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Abstract—Group re-identification aims to match groups of
people across disjoint cameras. In this task, the contextual
information from neighbor individuals can be exploited for re-
identifying each individual within the group as well as the entire
group. However, compared with single person re-identification,
it brings new challenges including group layout and group
membership changes. Motivated by the observation that indi-
viduals who are close together are more likely to keep in the
same group under different cameras than those who are far
apart, we propose to model each group as a spatial K-nearest
neighbor graph (SKNNG) and design a group context graph
neural network (GCGNN) for graph representation learning.
Specifically, for each node in the graph, the proposed GCGNN
learns an embedding which aggregates the contextual information
from neighbor nodes. We design multiple weighting kernels
for neighborhood aggregation based on the graph properties
including node in-degrees and spatial relationship attributes. We
compute the similarity scores between node embeddings of two
graphs for group member association and obtain the matching
score between the two graphs by summing up the similarity scores
of all linked node pairs. Experimental results on three public
datasets show that our approach performs favorably against
state-of-the-art methods and achieves high efficiency.

Index Terms—group re-identification, spatial K-NN graph,
group context graph neural network.

I. INTRODUCTION

ERSON re-identification (re-ID) aims to retrieve a person

in non-overlapping camera views. Significant progress has
been made on this task and recent methods have achieved
promising results on several benchmark datasets [1, 2, 3, 4].
However, in real crowded scenes, people usually walk with
others in a group. Person re-ID only focuses on isolated
individuals and thus suffers from frequent intra-group oc-
clusions. In contrast, group re-ID aims to match groups of
people across disjoint camera views. In this task, the addi-
tional contextual information, such as appearances and spatial
layouts of neighbors, can be exploited to help re-identify
each individual within groups and further understand group
activities. Hence, group re-ID has wide applications in video
surveillance including multi-person tracking, group retrieval,
and crowd analysis.
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Fig. 1. (a) An example pair of group images undergoing changes of the group
layout and membership. (b) Brief illustration of the proposed approach. We
model the group as a SKNNG (K=2) where the nodes in different colors
represent different individuals in the group. The directed edge from node
4 to node j indicates that j is one of the K-nearest neighbors of ¢. Our
network applies context aggregation based on both the node indegree and
spatial relationship between neighbor nodes to generate node embeddings for
graph matching.

However, rich contextual information is a double-edged
sword. Despite its benefits, it also brings two new challenges as
shown in Fig. 1(a). First, the group layout is highly non-rigid
and the relative locations of group members may vary under
different cameras. Second, the group size and membership
may change over time since people often join or leave the
group. Thus, good descriptors of a group should not only take
advantage of useful contextual cues but also keep robust to
dynamic changes of the group appearance.

Most existing methods [5, 6, 7, 8, 9] consider a group
as a whole and extract global or semi-global features which
are sensitive to the group layout and membership changes.
Different from these methods, Xiao et al. [10, 11] consider a
group as a set of multi-grained objects including individuals,
two-people subgroups, three-people subgroups, and the entire
group. They solve the group matching as a multi-grained
object association problem, and thus enhance the robustness to
intra-group variances. However, the matching process involves
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a full combination of all multi-grained objects with many
unstable subgroups, which not only increase the computation
complexity but also could degrade the performance. Since the
number of group images in the public group re-ID dataset
is very limited, Huang [12] et. al. apply a domain adaption
method to tranfer images from the person re-ID dataset to
the group re-ID dataset style for individual feature learning.
They regard a group as an undirected complete graph where
each node corresponds to an individual in the group and adopt
a graph neural network to learn the group representation.
However, the edge between two nodes in the graph only
encode the similarity of their appearance features but does
not consider the their spatial relationship. Besides, since the
graph is complete, the neighborships of individuals are not
fully exploited.

In real situations, group members with close proximity to
each other are more likely to appear together under different
cameras than those who are far apart, and thus are more stable
and reliable for group matching. Motivated by this observation,
we propose to model a group as a spatial K-nearest neighbor
graph (SKNNG) as shown in Fig. 1(b). In this graph, each
node 7 corresponds to an appearance feature vector of a group
member. Two nodes ¢ and j are connected by a directed
edge from node ¢ to node j if j is one of the K-nearest
neighbors of 4 in spatial space. We associate each edge with
spatial relationship attributes including the relative distance
and orientation between the two nodes. Besides edge attributes,
the node in-degree (i.e. the number of edges pointing to a
node) is also useful to characterize the group layout. It partly
reflects the importance of each node, since an individual who
is the nearest neighbor of most other group members is more
likely to be a stable member of this group rather than a person
who temporarily walks close to the group and then walks away.
Thus, we can rely more on the individual with high node in-
degree for group matching.

To learn a graph representation which fully exploits the
information encoded in the SKNNG, we design a novel Group
Context Graph Neural Network (GCGNN). For each node
in the graph, our network generates an embedding which
integrates the contextual information from neighbors as shown
in Fig. 1(b). More specifically, we define multiple weighting
kernels for neighborhood context aggregation based on the
node in-degree and spatial relationship (i.e. relative orien-
tation and distance) between neighbor nodes. The features
aggregated by different kernels are combined with the original
individual feature and mapped to the node embeddings for
group association. The weighting kernels are designed to have
a certain degree of tolerance for layout misalignment, and
the feature combination learned by the network can make a
trade-off between the individual appearance and neighborhood
contexts which enhances the robustness to group layout and
membership changes.

Like Xiao et al. [10, 11], we not only find a match for the
entire group but also link the corresponding members between
the group pair. When comparing two graphs, we compute
a similarity matrix between node embeddings in these two
graphs and associate corresponding nodes by solving an as-
signment problem. The sum of similarity scores for the linked

node pairs is regarded as the matching score between the two
graphs. Different from [10, 11] where a full combination of
all multi-grained objects are considered for group matching,
our approach only involves as many node embeddings as group
members in the matching objective function, and thus is much
more computation-efficient. Besides, since we filter out the
unreliable contextual information based on the neighborship,
the matching performance are also improved.

The contributions of this work are summarized as follows:

e We propose to model the group as a directed spatial K-
NN graph which encodes both the neighborship and the
spatial relationship of group members for the first time.

o We design a group context graph neural network with
new neighborhood aggregation mechanisms based on the
properties of SKNNG including the node indegree and the
spatial relationship (i.e. relative distance and orientation)
between neighbor nodes.

« Experimental results on three public group re-ID datasets
show that our approach achieves high efficiency and
performs favorably against state-of-the-art group re-ID
methods without using any additional training data from
other person re-ID datasets.

II. RELATED WORKS
A. Single Person Re-identification

Person re-ID has attracted great attention in both computer
vision research and industry communities. In general, existing
person re-ID methods either focus on designing appearance
representation [13, 14, 15, 16, 17, 18] or learning a distance
metric in the feature space [19, 20, 21, 22, 23, 24]. For
representation learning, most recent works adopt deep learning
based methods. For example, Ahmed et al. [15] propose a
deep convolutional network which computes the cross-input
neighborhood differences on mid-level features to capture the
local relationship between two input person images. They
design a patch summary layer to further produce a holistic
representation of the neighborhood difference map. Chen et
al. [16] integrate CNN and RNN to learn the spatial-temporal
fusion features of input sequences for video-based person
re-identification. Sun et al. [18] design a network named
Part-based Convolutional Baseline (PCB) to learn part-level
features and further propose an adaptive part pooling method
which refines the within-part consistency. For metric learning,
Bak et al. [21] separate the metric into independent texture and
color components and propose a one-shot learning algorithm
for person re-ID. Hermans et al. [22] propose a new variant
of triplet loss named batch hard loss which improves the per-
formance and makes the network easier to converge compared
to the traditional triplet loss with offline hard-mining.

Besides exploiting the individual apearance information,
several works [25, 26, 27, 28] introduce the group information
to improve the performance of single person re-ID in videos.
Bialkowski et al. [25] learn to assign each person to a role
in a sports team and use the role labels as group context
features to aid person re-ID. Ukita et al. [26] group the
people based on spatial-temporal features of their trajectories
and combine three group features and individual features for
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Fig. 2. Proposed pipeline of group re-ID. Given the individual detections in an input group image pair, we extract the appearance feature of each individual
and build the SKGNN based on the group layout. We use the proposed GCGNN to apply neighborhood aggregation and generate node embeddings with
contextual information. In the training phase, we adopt the triplet loss so that the distance between node embeddings corresponding to the same identity is
closer than node embeddings corresponding to different identities in feature space. In the testing phase, we find the matched individual pairs between two
group images and use the sum of their similarity scores as the matching score for the input group pair (best viewed in color).

person re-ID. Cao et al. [27] detect the co-traveler set of each
person based on their trajectories and propose a pair matching
scheme to measure the distance between co-traveler sets. The
co-traveler set information is then integrated for individual
matching. Assari et al. [28] incorporate multiple Personal,
Social and Environmental (PSE) constraints into an energy
minimization function to solve person re-ID across cameras in
crowded scenes. The PSE constraints include the information
of individual appearances, individual speeds, social groups,
and the transition probabilities between gates.

B. Group Re-identification

Group re-ID requires to compute the similarities between
group images. In this task, both the individual appearance and
group layout information can be exploited for group matching.
The group-level information is also useful for re-identifying
every single person in groups. However, compared with single
person re-ID, the task of group re-ID is less studied. Only a
few works [5, 6, 7, 8, 9, 10, 11, 12] have been proposed for
group re-ID. Most of them [5, 6, 7, 8, 9] regard a group as
a whole and extract global or patch features directly on the
group image. For example, Wei et al. [5] divide the image
into multiple patches by the center rectangular ring based and
block based ratio-occurrence descriptors. They propose a top
k-match model to associate local patches of two group images.
Cai et al. [6] exploit covariance descriptors to represent group
images, which capture both the appearance and statistical
properties of image patches. Zhu et al. [7] learn the salience
channels to filter out unreliable patch matches and propose
a consistent matching algorithm for the association of group
image pairs. Lisanti et al. [8, 9] first learn a dictionary of sparse
atoms on patches extracted from single person images and
then obtain sparsity-driven residual representations for group
images based on the learned dictionary.

Different from these methods, to enhance the robustness
against group layout and membership changes, Xiao et al.

[10, 11] consider a group as a set of multi-grained objects (i.e.
individuals, two-people subgroups, three-people subgroups,
and the entire group) and explicitly associate each group
member while applying group matching. This approach uses
a sophisticated multi-order matching algorithm to solve the
problem of group association with a full combination of all
multi-grained objects, and thus has a relatively high com-
putation complexity. Huang [12] et. al. propose to tranfer
images from the person re-ID dataset to the group re-ID
dataset style to address the lack of training samples in public
group re-ID datasets. They regard a group as an undirected
graph and adopt a graph neural network to learn the group
representation. However, since the graph is complete and
the edge between two nodes in the graph only encode the
similarity of their appearance features, the spatial relationship
(i.e. relative distance and orientaion) and neighborship of
individuals are not fully exploited for group matching.

C. Other Group Infomation Based Works

Besides person re-ID, the group information has also been
explored to address many other tasks such as visual tracking
[29], behavior analysis [30], and vehicle re-ID [31]. Chen et
al. [29] propose a elementary grouping graph to model the
social grouping behavior of pairwise targets and integrate the
group information into the tracklet affinity model to improve
data association for multi-target tracking. Alameda et al. [30]
propose a dataset for multimodal group behavior analysis. Bai
et al. [31] utilize a online clustering method to parition samples
within each vehicle ID into a few groups based on the intra-
class variance attributes. They generate triplet samples across
different vehicle IDs as well as different groups within the
same vehicle ID to learn discriminative features for vehicle
re-ID.

D. Graph Neural Networks

Graph Neural Networks (GNNs) are introduced in [32,
33], which generalize the neural network to process graph-
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structured data. GNNs have been used in various vision
tasks such as object detection [34], semantic segmentation
[35, 36, 37, 38], and visual question answering [39, 40].
The key idea of GNNs is to generate node embeddings by
aggregating neighborhood information using neural networks.
Recently, there is an increasing interest in extending convolu-
tion operations on graph data for neighborhood aggregation.
For example, Kipf et al. [41] propose the Graph Convolu-
tional Networks (GCNs) which aggregate information from
1-step neighborhoods around each node using convolutional
operation. Velivckovic et al. [42] propose the Graph Attention
Networks (GATs) which adopt a self-attention strategy to
compute the weights for neighbor node aggregation.

However, most of these GNN models are applied for
undirected graphs and can only exploit one-dimensional edge
features encoded in the adjacent matrix which indicates node
connectivities or edge weights. Different from these GNN
models, our GCGNN considers multi-dimensional edge at-
tributes including the connectivity, edge direction, relative dis-
tance, and relative orientation in the neighborhood aggregation
process, thus fully exploits the topological context information
encoded in the group graph.

III. PROPOSED METHOD

Given a probe group image captured in camera A, we aim to
compare it with each gallery group image from camera B and
find its matches. Fig. 2 shows the pipeline of our method.
Given individual detections in a pair of group images, we
first extract appearance features of these individuals and build
a SKNNG for each group image respectively based on the
layout information. Then we exploit the proposed GCGNN to
integrate neighborhood contexts into the embedding for each
node. Based on the similarity of node embeddings between
the two group images, we solve the node assignment problem
and use the sum of similarity scores between the associated
node pairs as the final matching score of the group image pair.
Following the practice of MGR [10, 11], we use the manually
annotated ground truth (-GT) or an automatic detection method
of [43] (-auto) to get detections of individuals in a group.

A. Graph Structure

To build a graph on a group image, a convenient choice is
to use a complete graph so that the connections between all
individuals can be exploited. However, as people often join
or leave the group under different cameras, there exist many
unstable connections in this graph. Taking these connections
into consideration will bring interference to group matching.
Based on the observation that the connections between indi-
viduals who are close together are usually more stable than
the connections between those who are far apart, we propose
to construct a spatial K-nearest neighbor graph (SKNNG)
G = {V, &} for each group image. As shown in Fig. 1(b), each
node 7 € V is associated with an appearance feature vector of
the corresponding individual in the group. Two nodes 7 and j
are connected by a directed edge e;; € £ from node 7 to node
J, if 7 is one of the K-nearest neighbors of ¢ in spatial space.
Besides neighborship, the edge of SKNNG also encodes the

spatial relationship between nodes. With each edge e;;, we
associate a vector (p;j,0;;) in polar coordinates from node
1 to node j to represent the relative distance and orientation
between the bounding box centers of the two nodes.

Compared with the undirected complete graph used in [12],
the proposed SKNNG has three benefits: (i) It considers the
most relevant neighborhood contexts for each node while
filtering out the connections which are less reliable for graph
matching. (ii) Besides neighborships, the graph edges also en-
code relative distances and orientations between nodes, which
reflect the spatial layout of a group more comprehensively.
(iii) The node in-degree (i.e. the number of edges pointing to a
node) partly reflects the importance of each node and can be an
additional useful metric to characterize the group layout. The
intuition behind the last point is that a high-indegree individual
who is the K-nearest neighbor of most others usually lies in
the central region of the group and is more likely to be a stable
member for group matching.

B. Individual Appearance Feature

To perform group re-ID, we first need to extract the appear-
ance feature of each individual in a group. Our framework can
be applied independently with any individual feature extraction
methods. Following the practice of [11], in this work, we
exploit both the handcrafted method and deep convolutional
neural network (CNN) for a meaningful comparison.

As shown in Fig. 3, we adopt a siamese framework for
feature learning. Given an input pair of individual images
(obtained from person detection results and resized to a unified
resolution), we first exploit either a conventional handcrafted
algorithm or a deep CNN model to extract the intermediate
feature for each individual. Specifically, for the handcrafted
method, we use the same color and texture features as [10, 11].
We divide each person image into 18 equal-sized blocks along
the vertical direction and extract multiple features includ-
ing HSV, RGB, LAB, YIQ, YCbCr color histograms and
Gabor texture features from each block. These features are
then concatenated to form an 8,064-dimensional intermediate
feature. For the deep CNN model, we apply the ResNet-
34 [44] pre-trained on ImageNet [45] as the base network
and use the global average pooling layer to generate a 512-
dimensional intermediate feature. The intermediate feature
is then mapped to a 512-dimensional individual appearance
feature by a fully connected layer. Similar to many metric
learning approaches, the function of this fully-connected layer
is to learn a projection on intermediate features so that the
distance between individual appearance features with the same
identity is closer than individual appearance features with
different identities.

Similar with [46], we apply three losses to learn individual
appearance features, including two identification losses and
a verification loss. For identification, we apply an identity
classifier with cross-entropy loss on the individual appearance
feature in each branch respectively. For verification, we first
apply the L2-normalization on the two individual appearance
features and compute the Hadamard product of them as the
interacted feature. Then, we add a binary classifier with cross-
entropy loss on the interacted feature to predict the similarity
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Fig. 3. Individual feature extraction network. The symbol © denotes the
Hadamard product. We use a siamese architecture with both identification and
verification losses for feature learning. Given two individual images as input,
each branch first extracts the intermediate feature by either a handcrafted
algorithm or a ResNet34 base network. The intermediate feature are then
mapped to the individual appearance feature by a fully connected layer.

between the input individual image pair. The identification
and verification losses are complementary to each other and
improve the discriminative ability of the learned appearance
features. In the training phase of deep CNN model, the weights
of ResNet34 is fine-tuned on the training data (i.e., jointly
updated with the weights of individual appearance feature and
interacted feature layers).

C. Group Context Graph Neural Network

After extracting the individual appearance features of a
group, we regard these features as node features and input
them to a graph neural network (GNN) for graph repre-
sentation learning. Many GNN variants have been proposed
recently and have achieved state-of-the-art results on both
node and graph classification tasks. However, popular GNN
variants such as GCNs [41] are applied on the adjacent matrix
and cannot deal with edges associated with multi-dimensional
attributes. To fully exploit information in the SKNNG, we
propose a new group context graph neural network (GCGNN)
to aggregate context information from local neighbors for each
node and generate node embeddings for group matching. As
described in Section III-A, besides neighborhood connections,
there are two more important group layout properties encoded
in the SKNNG. The first one is the node in-degree which
represents the proximity of an individual to the other members
in the group. The second one is the spatial relationship
between neighbor nodes. As explored in [47], the relative
positions of people in an image are influenced by their social
relationship that is invariant to different cameras. Thus, the
spatial relationship between individuals can be a useful cue
for group re-identification. We encode the spatial relationship

in the edge attribute as a vector (p;j,0;;) in polar coordi-
nates. Different from [10, 11] which extract spatial features
independently from appearance features, we exploit the spatial
information by designing two aggregator functions based on
the node in-degree and spatial relationship to determine the
weight of each appearance feature for aggregation. In the
following description, we use the subscript d to denote the
function or variable for node in-degree based aggregation and
use the subscript s to denote the function or variable for spatial
relationship based aggregation.

Node In-degree Based Aggregation. Let hﬁ denote the
feature of node ¢ at the I-th layer of GCGNN. Based on the in-
degree information, we define a function AGG, to aggregate
the features of neighbors around node ¢ at the (I — 1)-th layer

{n/7', Vi e N(i)} as:
b0 = AGGa ({hj™1,¥j € N()})

_wi exp(a’d;) g 1
=W Z > exp(anj)hj ’ @
TEN jentt

where d; denotes the in-degree of node j and « is a learnable
parameter to control the influence of the node in-degree
on aggregation weights. The sum of aggregation weights is
normalized to 1. The matrix Wfi maps the weighted average
of neighbor features at the previous layer to the aggregation
embedding hi, ;. By (1), the neighbor node with high
degree (i.e., it is the K-nearest neighbor of most others in
the group) is considered to be more reliable and gets a higher
weight in aggregation.

Spatial Relationship Based Aggregation. The spatial re-
lationship information consists of the relative distance and
orientation between nodes. Let the vector (p;;,0;;) denote the
relative distance and orientation between node ¢ and node j
in polar coordinates as shown in Fig. 1(b). For the relative
distance, we define a weighting kernel w, (4, j) to aggregate
the feature of each neighbor node j € A/(i) around node i as:

exp(—S%pi;)
> exp(—5%pij)’

JEN(3)

wp(i, J) = 2

where (3 is a learnable parameter to control the influence
of the relative distance on aggregation weights. The sum of
w,(4, 7) is normalized to 1 so that the matching between group
images in disjoint cameras is tolerant to the inter-camera scale
difference. As shown in Fig. 4, by (2), the neighbor node
j € N (i) which is closer to the node i gets a higher weight
in aggregation. For the relative orientation, we define multiple
weighting kernels {wj } in the form of:

wi (i, j) = exp (-2 A0}})

A5 =min (|05 — pg |, 2m — (055 — pgl) 3)
2
:u’g:%nv n:()vl?"' 7N717

where the mean value pj indicates the center direction of
each weighting kernel, and ~ is a learnable parameter which
controls the influence of angle difference Aﬁfj relative to
the center direction py on aggregation weights. As shown
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Fig. 4. Weighting kernels based on the spatial relationship between nodes.
The left region shows the weighting kernel based on the relative distance.
The right region shows 6 weighting kernels with different center directions
based on the relative orientation between nodes. The two kinds of weighting
kernels are multiplied together to generate the joint weighting kernels for
spatial aggregation (best viewed in color).

in Fig. 4, we define N = 6 weighting kernels in different
directions. For each weighting kernel, the neighbor node
j € N(i) with the orientation close to the center direction
gets a high weight in aggregation. Since the relative distance
and orientation should be considered together for spatial
relationship, we multiply the weighting kernel based on the
distance with each weighting kernel based on the orientation
as the joint weighting kernel w} (i, j) = w, (i, j)-wy (i, j). We
define a function AGGyg to concatenate the aggregated features
from all joint weighting kernels and generate the aggregation
embedding as:

th(i)’S = AGG, (hgfl,w € N (1))

N
1 I
= H Wé,n ﬁ Z ’lUp(Lj)’U}g(Lj)hé- ! )
n=1 v oJEN(D)

“4)

where Zi' =37 ;) wp (i, j)wy (i, j) normalizes the sum of
neighor weights from the n-th joint weighting kernel to 1. The
learnable matrix Wim maps the weighted average of neigh-
bor node features from each weighting kernel to a compact
embedding. The operator H:’:1 denotes the concatenation of
features aggregated with IV joint weight kernels.

Finally, we apply a linear mapping on the embedding
of node i at (I — 1)-th layer and concatenate it with the
neighborhood aggregation embeddings based on the node in-
degree as well as the spatial relationship to generate the node
embedding at [-th layer as:

hl=o (hj\/(i),d iy | Wihé_l) ’ ®

where W' is a learnable matrix for feature mapping and
| denotes the concatenation operation. Note that h is the
original individual appearance feature of node i. By (5), both
the appearance and spatial layout information are integrated
for group matching.

D. Training Strategy

As the number of group images in public group re-ID
datasets is very limited, the neural network is prone to overfit

the training data. To avoid the overfitting problem, we exploit a
two-step training strategy. We first utilize the person detections
and identity information provided in the group image dataset
to generate person image pairs for the individual network
training. Then we fix the weights of the individual network and
use it to extract individual appearance features. The proposed
GCGNN takes the individual appearance features in a group
as input and generates node embeddings based on the group
layout context. Each node embedding encodes the appearance
and spatial layout information of a subgroup containing an
individual of interest and his/her neighbors. The goal of the
GCGNN training is to make the distance between the node
embeddings corresponding to the same identity smaller than
the distance between those corresponding to different identities
in the feature space. To achieve this goal, we use the cosine
similarity to measure the embedding distance and adopt the
triplet loss as:

Q
L= Z max (0, cos(x{, x)) — cos(x],xP) +m),  (6)
q

where xg, xg, and xg denote the L2-normalized anchor,
positive, and negative embeddings of the g¢-th node triplet
respectively and ) denotes the number of triplets for training.
The hyperparameter m is an enforced margin distance between
positive and negative node embedding pairs.

Since there are much more negative node pairs than positive
node pairs, simply generating all possible node triplets would
result in data imbalance and degrade the discriminability of the
model. To alleviate the data imbalance problem, we adopt an
online hard negative mining strategy. Specifically, in a training
mini-batch, we first generate a number of group image triplets.
Each group image triplet consists of a probe group image [
(anchor), a gallery group image IP (positive) which is the
match of I, and a randomly sampled gallery group image
I (negative) which contains a different group from I,. Based
on the SKNNG structure, we build the graph G, GP, and
g™ for the group image I¢, IP, and I" respectively. Then
we successively select each node in G, as an anchor node,
consider the matched individual in G,, as the positive node, and
regard other nodes in G, and G,, as negative nodes. Among
these negative nodes, we select hard negative nodes whose
embeddings generated by the GCGNN are the top 7' nearest
to the anchor node embedding in the feature space. Using the
positive node and the selected top 7" hard negative nodes, we
build 7" node triplets for each anchor node. These node triplets
are finally used to train the GCGNN.

E. Group Matching

Given a probe group image and a gallery group image, we
use the GCGNN to generate a probe node embedding set and a
gallery node embedding set. Each node embedding integrates
the information of a subgroup containing an corresponding
individual and his/her neighbors. Our goal is to simultaneously
associate corresponding probe and gallery node pairs and
predict the matching score of the two groups. The matching
of the node embeddings can be regarded as subgroup-level
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Fig. 5. Example group images in the (a) i-LIDS Group, (b) Road Group, and
(c) DukeMTMC Group datasets.

matching. Specifically, we exploit the Hungarian [48] algo-
rithm to make assignments between probe and gallery node
embeddings based on their cosine similarity scores. Note that
all the node embeddings are L2-normalized before calculating
the cosine similarity scores. If the number of individuals in
the probe group image is more than that in the gallery group
image, there will be unassigned individual(s) in the probe
group image, and vice versa. We use the sum of similarity
scores between the matched probe-gallery node pairs as the
matching score of the two group images, and the gallery group
image with the highest matching score is regarded as the match
for the probe image.

IV. EXPERIMENTAL RESULTS
A. Datasets and Experimental Settings

We evaluate the proposed group re-ID method on three
public datasets: (1) the i-LIDS Group dataset [5] containing
274 images for 64 groups extracted from the original i-
LIDS MCTS dataset captured at an airport arrival hall using
a multi-camera CCTV network [49], (2) the Road Group
dataset [10, 11] with 162 pairs of group images captured
from two disjoint cameras, and (3) the DukeMTMC Group
dataset [10, 11] with 177 pairs of group images extracted
from the original DukeMTMC dataset [50] taken by 8 cameras.
Fig. 5 shows some example images of these three datasets. The
groups in the i-LIDS Group dataset are more compact but their
images suffer from low quality and large illumination changes.
The Road Group and DukeMTMC Group datasets have larger
groups and thus undergo more group layout and membership
variation.

Following the practice of [7, 10, 11], we randomly split each
dataset by half into training and test sets for 5 times and use
the average Cumulated Matching Characteristic (CMC) score
as the evaluation metric. The number of neighbor nodes for
aggregation is set to K = 2 and the number of orientation

TABLE I
PERFORMANCES OF DIFFERENT AGGREGATION METHODS ON THE ROAD
GROUP DATASET.

Method R-1 R-5 R-10 R-15 R-20
W/OA 657 8.2 90.1 933 951
EA 741 904 938 95.1 96.5
Handcrafted DA 753 928 936 951 973
SA 715 926 951 975 975
DA+SA (ours-GT) 788 938 965 978 985
W/OA 73.1 89.6 93.8 95.1 95.6
EA 80.2 914 926 960 963
Deep Conv DA 81.5 921 938 95.1 97.5
SA 827 938 951 963 983
DA+SA (ours-GT) 842 958 973 975 985

weighting kernels {wj} is set to N = 6. The learnable
matrices W/, and ngn map the input feature to a 128-
dimensional embeddding while W' maps the input feature
to a 256-dimensional embedding. Since the number of group
images in each group re-ID dataset is very limited, it is
prone for the network to overfit the training set. We find that
using only one layer for neighborhood context aggregation
in the GCGNN alleviates this problem and achieve the best
performance. For hard negative mining, we choose T' = 5
in our experiments. All networks are trained using the Adam
solver [51] with a learning rate of 0.01.

B. Ablation Studies

We present extensive ablation studies to demonstrate the
effectiveness of our proposed approach on the Road Group
dataset. Following the practice of MGR [10, 11], in ablation
studies, we use the manually annotated ground truth (-GT) to
get detections of individuals in a group.

1) Contribution of each aggregation method: To demon-
strate the contribution of the proposed neighborhood aggre-
gation methods adopted in the GCGNN, we compare five
methods using different aggregation strategies. Each method
is described as follows:

“W/OA”: We only use the individual appearance features
without neighborhood aggregation for group matching.

“EA”: We simply assign equal weights to all neighbor nodes
for the neighborhood aggregation.

“DA”: We apply the proposed node in-degree based neigh-
borhood aggregation.

“SA”: We apply the proposed spatial relationship based
neighborhood aggregation.

“DA+SA”: We apply the proposed GCGNN with both node
in-degree based and spatial relationship based neighborhood
aggregation.

Table I shows the CMC results of each method on the
Road Group dataset. The upper part shows the performances
based on the handcrafted individual appearance features and
the lower part presents the results based on the deep con-
volutional individual appearance features. When using the
same aggregation strategy, the performances based on the
deep convolutional features are better than those based on
the handcrafted features, which demonstrates the advantage
of features extracted by the deep CNN. As we can see from
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Fig. 6. Rank-1 CMC scores on the Road Group dataset with different values of K (number of neighbors in the SKGNN) and N (number of orientation
weighting kernels for spatial relationship based aggregation) using (a) handcrafted and (b) deep convolutional individual appearance features as input of the
CGCNN, respectively. The label “full” means that we build a complete graph where all the other individuals are considered as neighbors of one individual
in the graph. Each bar is colored based on the corresponding rank-1 CMC score (best viewed in color).

the results, both of the two proposed neighborhood aggregation
methods make contributions to the performance. The “W/OA”
method achieves the poorest results because it only considers
the individual appearance without exploiting any neighbor-
hood context information. Both the “DA” and “SA” meth-
ods have better performance than the “EA” method because
the two proposed aggregation methods integrate more group
layout information. Besides the individual appearances and
neighborships information, the “DA” method further considers
the proximity of each individual to the other group members
and the “SA” method encodes the relative distances and
orientations between neighbor nodes. The proposed GCGNN
with both the “DA” and “SA” achieves the best performance,
which demonstrates the complementarity between the “DA”
and “SA” methods.

2) Effects of hyperparameters: We also evaluate the effects
of hyperparameters including the number K of neighbors in
the SKNNG, the number N of orientation weighting kernels
{wy} for spatial relationship based aggregation, and the num-
ber 1" of hard negative samples for hard negative mining.

Fig. 6 shows the rank-1 CMC scores on the Road Group
dataset with different values of K and V. For the number K of
neighbors in the SKNNG, using only one neighbor performs
the worst since the nearest neighbor of an individual is rela-
tively easy to switch. Aggregating context information from 2
or 3 neighbors achieves better performance. Considering more
than 3 neighbors involves more unreliable context information
for group matching and thus leads to performance degradation.
These results also demonstrate the advantage of the proposed
SKNNG compared with the complete graph (“full” in Fig. 6).
For the number N of orientation weighting kernels {wj },
using few (e.g. 2 or 4) weighting kernels is not able to
fully capture the spatial orientation relationships between
individuals and thus leads to the suboptimal performance.
However, because the viewpoint and group layout may change
in different cameras, there maybe some changes of relative ori-
entation between the same individual pair in two group images.

TABLE II
RANK-1 CMC SCORES ON THE ROAD GROUP DATASET WITH DIFFERENT
VALUES OF T'. THE LABEL “ALL” MEANS THAT WE EXPLOIT ALL
NEGATIVE NODES IN EACH BATCH FOR NETWORK TRAINING.

T 3 5 7 9 all
Handcrafted 76.5 78.8 78.5 78.0 77.8
Deep Conv 82.2 84.2 84.0 83.7 83.5

Thus, narrowing the orientation bins and defining more (e.g. 8)
weighting kernels do not necessarily improve the performance
as shown in Fig. 6. In our experiments, using 6 orientation
weights kernels achieves the best performance, which is fine-
grained enough to capture the spatial characteristics while
maintaining a certain tolerance to the changes of viewpoint
and group layout.

Table II shows the rank-1 CMC scores on the Road Group
dataset with different values of T'. Setting 7" to 5 achieves the
best performance. Exploiting all negative nodes in each batch
without hard negative mining degrades the performance since
the model training may be overwhelmed by easy negatives.
Using only the top 3 hardest negative nodes to build triplets
for training also reduces the performance.

3) Comparison with other GNN structures: We further
compare our proposed GCGNN against other two typical
network structures. First, when comparing a pair of group
images, a straightforward alternative solution is to apply a
graph pooling layer [12] on the learned local node features
to get a fixed-sized graph representation and add a binary
classifier to estimate the similarity between these two global-
level representations. However, it is difficult for the global-
level representation to capture the local appearance and struc-
tural information, which leads to a relatively poor matching
performance as shown in Table III. In contrast, by directly
comparing the node features, we retain the local contextual
information and establish the finegrained correspondences
between two graphs.
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TABLE III
PERFORMANCES OF DIFFERENT GNN STRUCTURES ON THE ROAD GROUP
DATASET.
Method R-1 R-5 R-10 R-15 R-20
GraphPool  17.5 35.1 56.3 62.2 65.2
Handcrafted GATs 65.2 80.5 86.4 90.6 92.8
GCNs 68.1 86.4 91.4 93.8 95.3
GCGNN 78.8 93.8 96.5 97.8 98.5
GraphPool  25.7 442 67.4 71.6 76.5
Deep Cony GATs 71.6 87.2 91.1 93.3 93.6
P GCNs 74.1 90.1 93.8 95.1 95.3
GCGNN 84.2 95.8 97.3 97.5 98.5

Second, we compare our proposed GCGNN with the pop-
ular GCNs using the method in [41] for neighborhood ag-
gregation. As shown in Table III, our GCGNN performs
better than the GCNs. It is because the GCNs only encode
the connection attributes of graph edges (corresponding to
neighborship) and ignore other spatial attributes of edges.
In contrast, the proposed GCGNN exploits the node in-
degree information in the directed SKNNG and integrates
multi-dimensional edge attributes (i.e. relative distance and
orientation) into the node embeddings, which minimize the
loss of spatial layout information from the input graph.

Third, we compare our proposed GCGNN with the GATs
[42]. Similar to our network, GATs also apply neighborhood
aggregation based on the learned weights that indicate the
importance of each neighbor node. However, the aggregation
weights in GAT's are generated by a self-attention strategy and
thus depend only on the appearance features of neighbor nodes
without considering the spatial context information. As shown
in Table III, our GCGNN achieves better performance than
GATs.

4) Effects of jointly using identification and verification
losses: As described in Section III-B, our individual feature
extraction network is trained with both identification and
verification losses. To demonstrate the benefit of jointly using
these two kinds of losses together, we train the individ-
ual feature extraction network with just identification loss,
just verification loss, and both identification and verification
losses, respectively. Then we apply the learned individual
features in group re-ID to evaluate their performances on the
Road Group dataset under the setting of “W/OA” (i.e., only
using the individual appearance features without neighbor-
hood aggregation for group matching). As shown in Table
IV, for both handcrafted and deep convolutional individual
features, the features jointly trained with identification and
verification losses outperform those features trained with only
the identification or verification loss, which demonstrate the
complementarity of these two kinds of losses.

5) Group Split and Person Swap: To demonstrate the
robustness of our approach to group split and person swap,
we select the probe-gallery group pairs undergoing these two
kinds of changes from the test set of Road Group dataset and
build the “hard set with group split” and “hard set with person
swap”, respectively. Specifically, for the hard set with group
split, we pick out groups in which one or more person leave
the group in the probe image or gallery image. For the hard

TABLE IV
GROUP RE-ID PERFORMANCES ON THE ROAD GROUP DATASET (“W/OA”)
USING INDIVIDUAL FEATURES LEARNED WITH JUST IDENTIFICATION LOSS
(“I””), JUST VERIFICATION LOSS (“V”), AND BOTH IDENTIFICATION AND
VERIFICATION LOSSES (“I+V”), RESPECTIVELY.

Loss Rank-1 Score
1 63.4
Handcrafted (W/OA) \Y 62.2
+V 65.7
I 70.4
Deep Conv (W/OA) A% 68.1
+Vv 73.1
TABLE V

PERFORMANCES ON THE HARD SET WITH GROUP SPLIT (“GS”) AND
HARD SET WITH PERSON SWAP (“PS”), RESPECTIVELY.

Hard Set  R-1 R-5  R-10

GS 73.9 87.0 91.3

Handcrafted PS 64.7 76.4 76.4
Deen Cony GS 82.6 91.3 91.3
eep Co PS 70.5 76.4 82.4

set with person swap, we select the groups in which there is
a swap of single identities. Table V shows the group re-ID
performances on the two selected hard sets. Note that in this
experiment, while the probe images are selected from the two
hard sets respectively, the size of the gallery image set for
group matching keeps the same with the full test set.

On the hard set with group split, it only shows a little
effects on the group re-ID performance compared with our
results on the full test set (rank-1 score 73.9 VS 78.8 for
handcrafted features, 82.6 VS 84.2 for deep convolutional
features as shown in Table I). This is because if there is
no match obtained through the application of the Hungarian
algorithm for a particular graph node, then it denotes the fact
that the corresponding individual has left the group. In that
case, the individual who leaves the group is not included in
the summation of matching scores as shown in Fig. 2 and we
will rely on other individuals for group matching.

On the hard set with person swap, we still achieve a
competitive performance compared to the results of existing
patch-based methods [5, 6, 7, 8, 9] evaluated on the full test set
(rank-1 score 70.5 VS 58.6 as shown in Table VII). Since our
node embeddings combine the individual appearance features
and neighborhood context features together, the individual
appearance and spatial layout information can compensate for
the variations of each other. The feature combination learned
by our network makes a trade-off between the individual
appearance and spatial layout information, which enhances the
robustness to person swap.

C. Results for Single Person Re-ID

Our group re-ID algorithm is also beneficial to the single
person re-ID task. First, the group matching information can
narrow down the search scope to the persons in the matched
group and reduce the ambiguity in person re-ID. Second, since
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TABLE VI
RESULTS OF METHODS USING DIFFERENT MATCHING STRATEGIES FOR
SINGLE PERSON RE-ID ON THE ROAD GROUP DATASET.

Method Rank-1 Score
W/OC+W/OG 27.9
W/OC+WG 69.4
Handerafted  \u L W (ours-auto) 73.6
MGR-auto [10, 11] 71.4
W/OC+W/OG 336
Deep Cony  W/OC+WG 723
P WC+WG (ours-auto) 78.7
MGR-auto [11] 73.5

our approach not only performs group matching but also learns
node embeddings to apply individual association between two
group images, the learned node embeddings with contextual
information can be directly used as the representation of
corresponding persons for person re-ID. To evaluate the effects
of our proposed approach on the single person re-ID task,
we compare three methods with different matching strategies
described as follows:

“W/OC+W/OG”: We use the individual appearance features
(described in Section III-B) without context information as
person representations (W/OC). Given a probe person image,
we find the matched person from all persons in the gallery
group images based on the cosine similarities of person
representations without using any group matching information
(W/0G).

“W/OC+WG”: We use the individual appearance features
(described in Section III-B) without contextual information as
person representations (W/OC). Given a probe person image,
we first apply our group re-ID algorithm to retrieve its matched
group in the gallery and then find the person with the highest
cosine similarity score in the matched gallery group image as
the matched person (WG).

“WC+WG”: We use the node embeddings extracted by
the proposed GCGNN with contextual information as person
representations (WC). Given a probe person image, we first
apply our group re-ID algorithm to retrieve its matched group
in the gallery and then find the person with the highest cosine
similarity score in the matched gallery group image as the
matched person (WG).

Table VI shows the rank-1 CMC score of each method on
the Road Group dataset using handcrafted features and deep
convolutional features respectively. Following the practice of
MGR [10, 11], we use pedestrian detections automatically
generated by a pedestrian detector [43] to identify individuals
in a group image (-auto). As we can see, the “W/OC+W/OG”
method gets the poorest performance. Since this method
searches the matched individual among all individuals in the
entire galley set without using the group matching information,
it is prone to get a matched person in other group with a similar
appearance as shown in Fig. 7(a). When both applying group
matching to narrow down the person search scope, the method
using the proposed GCGNN node embeddings (“WC+WG”)
achieves higher accuracy than the method using the original
individual features without integrating the contextual infor-
mation (“W/OC+WG”). This is because the GCGNN node

Fig. 7. Examples of single re-ID results using different matching strategies.
(a) The “W/OC+W/OG” gets the incorrect match (blue arrow) while the
“W/OC+WG” gets the correct match (red arrow). (b) The “W/OC+WG” gets
the incorrect match while the “WC+WG” gets the correct match (best viewed
in color).

embeddings provide additional cues to reduce the ambiguity
and avoid matching to the group member with a similar
appearance as illustrated in Fig. 7(b). Both of our methods
using handcrafted features and deep convolutional features
perform better than the MGR [10, 11], which demonstrates
the effectiveness of our proposed group re-ID algorithm for
improving the single person re-ID performance.

D. Comparison with State-of-the-art Methods

Following the practice of MGR [10, 11], in this exper-
iment, we use bounding boxes predicted by an automatic
pedestrian detection method [43] to identify individuals in
groups (-auto). Table VII shows our performance on the i-
LIDS Group dataset, Road Group dataset, and DukeMTMC
Group dataset against state-of-the-art group re-ID methods
including the CRRO-BRO [5], Covariance [6], PREF [8, 9],
BSC+CM [7], DoTGNN [12], and MGR [10, 11]. Since the
MGR [10, 11] presents their results using handcrafted features
(hand) and deep convolutional features (conv) respectively,
to demonstrate the effect of our proposed GCGNN, we also
evaluate our method using handcrafted features (hand) and
deep convolutional features (conv) respectively. As described
in Section III-B, for handcrafted features, we use the same
color and texture features as the MGR (hand) [10, 11] except
that we further project the original appearance features to the
512-dimensional features through a fully conntected layer. For
deep convolutional features, we also exploit the same base
network (i.e. ResNet-34) as the MGR (deep) [11]. Unlike
the MGR [10, 11] which has a separated branch to explicitly
extract spatial features, our GCGNN integrate both appearance
and spatial characteristics together into node embeddings. Note
that we compute the similarity between two group images by
directly comparing a probe image with a given gallery image
while the MGR [10, 11] exploits additional information from
the entire gallery group image set to adjust the similarity score.
Even though, both the handcrafted feature version and the deep
convolutional feature version of our approach perform better
than the MGR [10, 11] as shown in Table VII. Our method
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TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS FOR GROUP RE-ID ON THREE DATASETS.

Method i-LIDS Group Road Group DukeMTMC Group

R-1 R-5 R-10 R-15 R-20 R-1 R-5 R-10 R-15 R-20 R-1 R-5 R-10  R-15 R-20
CRRRO-BRO [5] 233 540 698 767 827 178 346 481 575 622 99 261 402 542 649
Covariance [6] 26.5 525 66.0 80.0 909 380 61.0 73.1 79.0 82.5 213 43,6 604 70.3 78.2
PREF [8, 9] 306 553 67.0 82.0 926 430 687 719 82.2 852 223 443 58.5 67.4 74.4
BSC+CM [7] 320 59.1 72.3 82.4 93.1 58.6  80.6 87.4 90.4 92.1 23.1 443 56.4 64.3 70.4
DoTGNN [12] - - - - - 741 90.1 92.6 - 988 534 727 80.7 - 88.6
MGR-auto (hand) [10, 11]  37.9  64.5 79.4 91.5 93.8 723 90.6  94.1 97.1 915 474  68.1 713 83.6 87.4
MGR-auto (conv) [11] 38.8 657 82.5 93.8 988 802 938 963 97.5 975 484 752 89.9 93.3 94.4
Ours-auto (hand) 394  66.3 83.7 92.5 95.0 751 921 95.6 97.3 97.3 498 705 81.6 87.0 90.7
Ours-auto (conv) 419 68.1 86.9 94.4 98.1 81.7 943 96.5 97.5 97.8 536 770 914 93.6 94.8

TABLE VIII images but also is robust to dynamic changes of the group

RUNNING TIME ON THE RongfgsT‘JsP AND DUKEMTMC GROUP layout and membership. We model each group as a spatial K-

' NN graph and design a group context graph neural network

Method Road Group  DukeMTMC Group for graph representation learning. We define two new neigh-

L N MGR 115 min 18.9 min porhoo.d aggregatlop mechanisms bas.ed on graph. properties

image pairs o 1.7 sec 2.0 sec including the node in-degree and spatial relationship between

o T MGR 061 sec L de-] sec individuals. Experimental resu1t§ on three pubhc. group re-ID

erimage pair o 3.6e-3 sec 3.7e-3 sec datasets demonstrate the effectiveness and efficiency of the

also performs favorably against the DoTGNN [12] without
using any augmented training samples from other person re-
ID datasets. These results demonstrate the effectiveness of the
proposed approach.

E. Running Time Analysis

We compare the running time of our method with that of
the MGR [10, 11] which achieves the best performance among
existing methods without using additional training data from
person re-ID datasets. Like the MGR [10, 11], we conduct
experiments on a platform with an 8-core 17-7700@3.6GHz
CPU and an NVIDIA GeForce GTX 1080 GPU. In Table VIII,
we present (i) the running time of the entire matching process
(i.e. comparing all the image pairs in the test set), and (ii)
the average running time for computing the similarity of a
single group image pair in the Road Group and DukeMTMC
Group datasets. Note that we follow the practice of the MGR
[10, 11] and exclude the time consumed for object detection
and individual feature extraction. As shown in Table VIII, our
approach is much more efficient. This is because in the MGR
[10, 11], to overcome the challenges of group layout and
membership changes, they involve a full combination of all
multi-grained objects (i.e. individuals, two-people subgroups,
three-people subgroups, and the entire group) and apply a
sophisticated multi-order matching algorithm for group asso-
ciation. Different from that, we only consider the subgroup
contextual information from K-nearest neighbors with higher
reliability and can directly apply the Hungarian algorithm for
both individual and group matching.

V. CONCLUSION

In this work, we propose a group re-ID approach which not
only takes advantage of the contextual information in group

proposed approach against state-of-the-art methods.
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