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Abstract

Discriminatively localizing sounding objects in cocktail-party, i.e., mixed sound
scenes, is commonplace for humans, but still challenging for machines. In this
paper, we propose a two-stage learning framework to perform self-supervised
class-aware sounding object localization. First, we propose to learn robust
object representations by aggregating the candidate sound localization results
in the single source scenes. Then, class-aware object localization maps are
generated in the cocktail-party scenarios by referring the pre-learned object
knowledge, and the sounding objects are accordingly selected by matching au-
dio and visual object category distributions, where the audiovisual consistency
is viewed as the self-supervised signal. Experimental results in both realis-
tic and synthesized cocktail-party videos demonstrate that our model is supe-
rior in filtering out silent objects and pointing out the location of sounding ob-
jects of different classes. Code is available at https://github.com/DTaoo/
Discriminative-Sounding-Objects-Localization.

1 Introduction

Audio and visual messages are pervasive in our daily-life. Their natural correspondence provides
humans with rich semantic information to achieve effective multi-modal perception and learning [28,
24, 15], e.g., when in the street, we instinctively associate the talking sound with people nearby, and
the roaring sound with vehicles passing by. In view of this, we want to question that can they also
facilitate machine intelligence?

To pursue the human-like audiovisual perception, the typical and challenging problem of visually
sound localization is highly expected to be addressed, which aims to associate sounds with specific
visual regions and rewards the visual perception ability in the absence of semantic annotations [14,
18, 3, 27, 10]. A straightforward strategy is to encourage the visual features of sound source to take
higher similarity with the sound embeddings, which has shown considerable performance in the
simple scenarios with single sound [21, 22, 27]. However, there are simultaneously multiple sounding
objects as well as silent ones (i.e. The silent objects are considered capable of producing sound.).
in our daily scenario, i.e., the cocktail-party, this simple strategy mostly fails to discriminatively
localize different sound sources from mixed sound [16]. Recently, audiovisual content modeling
is proposed to excavate concrete audio and visual components in the scenario for localization. Yet,
due to lack of sufficient semantic annotation, existing works have to resort to extra scene prior
knowledge [16, 17, 25] or construct pretext task [31, 30]. Even so, these methods cannot well deal
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with such complex cocktail-party scenario, i.e., not only answering where the sounding area is but
also answering what the sounding area is.

In this paper, we target to perform class-aware sounding object localization from their mixed
sound, where the audiovisual scenario consists of multiple sounding objects and silent ob-
jects, as shown in Fig. 1. This interesting problem is quite challenging from two perspectives:

Figure 1: An example of cocktail-party scenario,
which contains sounding guitar, sounding cello
and silent saxophone. We aim to discriminatively
localize the sounding instruments and filter out
the silent ones. Video: https://www.youtube.
com/watch?v=ebugBtNiDMI.

1) Discriminatively localizing objects belong-
ing to different categories without resorting to
semantic annotations of objects; 2) Determin-
ing whether a specific object is sounding or not,
and filtering out silent ones from the correspond-
ing mixed sound. When faced with these chal-
lenges, we want to know how do we human
address them? Elman [9] stated that human
could transform these seemingly unlearnable
tasks into learnable by starting from a simpler
initial state then building on which to develop
more complicated representations of structure.
Inspired by this, we propose a two-stage frame-
work, evolving from single sound scenario to the
cocktail-party case. Concretely, we first learn
potential object knowledge from sound local-
ization in single source scenario, and aggregate
them into a dictionary for pursuing robust repre-
sentation for each object category. By referring
to the dictionary, class-aware object localization
maps are accordingly proposed for meeting the
sounding object selection in multi-source scenario. Then, we reduce the sounding object localization
task into a self-supervised audiovisual matching problem, where the sounding objects are selected
by minimizing the category-level audio and visual distribution difference. With these evolved cur-
riculums, we can filter out silent objects and achieve class-aware sounding object localization in a
cocktail-party scenario.

To summarize, our main contributions are as follows. First, we introduce an interesting and chal-
lenging problem, i.e., discriminatively localizing sounding objects in the cocktail-party scenario
without manual annotation for objects. Second, we propose a novel step-by-step learning framework,
which learns robust object representations from single source localization then further expands to
the sounding object localization via taking audiovisual consistency as self-supervision for category
distribution matching in the cocktail-party scenario. Third, we synthesize some cocktail-party videos
and annotate sounding object bounding boxes for the evaluation of class-aware sounding object
localization. Our method shows excellent performance on both synthetic and realistic data.

2 Related work
Object localization Weakly- and self-supervised object localization expect to achieve comparable
performance to the supervised ones with limited annotations. Existing weakly-supervised methods
take holistic image labels as supervision, where the salient image region evaluated by recognition
scores are considered as the potential object location[20, 21, 6, 32, 26, 7]. For self-supervised models,
Baek et al. [5] used point symmetric transformation as self-supervision to extract class-agnostic heat
maps for object localization. These methods are purely based on visual features, while we propose to
employ audiovisual consistency as self-supervision to achieve class-aware object localization.

Self-supervised audiovisual learning The natural correspondence between sound and vision pro-
vides essential supervision for audiovisual learning [2, 3, 22, 4, 23]. In [23, 4], authors introduced to
learn feature representations of one modality with the supervision from the other. In [2, 22], authors
adopted clip-level audiovisual correspondence and temporal synchronization as self-supervision to
correlate audiovisual content. Hu et al. [16, 17] associate latent sound-object pairs with clustered
audiovisual components, but its performance greatly relies on predefined number of clusters. Al-
wassel et al. [1] created pseudo labels from clustering features to boost multi-modal representation
learning. While in our work, we alternatively use audiovisual correspondence and pseudo labels from
clustering to boost audiovisual learning and learn object representations.
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Sounding object localization in visual scenes Recent methods for localizing sound source in visual
context mainly focus on joint modeling of audio and visual modalities [3, 22, 27, 29, 16, 30, 31].
In [3, 22], authors adopted Class Activation Map (CAM) [32] or similar methods to measure the
correspondence score between audio and visual features on each spatial grid to localize sounding
objects. Senocak et al. [27] proposed an attention mechanism to capture primary areas in a semi-
supervised or unsupervised setting. Tian et al. [29] leveraged audio-guided visual attention and
temporal alignment to find semantic regions corresponding to sound sources. These methods tend to
perform well in single source scenes, but comparatively poor for mixed sound localization. Zhao
et al. [31, 30] employed a sound-based mix-then-separate framework to associate the audio and
visual feature maps, where the sound source position is given by the sound energy of each pixel. Hu
et al. [16] established audiovisual clustering to associate sound centers with corresponding visual
sources, but it requires the prior of the number of sound sources, and the specific category of the
clustering result remains unknown. In contrast, our method can discriminatively localize sounding
objects in cocktail-party by employing established object dictionary to generate class-aware object
localization maps, and referring to the audiovisual localization map to filter out the silent ones.

3 The proposed method
In this work, we aim to discriminatively localize the sounding objects from their mixed sound
without the manual annotations of object category. To facilitate this novel and challenging problem,
we develop a two-stage learning strategy, evolving from the localization in simple scenario with
single sounding object to the complex one with multiple sounding objects, i.e., cocktail-party. Such
curriculum learning perspective is based on the findings that existing audiovisual models [3, 16, 27]
are capable of predicting reasonable localization map of sounding object in simple scenario, which
is considered to provide effective knowledge reference for candidate visual localization of different
objects in the cocktail-party scenario.

Specifically, for a given set of audiovisual pair with arbitrary number of sounding objects, X =
{(ai, vi)|i = 1, 2, ..., N}, we first divide it into one simple set whose scenario only contains single
sounding object, X s = {(asi , vsi )| i = 1, 2, ..., Ns}, and one complex set, where each audiovisual
pair consists of several sounding objects, X c = {(aci , vci )| i = 1, 2, ..., N c}, where X = X s∪X c and
X s∩X c = ∅. In the first stage, we propose to learn potential visual representation of sounding object
from their localization map in the simple scenario X s, with which we build a representation dictionary
of objects as a kind of visual object knowledge reference. In the second stage, by referring to the
learned representation dictionary, we step forward to discriminatively localize multiple sounding
objects in the complex scenario X c, where the category distribution of localized sounding objects
are required to match the distribution of their mixed sound according to the natural audiovisual
consistency [16]. In the rest sections, we detail the first and second learning stage for generalized
sounding object localization.

3.1 Learning object representation from localization
For the simple audiovisual scenario with single sound source, X s, we target to visually localize the
sounding object from its corresponding sound, and synchronously build a representation dictionary
from the localization outcomes. The framework is shown in the left part of Fig. 2.

At the first step, given an arbitrary audiovisual pair (asi , v
s
i ) ∈ X s, to exactly predict the position of

sounding object, we need to find which region of input image vsi is highly correlated to the sound
asi . To this end, we feed the image into a convolution-based network (e.g., ResNet [13]) to extract
spatial feature maps f(vsi ) ∈ RC×H×W as the local image region descriptors, where C is the channel
dimension, H and W are the spatial size. Then, the localization network is encouraged to enhance
the similarity between the image region of sounding object and corresponding sound embeddings
g(asi ) from the same video, but suppress those ones where sound and object are mismatched (from
different videos), i.e., (asi , v

s
j ), where i 6= j. Formally, the localization objective can be written as

L1 = Lbce(y
match, GMP (l(g(asi ), f(v

s
j )))), (1)

where the indicator ymatch = 1 is the audio and image are from the same pair, i.e., i = j, otherwise
ymatch = 0, and Lbce is the binary cross-entropy loss. l(g(asi ), f(v

s
j )) is the audiovisual localization

function, achieved by computing the cosine similarity of audio and visual feature representation2.
2The cosine similarity is followed by a parameterized sigmoid function to achieve comparable scale to the

binary supervision. More details about similarity computation and networks are in the appendix.
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Figure 2: An overview of the proposed framework. First, we use audiovisual correspondence as the
self-supervision to localize sounding area and learn object representation (left). Then, we employ
built object dictionary to generate class-aware localization maps and refer to inferred sounding area
to eliminate silent objects. In that way, we reduce the localization task into a distribution matching
problem, where we use KL divergence to minimize audiovisual distribution difference (right).

Similar to [3], Global Max Pooling (GMP) is used to aggregate the localization map to match the
scene-level supervision. As there is no extra semantic annotation employed, the localization model is
fully optimized in a self-supervised fashion.

As the localization map could provide effective reference of object position, it helps to reduce
the disturbance of complex background and boosts the visual perception performance of object
appearance. To supply better visual object reference for the multi-source localization in the second
stage, we utilize these localization outcomes to learn a kind of representation dictionaryD for different
object categories. First, we propose to binarize the localization map li of the i−th audiovisual pair
into a mask mi ∈ {0, 1}H×W . As there should be only one sounding object in the simple scenario
X s, mi should be a single-object-awareness mask indicator. Hence, we can extract potential object
representation oi ∈ RC over the masked visual features f(vsi ), i.e.,

oi = GAP (f(vsi ) ◦mi), (2)

where GAP is the Global Average Pooling operation and ◦ is the Hadamard product. These object
representationsO = {o1, o2, ..., oNs} are extracted from the coarse localization results, which makes
it difficult to provide robust expression of object characters. To facilitate such progress, we target
to learn high-quality object indicators with these candidate representations in a dictionary learning
fashion. Specifically, we propose to jointly learn a K × C dictionary D and assignment yi of each
object representation oi, where each key dk ∈ R1×C is identified as the representative object character
in the k−th category. As K-means can be viewed as an efficient way of constructing representation
dictionary [8], in our case we aim to minimize the following problem,

L(D, yi) =
Ns∑
i=1

min
yi

||oi −DT · yi||22 s.t. yi ∈ {0, 1}K ,
∑

yi = 1, (3)

where K is the number of object category. Solving this problem provides a dictionary D∗ and a
set of category assignments {y∗i |i = 1, 2, ...Ns}, where the former one is used for potential object
detection in the second stage and the latter can be viewed as pseudo labels indicating different object
categories. Recall that object localization could benefit from generalized categorization [21, 32], we
therefore choose to alternately optimize the model w.r.t. the localization objective using Eq. 1 and the
object classification objective with generated pseudo labels, which could substantially improve the
localization performance.
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3.2 Discriminative sounding object localization

To discriminatively localize different sounding objects from their mixed sound, we propose to localize
all the emerged objects in the image first, among which the sounding ones are causally selected
based on whether they appear in the sounding area and required to match the category distribution of
corresponding audio messages, as shown in the right part of Fig. 2.

Let (aci , v
c
i ) ∈ X c denote the i−th audiovisual message that consists of multiple sounding objects.

By referring to the learned representation dictionary of objects D∗, the location of emerged objects is
indicated by computing the following inner-product similarity between each location of visual feature
map f(vci ) ∈ RC×H×W and each representation key dk ∈ R1×C within D∗,

mk
i = dk · f(vci ), (4)

where mk
i is the predicted object location area of the k−th category in the i−th visual scenario. If the

scenario does not involve the object belonging to the k−th category, the corresponding localization
map mk

i tends to remain low response (similarity). At this point, we can obtain K localization maps,
indicating the location of different categories of objects.

As stated in the beginning, the cocktail-party scenario may consist of multiple sounding objects and
silent objects. To localize the sounding objects as well as eliminate the silent ones, the sounding area
li that is highly related to the input mixed sound is regarded as a kind of sounding object filter, which
is formulated as

ski = mk
i ◦ li. (5)

ski is deemed as the location of sounding object of the k−th category. Intuitively, if the k−th object
does not produce any sound even if it visually appears in the image, there will be no sounding areas
reflected in ski . Hence, the category distribution of sounding objects for vci can be written as

psovi = softmax([GAP (s1i ), GAP (s
2
i ), ..., GAP (s

K
i )]). (6)

As discussed in recent works [16], the natural synchronization between vision and sound provides
the self-supervised consistency in terms of sounding object category distribution. In other words, the
sound character and the visual appearance of the same sounding object are corresponding in taxonomy,
such as barking and dog, meow and cat. Hence, we propose to train the model to discriminatively
localize the sounding objects by solving the following problem,

Lc = DKL(p
so
vi ||p

so
ai
), (7)

where psoai
is the category distribution of sound ai, predicted by a well-trained audio event network3,

and DKL is the Kullback–Leibler divergence.

Overall, the second stage consists of two learning objective, one is the category-agnostic sounding
area detection and the other one is class-aware sounding object localization, i.e.,

L2 = Lc + λ · L1, (8)

where λ is the hype-parameter balancing the importance of both objective. By solving the problem in
Eq. 8, the location of sounding objects are discriminatively revealed in the category-specific maps{
s1i , s

2
i , ..., s

K
i

}
. Finally, softmax regression is performed across these class-aware maps on each

location for better visualization.

4 Experiments
4.1 Datasets and annotation

MUSIC MUSIC dataset [31] contains 685 untrimmed videos, 536 solo and 149 duet, covering 11
classes of musical instruments. To better evaluate sound localization results in diverse scenes, we
use the first five/two videos of each instrument category in solo/duet for testing, and use the rest for
training. Besides, we use one half of solo training data for the first-stage training, and employ the
other half to generate synthetic data for the second-stage learning. Note that, some videos are now
not available on YouTube, we finally get 489 solo and 141 duet videos.

3The audio network is trained with the pseudo label in the first stage, more details are in the appendix.
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Table 1: Localization results on MUSIC-solo and AudioSet-instrument-solo.
(a) Results on MUSIC-solo.

Methods IoU@0.5 AUC

Sound-of-pixel [31] 40.5 43.3
Object-that-sound [3] 26.1 35.8
Attention [27] 37.2 38.7
DMC [16] 29.1 38.0
Ours 51.4 43.6

(b) Results on AudioSet-instrument-solo.

Methods IoU@0.5 AUC

Sound-of-pixel [31] 38.2 40.6
Object-that-sound [3] 32.7 39.5
Attention [27] 36.5 39.5
DMC [16] 32.8 38.2
Ours 38.9 40.9

MUSIC-Synthetic The categories of instruments in duet videos of MUSIC dataset are quite unbal-
anced, e.g., more than 80% duet videos contain sound of guitar, which is difficult for training and
brings great bias in testing. Thus, we build category-balanced multi-source videos by artificially
synthesizing solo videos to facilitate our second-stage learning and evaluation. Concretely, we first
randomly choose four 1-second solo audiovisual pairs of different categories, then mix random two
of the four audio clips with jittering as the multi-source audio waveform, and concatenate four frames
of these clips as the multi-source video frame. That is, in the synthesized audiovisual pair, there are
two instruments making sound while the other two are silent. Therefore, this synthesized dataset is
quite proper for the evaluation of discriminatively sounding object localization4.

AudioSet-instrument AudioSet-instrument dataset is a subset of AudioSet [12], consisting of 63,989
10-second video clips covering 15 categories of instruments. Following [11], we use the videos from
the “unbalanced" split for training, and those from the “balanced" for testing. We employ the solo
videos with single sound source for the first-stage training and testing, and adopt those with multiple
sound sources for the second-stage training and testing.

Bounding box annotation To quantitatively evaluate the sound localization performance, we use a
well-trained Faster RCNN detector w.r.t 15 instruments [11] to generate bounding boxes on the test
set. We further refine the detection results, and manually annotate whether each object is sounding or
silent. Annotations are publicly available in the released code, for reproducibility.

4.2 Experimental settings

Implementation details Each video in the above datasets are equally divided into one second clips,
with no intersection. We randomly sample one image from the video clip as the visual message,
which is resized to 256 × 256 then randomly cropped to 224 × 224. The audio messages are first
re-sampled into 16K Hz, then translated into spectrogram via Short Time Fourier Transform with a
Hann window length of 160 and a hop length of 80. Similarly with [31, 16], Log-Mel projection is
performed over the spectrogram to better represent sound characteristics, which therefore becomes a
201× 64 matrix. The audio and visual message from the same video clip are deemed as a matched
pair, otherwise mismatched. We use variants of ResNet-18 [13] as audio and visual feature extractors.
Detailed architecture is shown in the appendix. Our model is trained with Adam optimizer with
learning rate of 10−4. In training phase, we use a threshold of 0.05 to binarize the localization maps
to obtain object mask, with which we can extract object representations over feature maps. And each
center representation in the object dictionary is accordingly assigned to one object category, which is
then used for class-aware localization evaluation.

Evaluation metric We employ Intersection over Union (IoU) and Area Under Curve (AUC) as
evaluation metrics for single source sound localization, which are calculated with predicted sounding
area and annotated bounding box. For discriminative sounding object localization in cocktail-party, we
introduce two new metrics, Class-aware IoU (CIoU) and No-Sounding-Area (NSA), for quantitative
evaluation. CIoU is defined as the average over class-specific IoU score, and NSA is the average
activation area on localization maps of silent categories where the activation is below threshold τ ,

CIoU =

∑K
k=1 δkIoUk∑K

k=1 δk
, NSA =

∑K
k=1(1− δk)

∑
sk < τ∑K

k=1(1− δk)A
, (9)

where IoUk is calculated based on the predicted sounding object area and annotated bounding box
for the k−th class, sk is localization map of k-th class, A is the total area of localization map. The
indicator δk = 1 if object of class k is making sound, otherwise 0. These two metrics measure the
model’s ability to discriminatively localize sounding objects and filter out the silent ones.

4Available at https://zenodo.org/record/4079386#.X4NPStozbb0
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Figure 3: Visual feature distribution visualized by t-SNE on MUSIC-solo. These figures from left to
right are global image features without alternative learning, image features with alternative learning
and masked object features with alternative learning. The categories are indicated in different colors.

4.3 Single sounding object localization
In this subsection, we focus on the simple task of sound localization in single source scenario. Table 1
shows the results on MUSIC-solo and AudioSet-instrument-solo videos, where ours is compared with
recent SOTA methods. Note that we use the public source code from [31, 16]. According to the shown
results, we have two points should pay attention to. First, the compared methods [3, 16, 27] are trained
to match the correct audiovisual pair via the contrastive [16, 27] or classification[3] objective, which
is similar to ours. Yet, our proposed method significantly outperform these method by a large margin.
Such phenomenon indicates that the learned object representations from localization is effective for
semantic discrimination, which further benefits the object localization via the discriminative learning
of object category. In order to explain this clearly, we plot the distribution of extracted feature from
the well-trained vision network via t-SNE [19]. As shown in Fig. 3, the extracted visual features
on MUSIC-solo are more discriminative in terms of object category when we train the model in
a localization-classification alternative learning fashion, where the normalized mutual information
for the clustering with masked object features achieves 0.74, which reveals high discrimination of
learned representations. Second, our method is comparable to Sound-of-pixel [31], especially on
the MUSIC-solo dataset. This is because Sound-of-pixel [31] differently employs the audio-based
mix-then-separate learning strategy, which highly relies on the quality of input audio messages.
Hence, it could effectively correlate specific visual area with audio embeddings in the simple scene
with single sound, but suffers from the noisy multi-source scenarios. In contrast, our method can
simultaneously deal with both conditions and does not require to construct complex learning objective.
Related results can be found in the next subsection.

4.4 Multiple sounding objects localization
Natural audiovisual scenario usually consists of multiple sounding and silent objects, which is more
challenging for exactly localizing the sounding ones. To responsibly compare different methods under
such scenarios, both of the synthetic and realistic data are evaluated. As shown in Table 2, we can
find that our model shows significant improvements over all the compared methods in terms of CIoU.
Such phenomenon mainly comes from three reasons. First, our model takes consideration of the class
information of sounding objects by employing a category-based audiovisual alignment, i.e., Eq. 7,
while other methods [3, 27] simply correlate the audiovisual features for sounding area detection
so that fail to discriminatively localize the sounding objects. Second, our localization results are
achieved with the effective visual knowledge learned from the first-stage, which could vastly help to
excavate and localize potential objects from cocktail-party scenario, while the compared method [31]
cannot deal with such scenario with mix-then-separate learning fashion. Third, referring to NSA
results, our model can automatically filter out the silent objects, but DMC [16] has to rely on given
knowledge of the number of sounding objects. Although [31] is high in NSA, it is probably because
of too low channel activations to detect objects rather than the success of filtering out silent ones.

Apart from the quantitative evaluation, we also provide visualized localization results in Fig. 6.
According to the shown results in realistic scenario, the attention-based approach [27] and Object-the-
sound [3] can just localize the sounding area without discriminating guitar or cello, while DMC [16]
suffers from the complex audiovisual components and mix up different visual areas. Among these
compared methods, although sound-of-pixel [31] provides better results, it cannot exact localize the
sounding object and filter out the silent saxophone. This is probably because it highly depends on the
quality of mixed sounds. In contrast, our model can successfully localize the sounding guitar and
cello in class-specific maps, as well as remain low response for the silent saxophone and other visual
areas. The synthetic data show similar results. Note that, we also provide relevant ablation studies
about the hyper-parameters and training settings in the appendix.
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Table 2: Localization results on MUSIC-synthetic, MUSIC-duet and AudioSet-instrument-multi.
Note that, the CIoU reported in this table is CIoU@0.3, and NSA of DMC is not evaluated since it
relies on given knowledge to determine whether the object is sounding or silent.

Data MUSIC-Synthetic MUSIC-Duet AudioSet-multi
Methods CIoU AUC NSA CIoU AUC NSA CIoU AUC NSA

Sound-of-pixel [31] 8.1 11.8 97.2 16.8 16.8 92.0 39.8 27.3 88.8
Object-that-sound [3] 3.7 10.2 19.8 13.2 18.3 15.7 27.1 21.9 16.5
Attention [27] 6.4 12.3 77.9 21.5 19.4 54.6 29.9 23.5 4.5
DMC [16] 7.0 16.3 - 17.3 21.1 - 32.0 25.2 -
Ours 32.3 23.5 98.5 30.2 22.1 83.1 48.7 29.7 56.8

Figure 4: We visualize some localization results of different methods on realistic and synthetic
cocktail-party videos. The class-aware localization maps are expected to localize objects of different
classes and filter out silent ones. The green box indicates target sounding object area, and the red box
means this class of object is silent and its activation value should be low.

5 Discussion
In this paper, we propose to discriminatively localize sounding objects in the absence of object
category annotations, where the object localization in single source videos are aggregated to build
discriminative object representation and the audiovisual consistency is used as the self-supervision for
category distribution alignment. Although the object semantic learned from simple cases contributes
noticeable results, it still need rough partition of single and multiple source videos, which should be
emphasized in the future study.
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7 Broader Impact

Visually sound source localization is a kind of basic perception ability for human, while this work
encourages the machine to be equipped with similar ability, especially when faced with multi-source
scenarios. Hence, the impact mainly lies in the machine learning technique and application aspect.
On the one hand, the proposed approach is fully based on self-supervised learning, but can reward
considerable discrimination ability for the visual objects and correlation capabilities across audio
and visual modalities. Predictably, without elaborately manual annotation, this approach could still
facilitate the progress of unimodal and multimodal learning and parse/model complex scene. On
the other hand, it steps forward to pursuing human-like multimodal perception ability, which could
further contribute to our society in several aspects, e.g., audio-assistant scene understanding for the
deaf people by figuring out which objects are making sound, facilitating exploration into how to solve
the cocktail-party effect in realistic audiovisual scenes, i.e., to perceive different sounds and focus on
the pertinent content from mixed auditory input.
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8 Appendix

8.1 Architecture Details

BackBone. We use a simple modification of ResNet-18[13] obtaining audio and image embeddings.
We increase the feature resolution by removing stride from the first convolution in the last stage. We
also remove Global Average Pooling (GAP) and the final classifier. The corresponding model is so
called ResNet-18-S5 and this backbone is used among all the experiments.

Audio Network. In order to fit the one channel audio input (spectrogram), we change the first
convolution channel in audio ResNet-18-S5 from 3 to 1. Besides, the final GAP is replaced by Global
Max Pooling GMP for suppressing no-sounding area. This output is g(asi ) mentioned in the main
paper. For classification task, a FC-based classifier whose dimension is based on the number of
instruments containing in the dataset is appended to g(asi ).

Image Network. Image network uses standard ResNet-18-S5 model. And we do not load ImageNet
pretrained weights. f(vsi ) is the output of the image network. Similarly to audio network, GAP and
classifier are employed for the classification task.

Table 3: Specific Operations for the AV Localization. Conv(m), k×k means the output channel of the
convolution is m and kernel size is k. FC(d) means the output dimension is d.

A-Net Loc Embedding Feature Dims I-Net Loc Embedding Feature Map Shapes
512 512×14×14

FC(128) 128 Conv(128), 1×1 128×14×14
FC(128) 128 Conv(128), 1×1 128×14×14

Unsqueeze 128×1×1 - 128×14×14
L2-norm 128×1×1 L2-norm 128×14×14
Broadcast 128×14×14 - 128×14×14

AV-Localization
Operations Feature Map Shapes

Cosine Similarity 1×14×14
Conv(1), 1×1 1×14×14

Sigmoid 1×14×14
Global Max Pooling 1

AV Localization. As shown in Table 3, before calculating av-location, we add fully connected
layers or convolution layers for audio network and image network respectively, to adjust features
for better localization. Then, we normalize two features using l2-norm to eliminate the impact of
scale and broadcast the audio representation to match the spatial resolution of image network. After
obtaining the cosine similarity (different from [3]) of two feature representations, we add a one
channel convolution, sigmoid activation and GMP to get the final verification score. We supervise the
localization objective learning by binary cross-entropy loss which means whether the audio-visual
pairs are matched or not.

8.2 Details in the Learning Phrase.

Alternative Optimization in the First Stage. We alternatively train classification and localization
objective in the first stage. Pseudo-labels are obtained based on the K-means. Because the centering
order of K-means is not kept in every iteration, we re-initialize classifiers in audio network and image
network respectively at the beginning of the classification learning. When the classification accuracy
is saturated or the Maximum number of iterations is reached, we stop the classification learning and
switch to localization objective learning. The threshold τ for IoU/CIoU is determined by the 10% of
the max value of the all the predicted localization map.

Semantic Label Acquirement. Since we train the whole model in a self-supervised fashion, the
concrete semantic of object label is agnostic. In other words, we do not know the one-hot label
[1, 0, 0] means Guitar and [0, 1, 0] means Saxophone. However, the learned object dictionary in
the first stage is category-aware, which just lacks the alignment between the concrete semantic and
representation keys in the dictionary. Hence, we perform the alignment for better visualization and
evaluation.
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Figure 5: We visualize some localization results of our method on realistic and synthetic cocktail-
party videos. The class-aware localization maps are expected to localize objects of different classes
and filter out silent ones. The green box indicates target sounding object area, and the red box means
this class of object is silent and its activation value should be low.

Table 4: Influence of the hyper-parameter λ on the MUSIC-Synthetic and duet dataset.

Dataset Music-Synthetic Music-Duet
λ CIoU@0.3 AUC NSA CIoU@0.3 AUC NSA
0.3 11.0 15.0 94.6 33.7 23.9 81.7
0.5 32.3 23.5 98.5 30.2 22.1 83.1
0.8 27.9 21.4 96.2 26.5 21.7 79.9
1.0 28.6 21.1 96.5 33.2 22.9 83.1
1.5 13.2 15.4 94.1 24.5 20.0 84.6

8.3 Ablation study

In this section, we perform ablation studies w.r.t. the influence of some hyper-parameters and training
settings, and also evaluate the effects of alternating optimization.

Loss function weight λ. As shown in Table 4, we can find that the hyper-parameter of λ has slight
effects on the localization performance when in the range of [0.5, 1.0]. But it takes higher influence
when becomes smaller or larger. Such phenomenon comes from the fact that the localization objective
L1 is easier to converge compared with the distribution matching objective Lc. When λ becomes
much larger, the model would suffer from the overfitting problem for localization. When λ becomes
much smaller, it is difficult to achieve reasonable sounding area detection for effective filtering.

Alternative optimization. To validate the effects of alternating optimization in the first-stage, we
choose to perform the single sounding object localization without the alternating optimization between
localization (Eq.1) and classification objective w.r.t pseudo-label, the built object dictionary is then
served to the multi-source localization in the second stage. As shown in Fig.5, it is obvious that
the localization results are significantly better when with alternating optimization. This is because
the categorization task provides considerable reference for generalized object localization [21, 32],
which further advances the quality of object mask in our task.

Table 5: Localization performance on the MUSIC-Synthetic dataset.

Alternating opt. CIoU@0.3 AUC NSA

w/ 32.3 23.5 98.5
w/o 17.4 16.5 95.7
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Table 6: Ablation study on mask threshold and number of clusters.

Dataset Music-Solo Music-Synthetic Music-Duet
Mask Cluster NMI IoU AUC CIoU AUC NSA CIoU AUC NSA
0.05 11 0.748 51.4 43.6 32.3 23.5 98.5 30.2 22.1 83.1
0.03 11 0.752 49.2 45.3 31.4 24.2 96.2 29.3 22.0 81.7
0.07 11 0.753 43.1 40.7 32.1 24.0 94.5 29.7 21.6 80.3
0.05 13 0.735 47.6 43.7 33.8 24.0 96.2 30.3 21.9 83.2
0.05 20 0.720 44.6 45.4 29.5 22.2 98.9 28.9 20.1 84.2

Table 7: Ablation study for the second stage.

Dataset Music-Synthetic Music-Duet
L1 Prod Lc CIoU AUC NSA CIoU AUC NSA
% % " 0.0 7.2 91.0 20.8 15.9 78.0
" % " 2.6 7.5 88.1 20.6 20.2 79.6
" " % 18.0 17.4 92.9 22.4 19.2 85.0
" " " 32.3 23.5 98.5 30.2 22.1 83.1

Number of clusters and mask threshold. In previous experiment settings, we set the number of
clusters at the first stage equal to the number of categories in the dataset, which provides a strong
prior. Therefore, we explore using different number of clusters as well as the mask threshold for
the first-stage object feature extraction and clustering. And for evaluation, we adpatively aggregate
multiple clusters to one specific category for discriminative localization. Table 8 shows the results
on Music dataset. It is clear that our method is generally robust to these to hyper-parameters, and
achieves comparable performance without knowing the specific number of categories in the dataset.

Training settings for the second stage. We further present some ablation studies on the procedure
and training objective for the second stage. We denote the localization loss as L1, the audiovisual
consistency loss as Lc, and the silent area suppress operation as Prod. As shown in the Table 7, the
product operation is crucial especially under the synthetic circumstance. It is because in our manually
synthesized data, there are totally four instruments in a single frame, with two making sound and
the other two silent. If without the Prod operation, all the objects would produce high response,
thus making the categorical matching between audio and visual components fail and leading to very
poor performance. On the other hand, the Lc objective boosts localization on both synthetic and
real-world duet data, which demonstrates that evacuating inner consistency between two modalities
helps cross-modal modeling.

Pretrained model. For experiments on MUSIC dataset, we use the ImageNet-pretrained ResNet-18
to initialize the visual backbone in the default settings while the audio backbone is trained from
scratch. In this subsection, we explore the influence of training the visual backbone from scratch, and
the results show that without the ImageNet-pretrained model initialization, the NMI on Music-Solo
drops dramatically and the visual features are not discriminative enough for category-aware sounding
object localization. Note that the low NSA metric can be attribute to the low correspondence on
visual objects instead of the true ability to discriminate sounding and silent. It is probably because
MUSIC dataset contains much fewer scenes than AudioSet-instrument. Therefore, the pretrained
model is crucial to avoid overfitting on MUSIC, while the model on AudioSet-instrument performs
well when trained from scratch.

Table 8: Pretrained model on MUSIC dataset.
Dataset Music-Solo Music-Synthetic Music-Duet

Pretrained NMI IoU AUC CIoU AUC NSA CIoU AUC NSA
Scratch 0.576 25.0 33.9 7.8 1.5 92.8 12.5 15.1 95.2

ImageNet 0.748 51.4 43.6 32.3 23.5 98.5 30.2 22.1 83.1
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(a) Single Visual Object but with Multiple Sounds

(b) Album Cover

(c) Small Objects

Figure 6: Three kinds of failure cases.

8.4 Failure Cases

There are three main failure cases in AudioSet-instrument-multi, (a) single visual object but with
multiple sounds, (b) album cover and (c) small objects. For single object with multiple sounds, it is
difficult to perform category-based audiovisual distribution matching of sounding objects. For album
covers, since no objects appear in the image, no area should be activated, however some channels still
have activations. For small objects, some sounding objects may not locate well due to the resolution
of spatial feature maps.
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