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Abstract— Multiple object tracking (MOT) focuses on
modeling the relationship of detected objects among consecutive
frames and merge them into different trajectories. MOT remains
a challenging task as noisy and confusing detection results
often hinder the final performance. Furthermore, most existing
research are focusing on improving detection algorithms and
association strategies. As such, we propose a novel framework
that can effectively predict and mask-out the noisy and confusing
detection results before associating the objects into trajectories.
In particular, we formulate such “bad” detection results as a
sequence of events and adopt the spatio-temporal point process
to model such events. Traditionally, the occurrence rate in a
point process is characterized by an explicitly defined intensity
function, which depends on the prior knowledge of some specific
tasks. Thus, designing a proper model is expensive and time-
consuming, with also limited ability to generalize well. To tackle
this problem, we adopt the convolutional recurrent neural net-
work (conv-RNN) to instantiate the point process, where its
intensity function is automatically modeled by the training data.
Furthermore, we show that our method captures both temporal
and spatial evolution, which is essential in modeling events for
MOT. Experimental results demonstrate notable improvements
in addressing noisy and confusing detection results in MOT
data sets. An improved state-of-the-art performance is achieved
by incorporating our baseline MOT algorithm with the spatio-
temporal point process model.

Index Terms— Multiple object tracking, recurrent neural
networks, spatio-temporal point processes.

I. INTRODUCTION

MULTIPLE object tracking (MOT) is one of the funda-
mental problems in computer vision, which is important

in many applications like intelligent video surveillance, behav-
ior analysis, automatic driving, and robotics. MOT constitutes
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Fig. 1. Example of a noisy object detection. (a) Detection results, where a
potential noisy detection (red box) occurs in the scene. (b) As a result, the red
trajectory is unnecessarily tracked. This is an incorrect result. (c) Our approach
can predict the area which is likely to contain the noisy detections and avoid
them in the association process. (d) Tracking result using our method, where
the dashed line boxes are generated by linear interpolation. (e) Prediction is
generated by the proposed point process model.

the task of modeling the relationship of detected objects among
consecutive frames and then merging them into different
trajectories [1]–[3]. This task remains challenging, one major
issue is that some “bad” detection results always hinder the
performance of MOT. In general, such “bad” results can be
divided into two different types: 1) noisy detection results, i.e.
false positives in object detection, and 2) confusing detection
results, i.e. two highly overlapping objects with similar appear-
ances. Two such examples are shown in Figs. 1 and 2. It can be
seen that both the noisy and confusing objects had misguided
the matching process. Furthermore, we observe that most of
the failure examples in MOT are caused by them, directly or
indirectly. Hence, the main problem in MOT that needs to be
addressed can realistically be reduced to: how to effectively
handle these “bad” detection results?

Some existing methods in MOT such as [1] and [3]–[10]
improved the tracking performance by introducing more robust
object association strategies. More specifically, some advanced
techniques for cost function and corresponding optimization
algorithm have been developed to associate objects in different
frames. However, these methods do not explicitly model
the “bad” detection results, so they can be confused by
the objects with high similarity in appearance and motion.
Other methods including [11]–[16] focused their attention
on different feature representations and metrics for detected
objects. These methods have better accuracy in normal scenes
but are still affected by the noisy detection results. Some works
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Fig. 2. Example of a confusing object detection. (a) Detection results.
(b) Incorrect tracking result due to objects that are overlapping in close
proximity (yellow box and blue box). (c) Our approach can predict the
area which is likely to contain the confusing objects and avoid them in the
association process. (d) Tracking result by our method, where the dashed line
boxes are generated by linear interpolation. (e) Prediction is generated by the
proposed point process model.

like [17]–[22] adopted more accurate object detectors in
attempt to reduce these noisy detections, while the perfor-
mances are still hindered by confusing detections such as the
highly overlapping objects.

To tackle this issue in MOT, we propose a framework that
can effectively predict and mask-out these “bad” detection
results before associating the objects into trajectories. First,
we note that the “bad” detections can be formulated as
a sequence of events that happen in different frames and
locations. Thus, we need to infer when and where these events
are likely to happen, given the feature of current frame and
the historical behavior of the detector as prior information.
More specifically, we model these events based on the pix-
els that are inside the bounding boxes of “bad” detections.
Such events are distributed across the spatio-temporal tube
of a video and are generated based on complicated latent
mechanisms [23], [24], which is hard to capture through
simple modeling. Because these events happen in the motion
of objects, so there exists relationship between these events
which actually reflects the motion information of the objects.
In other words, we can detect these bad detections more
accurately and improve the performance of MOT by obtaining
the relationship between these events. Moreover, we make the
following observations.

1) Noisy object detections are more likely to appear in the
area where there are already some noisy detections in
the previous frames.

2) If there are confusing detections among people in a
group who walk closely or dress similar to others,
confusing detections are more likely to appear in these
people in the subsequent frames.

In this article, we introduce the use of spatio-temporal point
process to deal with such events.

Point process [25] is a powerful tool for modeling the real-
world sequential data, which has lots of applications in many
fields, such as finance [26], equipment maintenance [27], [28],
and social network [29], [30]. A point process is
characterized by its conditional intensity function, which

presents the occurrence rates of some class of events con-
ditioned on the historical events. Traditionally, the intensity
function can be explicitly defined based on prior knowledge of
event data and latent mechanisms of the process. The intensity
function usually consists of two parts [31]: an exogenous
intensity that describes factors driven by the inherent and
often time-varying occurrence rate for a type of events; an
endogenous intensity which describes the triggering effect
from the previous events. This parametric strategy has been
widely adopted in many classic models, such as Poisson
processes [32], Hawkes processes [33], and self-correcting
processes [34]. However, there are three issues that need to
be handled in the case of MOT.

1) Designing a proper parametric model is expensive and
time-consuming, since it requires expert domain knowl-
edge and experience if it were to be modeled manually.
Besides, the generalization ability is also limited.

2) It is difficult to properly capture the dynamics of influ-
ence from historical information given the complicated
nature of data patterns in MOT task. On the other
hand, it is also hard for traditional point processes
to incorporate other heterogeneous data, such as time
series [31] associated with event sequences.

3) Furthermore, the detection events in MOT occur in dif-
ferent frames and different locations in the scene, which
requires capturing both temporal and spatial evolution.

To tackle these problems, we adopt the spatio-temporal
point process to model the detection events, where a convo-
lutional recurrent neural network (conv-RNN) is proposed to
instantiate the point process. The main characteristics of our
method are shown below and in Fig. 3.

1) In our method, the intensity function is automatically
modeled by the training data, without requiring expert
knowledge and experience.

2) We propose a two-stream RNN framework to handle
two different inputs, i.e., time series and event sequence,
with a novel time-evolving mechanism to align and
merge these two input data. This enables our model
to capture the complex dynamics of influence from
historical information.

3) We incorporate the use of convolution operation in
RNN, which enables spatial diffusion for the historical
information of events.

Coupled with the capacity of RNN in modeling temporal
dependence, the proposed conv-RNN-based point process is
equipped with the capability of capturing both temporal and
spatial evolution. The main contributions of this article are
summarized as follows.

1) We propose a novel framework in MOT that can effec-
tively predict and mask-out the noisy and confusing
detection results before associating the objects into tra-
jectories. The “bad” detection results are formulated as
a sequence of events and are modeled by the spatio-
temporal point process.

2) We introduce a two-stream pipeline to handle two syn-
chronous and asynchronous inputs (i.e., time series and
event sequence) with a novel-evolving mechanism for
merging.
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Fig. 3. Framework of the proposed point process model. There are two RNNs in our model. The first one is for modeling the time series, which represents
the background information and features at each time. In our approach, the features and background information are the raw image and the detection results
in this frame. The second one is for modeling the event sequence, which represents the historical events and their time stamps. In our approach, the events are
defined to be the pixels which are inside the “bad” detection results. The feature he

i which encodes the event sequence is aligned in time and synchronized
with the feature hs

t from time series. [i] denotes the i th equivalence class of events that have the same time stamp so that t[i] means the ith frame that contains
at least one event.

3) We propose a convolutional-based RNN to instantiate
the point process, where the temporal and spatial evolu-
tion are well captured.

4) We show notable performance improvement by incor-
porating the proposed method into state-of-the-art MOT
algorithms across different metrics and benchmark data
sets.

II. RELATED WORKS

A. Multiple Object Tracking

MOT is widely applied in many fields like intelligent
video surveillance, behavior analysis, automatic driving, and
robotics [12], [35]. MOT involves the process of modeling
the relationship of detected objects among consecutive frames
and then merging them into different trajectories [1]–[3]. This
task remains challenging due to several problems. An obvious
observation is that certain “bad” detection results remain the
bottleneck for better performance in MOT. Generally, these
“bad” results can be divided into two different types, reflecting
two main causes: 1) noisy detection results, i.e., false positives
in object detection, and 2) confusing detection results, i.e., two
highly overlapping objects with similar appearances. Among
existing works, there are three known aspects of how these
issues have been handled.

1) Some existing methods in MOT such as [1] and [3]–[9]
improve the tracking performance by introducing
more robust object association strategies. For example,
Berclaz et al. [4] proposed a constrained flow optimiza-
tion problem to model the objects association, and use
k-shortest path algorithm [36] to solve this problem.
Yang et al. [3] modeled the data association into a min-
cost multicommodity network flow which fuses both
global optimization and local optimization.

2) Other methods such as [11]–[15] focus their attention
toward studying different feature representations and
metrics in attempt to mitigate these errors. In addition,

Gao and Jiang [37] proposed an attention-based appear-
ance model to obtain a better similarity metric.

3) Some research works [17]–[22] adopted more accurate
object detectors to reduce these problems, particularly
noisy detections. For instance, Henschel et al. [17] pro-
posed a multidetector to track pedestrian through fusing
the detection of head and body. Yu et al. [18] proposed
a high-performance detector for MOT which combines
skip pooling [38] and multiregion strategies [39].

Although these methods give valuable results in MOT, their
performances are still limited due to intrinsic limitations; in
particular, these methods contained unaddressed deficiencies.
First, these methods do not explicitly model “bad” detection
results. As such, incorrect tracking caused by confusion of
objects with high similarity in appearance and motion cannot
be learned or modeled. Second, these methods demonstrated
good tracking performance in normal scenes whereas in scenes
with noisy detection results, they remain highly susceptible to
erroneous tracking. However, the proposed approach explicitly
models the dynamic and relationship of the “bad” detections
and is able to predict and mask-out them before associating
the objects into trajectories.

B. Spatio-Temporal Point Processes

Temporal point process has been widely applied in many
fields such as finance [26], equipment maintenance [27], [28],
and social network [29], [30]. The point process is character-
ized by the conditional intensity function, which presents the
occurrence rates of events conditioned on the historical data.
Traditionally, the intensity function is explicitly defined based
on prior or expert knowledge about event data and latent mech-
anisms of the process. However, in many tasks, it is hard to
design a parametric model by hand. Recently, several research
works [31], [40] studied the use of a neural network-based
model for the temporal point process. Du et al. [40] proposed
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a semiparametric model for the point process where the events
are treated as a univariate point process and the event types
are treated as marks that are associated with events. Their
key idea is to view the intensity function of a temporal point
process as a nonlinear function of the event history and use an
RNN to automatically learn a representation of influences from
the event history. Xiao et al. [31] introduced recurrent point
process networks which instantiate temporal point process
models with temporal RNNs. Their key idea is to model the
intensity function by two RNNs: one temporal RNN captures
the relationships among events, while the other RNN updates
the intensity functions based on time series. On the other hand,
the spatio-temporal point process [41] reveals two main pieces
of information (space and time) about the data considered. The
data are treated as the realization of a random collection of
points, which evolves in space and time. It can be viewed as
a temporal point process with further (spatial) dimensions.

Spatio-temporal point process also has wide applications
such as earthquakes [42] and disease outbreaks [43]. For the
case of the MOT task, this is potentially feasible since we
are also interested in both the spatial and temporal evolution
of detected objects. In contrast to the aforementioned existing
schemes which define a neural network model for the temporal
point process, we propose conv-RNN to instantiate the point
process. The convolution operation in RNN enables spatial
diffusion for the historical information of events. Combined
with the capacity of RNN in modeling temporal dependencies,
our conv-RNN-based point process can effectively capture
both temporal and spatial evolution.

C. Recurrent Neural Networks

RNN [44]–[46] is a kind of neural network tailored for
modeling sequences such as time-series data. RNN allows
connections among hidden units to be associated with a time
delay, which is useful to encode historical information and
capture the relationship between events that evolve over time.
However, a vanilla RNN model is difficult to train and does
not handle long-range dynamics well due to the vanishing
gradient and exploding gradient problems [47]. To this end,
the long short-term memory (LSTM) is proposed, which has
shown to be stable and powerful for modeling long-range
dependencies. The key idea of LSTM lies in the memory
cell ct , which acts as an accumulator of the state information.
It allows gradient to be trapped in the cell and be prevented
from vanishing too quickly [48]. Traditional LSTM has 1-D
vectors for the cell input-output and hidden state. Such LSTMs
contain too much redundancy for spatial data. To address this
problem, Xingjian et al. [48] proposed conv-LSTM which has
convolutional structures in both the input-to-state and state-
to-state transitions. Furthermore, by stacking multiple conv-
LSTM layers, we can build a network model that is feasible
for spatio-temporal sequence forecasting problems such as
the MOT task. In this article, we design a variant of the
described conv-RNN model, which can handle different inputs
for both long- and short-term information, and can incorporate
the spatio-temporal varying components to build the intensity.

The proposed method will be elaborated in detail in Section IV
after describing the MOT task in Section III.

III. PRELIMINARIES

A. Problem Definition

The input data are a sequence C = {I1, I2, . . .} of consec-
utive frames in a video, combined with the object detection
results D j = {d j

1 , d j
2 , . . .} in each frame I j . Note that the

detection results D j are generated by some baseline detection
algorithms and are not guaranteed to be entirely correct. For
example, the false positive detections that always occur in
crowded scenes are regarded as noisy detections. Besides,
other erroneous detection results are caused by confusion from
detected objects of similar appearances which overlapped with
each other during motion. The MOT task aims to model the
relationship among these detected objects and associate them
into trajectories. Hence, these noisy or confusing detection
results will hinder the performance of MOT. In this article,
we adopt the spatio-temporal point process to address this
issue.

Let B j = {b j
1, b j

2, . . .} denote the set of “bad” detections
in each frame I j (note that B j ⊆ D j ). In our spatio-temporal
point process, we define the events e to be the pixels e =
(t, x, y) that are inside some “bad” detection results bt

i in
frame It . We use E = {e1, e2, . . . , en} to denote the set of
events from all frames. In general, the dynamics of the spatio-
temporal point process is captured by its conditional intensity
function λ∗(t, x, y) (where ∗ emphasizes that this function is
conditional on the history), which can be defined as

λ∗(t ′, x ′, y ′) = ∂3 E[N(t, x, y)|Ht ]

∂ t∂x∂y
|t=t ′,x=x′ ,y=y′ (1)

where Ht denotes the history of events before time t , and
N(t, x, y) is the counting function which counts the number
of events with spatial coordinates less than (x, y) and temporal
coordinates less than t , while E[N] is the expectation of the
counting function. Since we assume that the point process
satisfies the regularity condition

P{N([t, t+ε1], [x, x +ε2], [y, y+ε3])>1} = o(ε1ε2ε3) (2)

where P measures the probability of event (its argu-
ment), [t, t + ε1], [x, x + ε2], [y, y + ε3] indicates a small
area around the point (t, x, y) while o(ε1ε2ε3) refers to a
term of higher-order infinitesimal w.r.t. ε1ε2ε3. Equation (2)
shows that in the point process there will be at most one
event within a short time and in a small area. The intensity
function λ∗(t, x, y) can also be interpreted as the conditional
probability density that an event occurs at (t, x, y). Thus,
the probability density for an event sequence {e1, e2, . . .} can
be written as

f (e1, e2, . . .) =
∏

j

f ∗(t j , x j , y j |Ht j

)
(3)

where

f ∗(t, x, y|Ht j

) = λ∗(t, x, y)

exp
(∫ t

t̃ j

∫
u,v λ

∗(τ, u, v)dτdudv
) . (4)
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Here, t̃ j denotes the maximal time stamp tk that satisfies
tk < t j , the denominator presents the probability that no new
event occurs up to time t j since t̃ j . Point processes are always
learned by maximizing the likelihood function; whereby its
implementation is not specified. Thus, one problem is how to
define and implement the intensity function λ∗(t, x, y) in the
context of MOT.

B. Tracklet-Based Algorithm

In this article, our baseline tracking method follows the
tracklet-based strategy [11], [22], [24] to associate objects
from each frame into trajectories. Similar to [24], the baseline
tracking method contains three steps. The first step is tracklet
construction, which aims to merge highly related objects into
high-confidence tracklets. Note that we take a strict threshold
of appearance similarity and motion similarity for object
matching. This ensures that the generated tracklets are highly
reliable and consistent. Then, these tracklets are treated as
basic units for the subsequent clustering step. The second
step is tracklet similarity calculation. In some works [1], [3],
tracklet similarity is calculated directly from features of the
terminal object (i.e., object on the last frame of the tracklet),
which cannot capture information of the entire tracklet. Instead
of using only the terminal object, we determine tracklet simi-
larity by using all the appearance information in the tracklets.
More details can be found in [24]. The third step is tracklet
clustering. After obtaining the tracklets and corresponding
similarities, the clustering process associates these tracklets
into complete trajectories. The basic idea in [24] is that cluster
centers are characterized by a higher local density than their
neighbors and by a relatively larger distance from other sample
points with higher local densities. The local density of i th
tracklet is defined as

ρi =
∑

j :O(i, j)=0

H
(
si j − sc

)
(5)

where sc is a threshold which is always set to 0.5, H (x) is the
Heaviside step function, si j denotes the similarities between
i th and j th tracklets. The constraint O(i, j) = 0 ensures that
these two tracklets have no overlap in the temporal domain.
The maximum similarity of i th tracklet is defined as

δi = max
j :ρ j>ρi ,O(i, j)=0

si j . (6)

Then, the tracklets that have a maximum similarity
δi < sc are marked as cluster centers such that the similarities
between any two cluster centers are always lower than sc.
Finally, the remaining tracklets are assigned to the same cluster
according to the most similar tracklet of higher density.

C. Combination of Tracking and Point Process

The whole proposed tracking framework is shown in Fig. 4.
At first, we use the spatio-temporal point process to model
intensity function λ∗(t, x, y) for each frame I j of the
sequence C . Then, we predict “bad” detection events for
each frame and remove those detection bounding boxes which
contain events more than a given threshold. After this step,
we get better detection results D∗

j for each frame of the

Fig. 4. Framework of the tracking method. First, the spatio-temporal point
process is adopted to predict “bad” detection events. The “bad” detection
boxes, which cover too many events, will be directly deleted from each frame.
Then, the detections (dots) are linked to form different tracklets (arrows).
Finally, the tracklets are clustered and associated with generating complete
trajectories.

sequence C . Then, D∗
j will be used as the input of our tracking

baseline to construct short tracklets. Finally, the tracklets are
clustered and associated with generating complete trajectories.

It should be noted that although an event pixel can be
contained by more than a single box, the definition of events in
our method still matches well with that in the point process.
In our method, “bad” events are not “bad” detection boxes
but the “bad” pixels in detection boxes. So, if a “bad” event
on a pixel is contained by many bounding boxes, it still
represents one event, not many events. Furthermore, when an
event happens in the overlapped area of two bounding boxes,
it also means that this event decreases the confidence of both
boxes.

IV. METHOD

In this section, we describe in detail the method which
characterizes the proposed neural network model for the
spatio-temporal point process.

As shown in Fig. 3, we have two RNNs in the proposed
model. The first one, a synchronous network, is for mod-
eling the time series [31], which represents the background
information and features at each time step. We use the raw
image and the detection results in each frame to model
the features and background information. The second one,
an asynchronous network, is for modeling the event sequence,
which represents the historical events and their time stamps.
“Bad” detections are defined in two ways: (1) noisy detections,
which are bounding boxes that are false positives or inaccurate
detections, (2) confusing detections, which are bounding boxes
that are easily mistaken for other objects. The labeling strategy
for the “bad” detection is shown in Section V. The events are
defined to be the pixels which are inside the “bad” detection
results. We take the binary map as the input to each recurrent
unit (LSTM), where the pixels are masked to one if the event
occurs. The feature he

i which encodes the event sequence is
aligned and synchronized with the feature hs

t from time series.
Then, we merge the features from two RNNs and calculate the
intensity function based on it. After obtaining the intensity
function, we can infer the event through sampling on the
probability density function [cf., (4)]. In the testing phase,
for each bounding box b, we calculate the ratio rb between
the number of events in it and its area. Then, a detection b is
treated as a “bad” detection if rb is larger than some threshold.
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A. Synchronous RNN

The synchronous RNN takes in time series as input data.
We have two kinds of time series: one is the raw images; one is
the binary maps for detection results, where the pixels that are
inside a detected bounding box are masked to 1, otherwise 0.
As shown in [49], though the mask of the bounding box is
a weaker label than the segmentation mask of the object,
it still provides sufficient information to train the segmentation
task. However, we intend for the proposed model to focus on
learning potential areas of “bad” detections instead of actual
segmentation of objects. Thus, the binary maps of bounding
boxes are used as auxiliary input data instead of a training
label.

At each step t , we first send the raw image It and the binary
map M D

t of detection results to a CNN (e.g., VGG, ResNet)
to extract feature maps. Then, the feature maps are merged
and fed to the recurrent unit (conv-LSTM) to extract temporal
features. Therefore, the hidden states hs

t for the time series
can be obtained by(

hs
t , cs

t

) = ConvLSTM
(
hs

t−1, cs
t−1, ψ1

(
It ,M D

t

))
(7)

where ψ1 denotes the feature extractor CNN, cs
t denotes the

cell status and both hs
t and cs

t are feature maps. Note that such
input data are sampled uniformly over time, which can reflect
the exogenous intensity in the point process.

B. Asynchronous RNN

The asynchronous RNN aims to capture the relation
between events. It takes in an event sequence as input data.
In this spatio-temporal point process for MOT, each event
provides both spatial and temporal features. For spatial feature,
our strategy is similar to that in Section V-A. We use the
binary map to represent the spatial information of events that
occur in a frame, i.e., those pixels that are inside the “bad”
detections are masked to 1, otherwise 0. For the temporal
feature, we use the interevent duration F_t[i] − F_t[i−1] for
each event occurring at time F_t[i]. Here, [i ] denotes the i th
equivalent class of events, so F_t[i] denotes the i th frame
that contains at least one event. We reformulate the scalar
F_t[i] − F_t[i−1] to a map that has the same size as the raw
image and all pixels are represented by this scalar. Then,
these two maps are concatenated and passed through a CNN
feature extractor and conv-LSTM to obtain the hidden state as
follows:
he

i = ConvLSTM
(
he

i−1, ce
i−1, ψ2

(
M B

i , F_t[i] − F_t[i−1]
))

(8)

where ψ2 denotes the CNN feature extractor, M B
i denotes the

binary map of “bad” detection results, ce
i denotes the cell

status, and both he
i and ce

i are feature maps. Note that the
events are always sparsely located and unevenly distributed
in the time domain, which shows that the sequences are
asynchronous in nature and the temporal intervals can be very
long. Thus, one advantage of such asynchronous RNN is that
it can better capture long-term dependencies of events, which
can reflect the endogenous intensity in the point process.

C. Align and Merge

We aim to construct the intensity function based on the
features from both time series and event sequence. To this
end, the asynchronous features should be first aligned and
synchronized with the time series. Traditionally, one may
consider multiplying a decaying function γ (t − F_t[i]) with
the feature he

i to simulate the influence from historical events
to current time, where γ (t) can be specified by exp(−t).
However, the latent dynamics of the point process in MOT
are still unknown. Directly specifying the evolving function
γ (t) in such a manner may lead to the model misspecification
problem [40]. Therefore, we use a three-layer multilayer
perceptron (MLP) whose input is the concatenation of t−F_t[i]
and he

i to learn the evolving function ψ3(·, t), where the
model capacity can be sufficiently large to cover any dynamic
patterns. Assuming current time is t and the latest hidden state
of the event e is he

i , we have

ĥe
t = ψ3

(
he

i , t − F_t[i]
)

(9)

where ĥe
t denotes the aligned event feature at time t . After that,

we merge the outputs from both time series and event sequence
to obtain ht = [hs

t , ĥe
t ]. Finally, the intensity function λ(t) can

be formulated as

λ∗(t) = σ
(
wshs

t + weĥe
t

)
(10)

where λ∗(t) in this equation is an intensity map, the wshs
t term

reflects the exogenous intensity, the weĥe
t term reflects the

endogenous intensity, and σ denotes the activation function.
A reasonable choice of the activation function would be one
that ensures that the intensity function is non-negative and
almost linear when the input is much greater than 0. Several
activation functions fit this purpose: the softplus function,
defined as log(exp(x) + 1) or exponential linear unit (elu),
defined as elu(x) + 1 where elu(x) = x when x ≥ 0 and
elu(x) = exp(x)− 1 when x < 0.

D. Learning Method

Given the sequence of events E = {e1, e2, . . . , en},
we obtain the intensity function λ∗(t, x, y) by (10). Then,
the log-likelihood function can be formulated based on (3)
and (4) as follows:

log f =
∑

j

logλ∗(t j , x j , y j
) −

∫ tn

t0

∫
u,v
λ∗(τ, u, v)dτdudv.

(11)

The first part is the accumulative summation of
log-intensity function for those events occurring at
{(t1, x1, y1), (t2, x2, y2), . . . , (tn, xn, yn)}. The second part is
the integral of intensity over space and time where no event
happens. In our implementation, we set the spatio-temporal
resolution to be one and adopt a discrete approximation
of (11)

log f =
∑

j

logλ∗(t j , x j , y j
) −

∑
(τ,u,v) �=(t j ,x j ,y j)

λ∗(τ, u, v).

(12)
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This objective function is differentiable and can be efficiently
optimized by stochastic gradient descent.

E. Testing Method

In the testing phase, for each video, we put the detection
results of each frame and output of the previous frames
into the proposed point process model. Through this way,
we obtain an intensity map for each frame t which is then
used to infer the event by sampling on the probability density
function. For each bounding box bi in frame t , we count the
number of events in it and calculate the ratio ri between
event number and box area. If ri is larger than a given
threshold we will consider bi as a “bad” detection and
remove it from frame t . After repeating the above process for
each frame of the testing video, all “bad” detections would
have been removed and we proceed to use the remaining
detection results as the input of the tracking method to form
tracklets.

V. EXPERIMENTS

A. Experimental Settings

1) Data Sets: Our experiments are performed on two
benchmark data sets: MOT16 [50] and MOT17. MOT16 data
set contains seven training and seven testing sequences.
MOT17 has the same video sequences as MOT16, with three
different detection sets (DPM [51], faster-RCNN [52], and
SDP [53]). The video sequences are captured by both static
and moving cameras, with different scenes and resolutions.
The viewpoint can also vary significantly from each other, e.g.,
the camera may be overlooking the scene from a high position,
a medium position (at pedestrian’s height), or at a low position
(at ground level). Also, various forms of object occlusion and
large variation in object appearances render these data sets
challenging.

2) Evaluation Metrics: In MOT challenge benchmark [50],
[54], the relationship between ground truth and tracker output
is established using bounding boxes. The Intersection over
Union (IoU) is used as the similarity criterion, where the
threshold is set to 0.5. Then, the tracking performance is
measured by MOT accuracy (MOTA, the primary metric),
MOT precision (MOTP), the total number of false negatives
(FN), the total number of false positives (FP), the total
number of identity switches (IDS), the percentage of mostly
tracked trajectories (MT), and the percentage of mostly lost
trajectories (ML). Specifically, MOTA measures the over-
all tracking performance of an approach, combined with
FN, FP, and IDS. Furthermore, average precision (AP)
is adopted to directly measure the prediction accuracy of
events.

3) Subnetwork Implementation: The proposed model is
implemented as follows. We use Resnet-50 as the backbone
network and construct a Siamese network to extract the
features of detected boxes. For the conv-LSTM, the number
of LSTM units is set to eight and the hidden unit size is
1024. Meanwhile, we use a three-layer MLP to model the
evolving function whose input is the concatenation of t−F_t[i]
and he

i .

TABLE I

ABLATION EXPERIMENTS ON THE EVOLVING FUNCTION,
ACTIVATION FUNCTION, AND TRAINING LOSS. MODELS

ARE TESTED ON MOT2016 DATA SET

4) “Bad” Detections Labeling: As for noisy object detec-
tions, we observe every detection box in the MOT data set
and label the boxes whose IoU (with any ground truth) are
smaller than 0.5 as noisy detections. We then run the baseline
algorithm on the data set and label the mismatched detections
as confusing object detections. With the above method, we can
locate most of the “bad” detections.

5) Parameter Settings: In our experiments, we use the pub-
lic detection results provided by the MOT16 and MOT17 data
sets, so as to have a fair comparison with other MOT methods.
In the ablation study (Section V-B), we use four training
sequences of MOT16 as training data and the other three
training sequences for validation. We use the tracklet-based
algorithm introduced in Section III-B as our baseline algorithm
for MOT. We also choose deep-simple online and realtime
tracking SORT [55] and Tracktor [56] as other baselines for
comparison purposes. To train the network, the standard Adam
optimizer is chosen with a batch size of 32 and an initial learn-
ing rate of 0.001. After every 40 000 iterations, the learning
rate is further decayed by 10% of the initial learning rate. The
training process terminates after 1 50 000 iterations.

B. Ablation Study and Discussion

1) Comparison on Different Settings: In this section,
we investigate the impact of some practical modifications
introduced in Section IV. All results are shown in Table I.

Evolving Function: First, we study the evolving function
(cf., Section IV-C), and report tracking performances based
on different choice of implementation. Results indicate that
the neural network model clearly outperforms the parametric
decaying function. This verifies our previous hypothesis that
the model capacity of the neural network is much larger
than the simple parametric evolving function. This helps the
model to capture more complex dynamic patterns. Therefore,
the evolving function is implemented using the neural network
for subsequent studies.
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TABLE II

ABLATION EXPERIMENTS ON DIFFERENT COMPONENTS. AP IS
ADOPTED TO MEASURE THE PREDICTION ACCURACY

TABLE III

ABLATION EXPERIMENTS ON DIFFERENT COMPONENTS.
ALL MODELS ARE TESTED ON MOT2016 DATA SET

Activation Function: Second, we study the activation func-
tion (cf., Section IV-C) and report tracking performances using
different σ values. As explained earlier, we argue that the
intensity function should be non-negative and almost linear
when the input is much greater than 0. Thus, the observation
that the sigmoid function has the worst result validates our
point. Note that the biased Relu function (ε + max{x, 0})
satisfies these conditions but performs much worser than
softplus function. This is likely because the gradient of the
Relu function is strictly eliminated when x is smaller than 0.
Thus, the model also trained nonoptimally when the biased
Relu is adopted as the activation function.

Training Loss: Third, we study the impact of training loss
in the optimization of the network and report the results.
We observe marginal benefits using log-likelihood function
over mean squared error function and cross-entropy loss
function. So, we adopt the log-likelihood as our choice of
the objective function in all the following studies.

2) Comparison on Different Components: We compare the
baseline tracking algorithm to the proposed point process
enhanced tracking algorithm. The experiments are performed
on MOT2016 with different components of our approach. The
test AP and speed of point process with different components
on MOT16 are shown in Table II, and the MOT metrics
are shown in Table III. To outline the superiority and gen-
eralization ability of the proposed method, we evaluated the
point process model on other tracking methods [55], [56].
Fig. 5 provides visuals of some tracking results by the baseline
tracking method and the point process enhanced tracking
method. For reference, the speed of our baseline method is
59 FPS on the MOT17 testing data and when it is combined
with Sync/Async RNN, the speed is 26 FPS. It is worth noting
that the entire procedure is actually a two-step process—the

Fig. 5. Two tracking examples. (First row) Results by baseline tracking
algorithm. (Second row) Intensity maps generated from the proposed point
process model. (Third row) Results by our proposed method. (a) Example of
noisy detection. The noisy detection occurs in the second frame of the top
row (green box), which causes two different trajectories for one object.
(b) Example of confusing detection. The confusing detections occur in
the second frame of the top row (blue and red boxes), which causes a mismatch
error (identity switch).

point process method first removes “bad” detections in the
sequence, and thereafter the remaining detections are used to
construct the tracklets. As such, the point process does not
affect the tracking speed. Therefore, we only compare the
speed of the point process step using different components.

In this comparison, the following tracking algorithms are
evaluated upon to demonstrate the generalization ability of
our approach.

Baseline: The tracklet-based algorithm which is introduced
in Section III-B. We apply k-means clustering algorithm to
generate reliable tracklets followed by softassign [11] algo-
rithm to associate the tracklets into trajectories. For simplicity,
we use the terminal detection in each tracklet to calculate
tracklet-wise similarity. The baseline algorithm includes a
simple threshold-based strategy to filter out noisy detections
with low confidences.

Deep-SORT [55]: SORT is a pragmatic approach to MOT
with a focus on a simple yet effective algorithm. The deep-
SORT variant integrates appearance information to improve
the performance of SORT. It learns a deep association metric
on large-scale person reidentification data set in the offline
pretraining stage. Then, during the online application, it estab-
lishes measurement-to-track associations using nearest neigh-
bor queries in the visual appearance space.

Tracktor [56]: Tracktor is a tracker without any training
or optimization on tracking data. It exploits the bounding box
regression of an object detector to predict the position of an
object in the next frame. It has good extensibility and performs
well on three multiobject tracking benchmarks by extending
it with a straightforward reidentification and camera motion
compensation.

The following components are evaluated to demonstrate the
effectiveness of our approach.

Time Independent: In this method, we only use the weight-
shared CNN to handle the time series input. In other words,
at each step, the current frame is input into a fully convolu-
tional neural network (FCN) [69] to generate the intensity map
for event prediction. Note that this method has a “memoryless”
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TABLE IV

TRACKING PERFORMANCES OF OUR APPROACH AND STATE-OF-THE-ART METHODS ON MOT2016

mechanism, which does not capture any temporal relations
within the input data or between event sequences.

Synchronous RNN: This method, which is the partial version
of our proposed method, takes only the time series as input
data in order to reflect the state of the environment where
events happen. Correspondingly, the synchronous RNN mod-
els the exogenous intensity in our point process.

Synchronous + Asynchronous RNN: This is the full version
of our proposed method. It includes both synchronous and
asynchronous RNN, where the time series and associated event
sequence are taken as input data. We adopt a neural network-
based time-evolving mechanism to align and merge these two
features, for the generation of the intensity maps.

From Tables III, II, and Fig. 5, we make the following
observations.

1) The time-independent prediction method outperforms
our baseline tracking algorithm. Tracking examples
in Fig. 5 shows that directly associating the detected
objects or simply using general tracklet association
algorithms is ineffective and easily interfered by noisy
or confusing detections. Comparatively, by applying the
time-independent model to predict and discard the “bad”
detections before the association process, we are able
to mitigate these noisy and confusing detections to a
reasonable measure of success.

2) The synchronous RNN model has significantly better
results compared to the time-independent model. The
performance gains come from the fact that a learnable
model of larger capacity is employed to capture the
historical information to cater for complex temporal
dynamics. In addition, we observe that both the time-
independent model and synchronous RNN model have
lower MOTP values than the baseline algorithm; MOTP
measures the precision of size and location of bounding
boxes in trajectories. This is likely because these two
methods mask out the “bad” detections effectively so
that they can improve tracking accuracy such as MOTA.
This occurs at the expense of losing some “good”
detections to misclassification and masking. These errors
occur sparsely in time and can be recovered in the
tracklet clustering process using linear interpolation (a
common scheme also adopted by our baseline tracking
algorithm). The only caution is that bounding boxes
generated by linear interpolation are less precise than the

detector results especially when the objects exhibit large
or highly dramatic motions. Nevertheless, we observe
that the overlaps between interpolated boxes and ground-
truth boxes are still larger than 50%, which may lower
the MOTP score but will not affect the MOTA score.

3) The full version of the proposed method (synchronous +
asynchronous RNN) performs much better than all other
compared methods. This demonstrates the importance
of adopting event sequence in addition to time series
as inputs. Intuitively, this helps the model to better
capture long-term dependencies of events. From another
aspect, the asynchronous RNN also reflects the endoge-
nous intensity, as a complementary part to the exoge-
nous intensity already modeled by synchronous RNN.
Besides, Table II also demonstrates the effectiveness of
the proposed method in predicting the “bad” detection
results.

4) Our proposed method consistently improves all the three
methods, including the baseline algorithm, the alterna-
tive Deep-SORT [55] tracking algorithm, and the Track-
tor [56] algorithm in all metrics, which demonstrates its
effectiveness and strong generalization ability.

C. Comparison With State-of-the-Art Methods

With the best settings of the proposed method affirmed in
the ablation study, we conduct further comparisons against
state-of-the-art MOT tracker on the widely used benchmark
data set: MOT2016 and MOT2017. For fair comparison,
all the methods are evaluated and reported based on the
same evaluation protocol and metrics. Tables IV and V list
the benchmark results for MOT2016 and MOT2017, respec-
tively, comparing the proposed method against recent state-
of-the-art MOT trackers such as OICF [57], CBDA [12],
QCNN [58], STAM [19], MDM [59], NOMT [35], JGD-
NL [60], TSN-CC [24], LM-PR [61], EEBMM [62], NG-
bL [63], OGSDL [64], DMAN [65], EDM [21], MHT [66],
DLCS [67], CCC [68], and FHFD [17]. Fig. 6 illustrates some
tracking results of our method on MOT17 data set.

From the tracking performance comparisons
in Tables IV and V, it can be seen that our tracker surpasses
all other methods in terms of the primary evaluation metric
MOTA. In MOT16, compared to the closest competitor LM-
PR [61], our method achieves a 1.7% improvement (50.5%
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TABLE V

TRACKING PERFORMANCES OF OUR APPROACH AND STATE-OF-THE-ART METHODS ON MOT2017

Fig. 6. Some tracking results of our method on MOT17 data set.

vs. 48.8%) in MOTA, a 1.4% improvement (19.6% vs. 18.2%)
in MT, and a 0.7% improvement (39.4% vs. 40.1%) in ML.
In MOT17, compared to the closest competitor FHFD [17],
our method achieves a 1.1% improvement (52.4% vs. 51.3%)
in MOTA and a 1.0% improvement (22.4% vs. 21.4%)
in MT. Note that both LM-PR [61] and FHFD [17] have
more sophisticated and computationally heavy tracking
pipelines than our baseline algorithm. This implies that we
can make significant strides to improve the state-of-the-art
by formulating it as a point process method. On the other
hand, the MOTP of our approach is slightly lower than some
methods because the interpolated detections tend to be less
precise when the objects have some large or highly dramatic
motions.

Our approach also produces the lowest FN on both
MOT16/MOT17 and highest MT in MOT17 (second high-
est on MOT16), which shows that the proposed method
can accurately associate the tracklets and the interpolation
process is effective in generating missing detections. Our
approach produces the lowest FP on MOT17 (second lowest
on MOT16), which demonstrates the strengths of our approach

in handling noisy and confusing detections by formulating
these “bad” detections using our spatio-temporal point process
model.

Although some methods (e.g., CCC [68]) have better per-
formances on the ML and IDS metrics, they obtain this at the
expense of sacrificing the performance on other metrics (i.e.,
MT and FP), which leads to a low overall result in MOTA.
Comparatively, our approach can comprehensively balance
different aspects in tracking and obtain a better overall result
in MOTA. Besides, our approach has relatively high values
on some metrics (i.e., IDS) because we use simple features
and association schemes to perform tracking. In fact, since
our proposed point-process model is generic, we can easily
incorporate into our model more sophisticated features and
association schemes (e.g., aggregated local flow descriptor in
NOMT [35]) to potentially obtain better performances on these
metrics.

VI. CONCLUSION

In this article, we address the issue of misdetections in the
MOT task by proposing a novel framework that effectively
predicts and masks out noisy and confusing detection results
prior to associating objects into trajectories. We formulate the
“bad” detection results as a sequence of events, adopting the
spatio-temporal point process to model such event sequences.
A conv-RNN is introduced to instantiate the point process,
where the temporal and spatial evolutions are well cap-
tured. Experimental results demonstrate notable performance
improvement with the proposed method over state-of-the-art
MOT algorithms across different metrics and benchmark data
sets.
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