if Classpre−MB = i

nm
pre

Class(i) = nm
pre

Class(i) − 1, if Classpre−MB = i
(7)

where the definitions of ALClass(i) and NM
pre

Class(i) are the
same as in (5), and CApre−MB and BLpre−MB represent the
actual computation consumed and the basic layer computation
allocated for the MB right before the current MB, respectively.

From (5) to (7), we can see that the CLA and MLA steps
are based on classification using our CIM method, where
Class 1 MBs are always allocated a fixed small number of
SPs, and Class 2 and Class 3 MBs are first separated into
independent class budgets and then allocated based on their
init−COST value within each class budget. Thus, the proposed
CCME algorithm can combine the class information and
COST information for a more precise computation allocation.

C. Step-Level Computation Allocation

The SLA process will allocate the computation budget for
an MB into each ME step. Since the SHS method is used
to perform ME in this paper, we will describe our SLA step
based on the SHS algorithm. However, our SLA method can
easily be applied to other ME algorithms [9], [10], [15]–[17].

Fig. 6. Tight-MLA process for Class 2 and Class 3 MBs.

The SLA process can be described as in (8), at the bottom
of this page
where CSmall−Local−Search, CCross−Search, CMulti−Hex−Search,
CSmall−Hex−Search, and CSmall−Diamond−Search are the computation
allocated to each ME step of the SHS algorithm. CStep−min

is the minimum guaranteed computation for the small local
search step. In the case of the SHS method, CStep−min is set
to be 4. CSCross−Search and CSMulti−Hex−Search are the numbers
of SPs in each sub-step of the cross search step and the
multi-hexagon search step, respectively. For the SHS method,
CSCross−Search and CSMulti−Hex−Search are equal to 4 and 16,
respectively [7]. Let it go in (8) means performing the regular
motion search step. NSCross−Search and NSMulti−Hex−Search are
the number of sub-steps in the cross search step and the
multi-hexagon search step, respectively. They are calculated
as in

⎧
⎨

⎩

NSCross−Search =
⌊

RT Cross−Search·(Ccur−MB−CStep−min)
CS

Cross−Search

⌋

NSMulti−Hex−Search =
⌊

RT Multi−Hex−Search·(Ccur−MB−CStep−min)

CS
Multi−Hex−Search

⌋

(9)
where Ccur−MB is the computation budget for the whole MB as
in (6). RTCross−Search and RTMulti−Hex−Search are the predefined
ratios by which the MB’s budget Ccur−MB is allocated to the
cross search step and the multi-hexagon search step. In the
case of SHS method, we set RTCross−Search to be 0.32 and
RTMulti−Hex−Search to be 0.64. This means that 32% of the MB’s
budget will be allocated to the cross search step and 64% of
the MB’s budget will be allocated to the cross search step.
We use the floor function (�·�) in order to make sure that the
integer sub-steps of SPs are allocated.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CSmall−Local−Search = CStep−min

CCross−Search = NSCross−Search · CSCross−Search

CMulti−Hex−Search = NSMulti−Hex−Search · CSMulti−Hex−Search

CSmall−Hex−Search =

{
Let it go if (NSCross−Search + NSMulti−Hex−Search) > 1
0 if (NSCross−Search + NSMulti−Hex−Search) ≤ 1

CSmall−Diamond−Search =

{
Let it go if NSCross−Search > 1
0 if NSCross−Search ≤ 1

(8)

1540 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

From (8), we can see that the SLA process will first allocate
the minimum guaranteed computation to the small local search
step. Then, most of the available computation budget will be
allocated to the cross search step (32%) and the multi-hexagon
search step (64%). If there is still enough computation left
after these two steps, the regular small hexagon search and
small diamond search will be performed to refine the final
MV. If there is not enough budget for the current MB, some
motion search steps such as the small hexagon search and
small diamond search will be skipped. In the extreme case,
e.g., if the MB’s budget only has 6 SPs, then all the steps after
the small local search will be skipped and the SLA process will
end up with only performing a small local search. It should be
noted that since the SLA is proceeded before the ME process,
the computation will be allocated to the cross search and the
multi-hexagon search steps, no matter whether these steps are
skipped in the later ME process (i.e., skipped by th2 in Fig. 1).

IV. Experimental Results

We implemented our proposed CCME algorithm on the
H.264/MPEG-4 advanced video coding (AVC) reference soft-
ware JM10.2 version [8]. Motion search was based on SHS
[7], where th1 and th2 in Fig. 1 are set to be 1000 and
5000, respectively. For each of the sequences, 100 frames were
coded, and the picture coding structure was IPPP. . . . It should
be noted that the first P frame was coded by the original SHS
method [7] to obtain initial information for each class. In the
experiments, only the 16 × 16 partition was used with one
reference frame coding for the P frames. The QP was set to
be 28, and the search range was ±32 pixels.

A. Experimental Results for the CCME Algorithm

In this section, we show experimental results for our pro-
posed CCME algorithm. We fix the target computation (or SP)
budget for each frame. The results are shown in Table III and
Fig. 7.

Table III shows peak signal-to-noise ratio (PSNR), bit rate
(BR), the average number of SPs actually used per frame
(Actual SP), and the average number of SPs per MB (Actual
SP/MB) for different sequences. The Budget column in the
table represents the target SP budget for performing ME where
100% in the Scale column represents the original SHS [7].
Since we fix the target SP budget for each frame, the values
in the Scale column are measured in terms of the number
of SPs per frame (e.g., 40% in the Scale column means the
target SP budget for each frame is 40% of the average SP
per frame value of the original SHS [7]). Similarly, the values
in the Budget SP column represent the corresponding number
of SPs per frame for the budget scale levels indicated by the
Scale column. Fig. 7 shows the number of SPs used for each
frame as well as the target SP budgets for each frame under
60% budget levels for Football−CIF. Similar results can be
found for other sequences.

Comparing the Actual SP column with the Budget SP
column in Table III, we can see that the number of SPs
actually used is always smaller than the target SP budget for
all target budget levels. This demonstrates that our CCME

TABLE III

Experimental Results for the Tight Strategy When Fixing the

Target Budget for Each Frame

Sequence Budget Actual PSNR BR Actual
SP (dB) (kbps) SP/MB

Scale (%) Budget SP
Football−CIF 100 22 042 22 042 35.96 1661.62 55

60 13 225 10 692 35.96 1678.38 27
40 8816 8615 35.96 1682.57 21

Mobile−CIF 100 9871 9871 33.69 2150.60 24
60 5922 5785 33.69 2152.56 15
40 3948 3825 33.68 2165.31 10

Note that the Budget SP and the Actual SP columns are measured in terms
of the number of SPs per frame.

Fig. 7. Number of SPs used for each frame versus the target frame-level
budgets for the tight strategy for Football−CIF.

TABLE IV

Performance Comparison for CCME Algorithms (All

Sequences Are CIF)

Budget (%) Proposed COST Only (0, 0) SAD
PSNR BR SPs PSNR BR SPs PSNR BR SPs

100 34.31 1424 35 34.31 1424 35 34.31 1424 35

B
us

60 34.31 1459 20 34.29 1484 19 34.29 1482 20
40 34.29 1524 13 34.25 1628 12 34.27 1642 13
100 33.69 2151 24 33.69 2151 24 33.69 2151 24
50 33.68 2153 12 33.69 2187 12 33.69 2196 11

M
ob

il
e

30 33.68 2167 7 33.66 2276 7 33.66 2283 7
100 35.12 1354 22 35.12 1354 22 35.12 1354 22
50 35.11 1369 11 35.09 1404 10 35.09 1394 11

St
ef

an

35 35.10 1376 7 34.98 1703 7 35.05 1642 7
100 39.09 658 16 39.09 658 16 39.09 658 16
60 39.10 701 9 39.12 746 9 39.11 732 8

D
an

ce
r

50 39.10 717 8 39.11 768 7 39.12 756 7

100 36.21 515 16 36.21 515 16 36.21 515 16

70 36.21 520 11 36.21 519 10 36.22 520 10

Fo
re

m
an

50 36.22 522 8 36.21 522 7 36.22 523 8

100 35.96 1662 55 35.96 1662 55 35.96 1662 55

60 35.96 1678 27 35.96 1681 29 35.97 1689 28

Fo
ot

ba
ll

40 35.96 1682 21 35.95 1719 21 35.96 1711 21

algorithm can efficiently perform computation allocation to
meet the requirements of different target computation budgets.
From Table III, we can also see that our CCME algorithm has
good performance even when the available budget is low (40%
for Football and Mobile). This demonstrates the allocation
efficiency of our algorithm. Furthermore, from Fig. 7, we
can see that since the CCME algorithm is based on the tight
strategy which does not allow computation borrowing from

LIN et al.: A COMPUTATION CONTROL MOTION ESTIMATION METHOD FOR COMPLEXITY-SCALABLE VIDEO CODING 1541

other frames, the number of SPs used in each frame is always
smaller than the target frame-level budget. Thus, the average
SPs per frame for the tight strategy is always guaranteed to
be smaller than the target budget.

B. Comparison with Other Methods

In the previous section, we have shown experimental results
for our proposed CCME algorithm. In this section, we will
compare our CCME methods with other methods.

Similar to the previous section, we fixed the target compu-
tation budget for each frame to prevent the effect of frame-
level allocation. The following three methods are compared. It
should be noted that all these three methods use our step-level
allocation method for a fair comparison.

1) Perform the proposed CCME algorithm with the tight
strategy (proposed in Table IV).

2) Do not classify the MBs into classes and allocate com-
putation only based on their Init−COST [5], [14] (COST
Only in Table IV).

3) First search the (0, 0) points of all the MBs in the
frame, and then allocate SPs based on (0, 0) SAD. This
method is the variation of the strategy for many multi-
pass methods [2], [3] (0, 0, and SAD in Table IV).

Table IV compares PSNR (in dB), BR (in kbps), and the
average number of SPs per MB. The definition of the Budget
Scale column of the table is the same as in Table III. Fig. 8
shows the BR Increase versus Budget Level for these methods
where the BR Increase is defined by the ratio between the
current BR and its corresponding 100% level BR.

From Table IV and Fig. 8, we can see that our proposed
CCME method can allocate SPs more efficiently than the
other methods at different computation budget levels. This
demonstrates that our proposed method, which combines the
class and the COST information of the MB, can provide a
more accurate way to allocate SPs.

For a further analysis of the result, we can compare the BR
performance of the Mobile sequence, i.e., Fig. 8(b), with its
MB classification result, i.e., Fig. 3(b)–(d). When the budget
level is low, our proposed algorithm can efficiently extract
and allocate more SPs to the more important Class 2 MBs
[Fig. 3(c)], while reducing the unnecessary SPs from Class
3 [Fig. 3(d)]. This keeps the performance of our method as
high as possible. Furthermore, since the number of extracted
Class 2 MBs is low [Fig. 3(c)], our proposed algorithm can
still keep high performance at very low budget levels, e.g.,
5% budget level in Fig. 8(b). Compared to our method, the
performances of the other methods will significantly decrease
when the budget level becomes low.

However, the results in Table IV and Fig. 8 also show that
for some sequences, e.g., Foreman and Football, the advantage
of our CCME algorithm are not so obvious from the other
methods. This is because of the following.

1) For some sequences such as Football, the portion of
Class 2 MBs is large. In this case, the advantages of
our CCME method from MB classification become less
obvious. In extreme cases, if all MBs are classified into
Class 2, our proposed CCME algorithm will be the same
as the COST Only algorithm.

Fig. 8. Performance comparison for different CCME algorithms.

2) For some sequences such as Foreman, the performance
will not decrease much even when very few points are
searched for each MB, e.g., our experiments show that
the performance for Foreman−CIF will not decrease
much even if we only search six points for each MB.
In this case, different computation allocation strategies
will not make much difference.

Table V shows the results for sequences with different
resolutions, Mobile−QCIF and Mobile−SD, or using different
QPs, Bus with QP = 23 or 33. Table V shows the efficiency
of our algorithm under different resolutions and different
QPs. Furthermore, we can also see from Table V that the
performance of our algorithm is very close to the other
methods for Mobile−QCIF. The reason is similar to the case
of Foreman−CIF, i.e., a local search for each MB can still get
good performance and, thus, different computation allocation
strategies will not make much difference.

V. Discussion and Algorithm Extension

The advantages of our proposed CCME algorithm can be
summarized as follows.

1) The proposed algorithm uses a more suitable way to
measure MB importance by differentiating MBs into
different classes. When the available budget is small, the
proposed method can save unnecessary SPs from Class

1542 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

TABLE V

Experimental Results for Sequences with Different Resolutions or Different QPs

Proposed COST Only (0, 0) SAD
Budget (%) PSNR BR SPs PSNR BR SPs PSNR BR SPs

Bus−CIF QP = 23 100 38.28 2639 33 38.28 2639 33 38.28 2639 33
50 38.26 2762 14 38.23 2912 13 38.24 2896 14

Bus−CIF QP = 33 100 30.47 722 40 30.47 722 40 30.47 722 40
50 30.46 789 16 30.41 902 15 30.41 879 15

Mobile−QCIF QP = 28 100 32.90 545 16 32.90 545 16 32.90 545 16
50 32.90 545 7 32.90 546 7 32.90 545 7

Mobile−SD QP = 28 100 34.07 7766 24 34.07 7766 24 34.07 7766 24
30 34.07 7776 7 34.06 8076 7 34.05 8124 7

3 MBs so that more SPs can be allocated to the more
important Class 2 MBs, which keeps the performance
as high as possible. When the available target budget is
large, the method will have more spare SPs for Class
3 MBs, which can overcome the possible performance
decrease from MB misclassification and further improve
the coding performance.

2) The proposed algorithm can reduce the impact of not
having a global view of the whole frame for one-pass
methods as follows:

a) by setting the basic and the additional layers;
b) by using previous frame information as the global

view estimation;
c) by guaranteeing Class 2 MBs a higher minimum

SPs;
d) by using three independent class budgets so that

an unsuitable allocation in one class will not affect
other classes.

Furthermore, we also believe that the framework of our
CCME algorithm is general and can easily be extended. Some
possible extensions of our algorithm can be described as
follows.

1) As mentioned, other FLA or SLA methods [1]–[5], [14]
can easily be implemented into our CCME algorithm.
For example, in some time-varying motion sequences,
an FLA algorithm may be very useful to allocate more
computation to those high-motion frames and further
improve the performance.

2) In this paper, we only perform experiments on the
16 × 16 partition size and the IPPP. . . picture type. Our
algorithm can easily be extended to ME with multiple
partition sizes as well as multiple reference frames, such
as in H.264|AVC [12] and other picture types.

3) In this paper, we define three MB classes and perform
CCME based on these three classes. Our method can
also be extended by defining more MB classes and
developing different CLA and MLA steps for different
classes.

VI. Conclusion

In this paper, we proposed a more accurate MB importance
measure method by introducing the definition of class. A new
one-pass CCME was then proposed based on the new measure
method. The four computation allocation steps of FLA, CLA,
MLA, and SLA in the proposed CCME algorithm were in-
troduced in this paper. Experimental results demonstrated that

the proposed method can allocate computation more accurately
and efficiently than previous methods to achieve better coding
performance.

References

[1] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion
analysis for wireless video communication under energy constraints,”
IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 5, pp. 645–658,
May 2005.

[2] P. Tai, S. Huang, C. Liu, and J. Wang, “Computational aware scheme
for software-based block motion estimation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 9, pp. 901–913, Sep. 2003.

[3] Z. Yang, H. Cai, and J. Li, “A framework for fine-granular
computational-complexity scalable motion estimation,” in Proc. IEEE
Int. Symp. Circuits Syst., vol. 6. May 2005, pp. 5473–5476.

[4] C. Kim, J. Xin, and A. Vetro, “Hierarchical complexity control of motion
estimation for H.264/AVC,” in Proc. SPIE Conf. Visual Commun. Image
Process., vol. 6077. 2006, pp. 109–120.

[5] C. Chen, Y. Huang, C. Lee, and L. Chen, “One-pass computation-
aware motion estimation with adaptive search strategy,” IEEE Trans.
Multimedia, vol. 8, no. 4, pp. 698–706, Aug. 2006.

[6] J. Zhang and Y. He, “Performance and complexity joint optimization
for H.264 video coding,” in Proc. IEEE Int. Symp. Circuits Syst., May
2003, pp. 888–891.

[7] Improved and Simplified Fast Motion Estimation for JM, document JVT-
P021, Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, Poznan,
Poland, Jul. 2005.

[8] Joint Video Team Reference Software, Version 10.2 (JM10.2). (Aug.
2007) [Online]. Available: http://iphome.hhi.de/suehring/tml/download

[9] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no.
2, pp. 287–290, Feb. 2000.

[10] W. Lin, D. M. Baylon, K. Panusopone, and M.-T. Sun, “Fast sub-pixel
motion estimation and mode decision for H.264,” in Proc. IEEE Int.
Symp. Circuits Syst., 2008, pp. 3482–3485.

[11] W. Lin, M.-T. Sun, R. Poovendran, and Z. Zhang, “Activity recognition
using a combination of category components and local models for video
surveillance,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 8,
pp. 1128–1139, Aug. 2008.

[12] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE Trans.
Circuit Syst. Video Technol., vol. 13, no. 7, pp. 560–576, Jul.
2003.

[13] W. Burleson, P. Jain, and S. Venkatraman, “Dynamically parameterized
architectures for power-aware video coding: Motion estimation and
DCT,” in Proc. IEEE Workshop Dig. Computat. Video, Feb. 2001,
pp. 4–12.

[14] Y. Huang, C. Lee, C. Chen, and L. Chen, “One-pass computation-aware
motion estimation with adaptive search strategy,” in Proc. IEEE Int.
Symp. Circuits Syst., vol. 6. May 2005, pp. 5469–5472.

[15] Z. Zhou, M. T. Sun, and Y. F. Hsu, “Fast variable block-size mo-
tion estimation algorithms based on merge and split procedures for
H.264/MPEG-4 AVC,” in Proc. IEEE Int. Symp. Circuits Syst., May
2004, pp. 725–728.

[16] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 4, no. 4, pp. 438–442, Aug. 1994.

[17] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no. 3, pp. 313–317, Jun. 1996.

LIN et al.: A COMPUTATION CONTROL MOTION ESTIMATION METHOD FOR COMPLEXITY-SCALABLE VIDEO CODING 1543

[18] X. Yi and N. Ling, “Scalable complexity-distortion model for fast motion
estimation,” in Proc. SPIE Conf. Visual Commun. Image Process., vol.
5960. Jul. 2005, pp. 1343–1353.

[19] T. Weigand, H. Schwarz, A. Joch, F. Kossentini, and G. Sullivan, “Rate-
constrained coder control and comparison of video coding standards,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 688–703,
Jul. 2003.

Weiyao Lin received the B.E. and M.E. degrees
from Shanghai Jiao Tong University, Shanghai,
China, in 2003 and 2005, respectively, and the Ph.D.
degree from the University of Washington, Seattle,
in 2010, all in electrical engineering.

Since 2010, he has been an Assistant Professor
with the Institute of Image Communication and
Information Processing, Department of Electronic
Engineering, Shanghai Jiao Tong University. His
current research interests include video processing,
machine learning, computer vision, video coding,

and compression.

Krit Panusopone received the B.E. and M.E. de-
grees in electrical engineering from King Mongkut’s
Institute of Technology, Ladkrabang, Thailand, in
1992 and 1994, respectively, and the Ph.D. degree in
electrical engineering from the University of Texas,
Arlington, in 1996.

Since 1997, he has been with the Department of
Advanced Technology, Motorola, Inc., San Diego,
CA, where he is currently a Principal Staff Engineer.
He has published more than 30 papers and has more
than 20 U.S. patents on his work in video compres-

sion. His current research interests include image and video processing, source
coding, and motion estimation and compensation.

Dr. Panusopone received the Patent of the Year Award in 2000, and two
Outstanding Performance Awards in 2002 and 2003, from Motorola, Inc.,
San Diego, CA, for his contributions in global standards. He is an active
contributor to the ISO/IEC/ITU-T Joint Collaborative Team on Video Coding
and has chaired the ad hoc group on large block structure. He is a member
of Tau Beta Pi and Eta Kappa Nu.

David M. Baylon received the B.S. degree in elec-
trical engineering from the University of Califor-
nia, San Diego, in 1988, and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology,
Cambridge, in 1990 and 2000, respectively.

He is currently a Principal Staff Engineer with
Motorola, Inc., San Diego, CA, where his current
research interests include image and video process-
ing, compression, and 3-D TV.

Ming-Ting Sun (S’79–M’81–SM’89–F’96) re-
ceived the B.S. degree from the National Taiwan
University, Taipei, Taiwan, in 1976, the M.S. degree
from the University of Texas, Arlington, in 1981, and
the Ph.D. degree from the University of California,
Los Angeles, in 1985, all in electrical engineering.

Since 1996, he has been a Professor with the
Department of Electrical Engineering, University of
Washington, Seattle. Previously, he was the Director
of the Video Signal Processing Research Group,
Bellcore, Red Bank, NJ. He was a Chaired Professor

with Tsinghua University, Beijing, China, and Visiting Professors with the
University of Tokyo, Tokyo, Japan, and National Taiwan University. He holds
11 patents and has published over 200 technical papers, including 13 book
chapters in the area of video and multimedia technologies.

Dr. Sun received IEEE CASS Golden Jubilee Medal in 2000, and the
TCSVT Best Paper Award in 1993. He received the Award of Excellence
from Bellcore for his work on the digital subscriber line in 1987. He was
the General Co-Chair of the Visual Communications and Image Processing
2000 Conference. From 1988 to 1991, he was the Chairman of the IEEE
CAS Standards Committee and established the IEEE Inverse Discrete Cosine
Transform Standard. He is the Co-Editor of the book Compressed Video Over
Networks (New York: Marcel Dekker, 2001). He was the Editor-in-Chief of the
IEEE Transactions on Circuits and Systems for Video Technology

from 1995 to 1997. He was the Editor-in-Chief of the IEEE Transactions

on Multimedia and a Distinguished Lecturer of the Circuits and Systems
Society from 2000 to 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

