
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 2, FEBRUARY 2011 237

A Fast Sub-Pixel Motion Estimation Algorithm for
H.264/AVC Video Coding

Weiyao Lin, Krit Panusopone, David M. Baylon, Ming-Ting Sun, Fellow, IEEE, Zhenzhong Chen, Member, IEEE,
and Hongxiang Li, Senior Member, IEEE

Abstract—Motion estimation (ME) is one of the most time-
consuming parts in video coding. The use of multiple partition
sizes in H.264/AVC makes it even more complicated when
compared to ME in conventional video coding standards. It is
important to develop fast and effective sub-pixel ME algorithms
since: 1) the computation overhead by sub-pixel ME has become
relatively significant while the complexity of integer-pixel search
has been greatly reduced by fast algorithms, and 2) reducing sub-
pixel search points can greatly save the computation for sub-pixel
interpolation. In this letter, a novel fast sub-pixel ME algorithm is
proposed which performs a “rough” sub-pixel search before the
partition selection, and performs a “precise” sub-pixel search for
the best partition. By reducing the searching load for the large
number of non-best partitions, the computation complexity for
sub-pixel search can be greatly decreased. Experimental results
show that our method can reduce the sub-pixel search points by
more than 50% compared to existing fast sub-pixel ME methods
with negligible quality degradation.

Index Terms—Fast algorithm, sub-pixel motion estimation.

I. Introduction

H .264/AVC is the state-of-the-art video coding standard
established by ITU-T and ISO/IEC. H.264/AVC uses

many new techniques and is able to save more than 50% in
bitrate (BR) while having similar video quality compared to
the MPEG-2 video coding standard [1].

Manuscript received June 23, 2010; revised August 21, 2010; accepted
September 28, 2010. Date of publication January 17, 2011; date of current
version March 2, 2011. This work was supported in part by the Chinese
National 973, under Grants 2010CB731401 and 2010CB731406, in part by
the National Science Foundation of China, under Grants 60632040, 60928003,
60933006, 60973067, and 61001146, and in part by the National Science
Foundation of USA, under Grant 1032567. The main part of this work
was performed when W. Lin was employed with Motorola. This paper was
recommended by Associate Editor R. Lukac.

W. Lin is with the Institute of Image Communication and Information
Processing, Department of Electronic Engineering, Shanghai Jiao Tong Uni-
versity, Shanghai 200240, China (e-mail: wylin@sjtu.edu.cn).

K. Panusopone and D. M. Baylon are with the Department of Advanced
Technology, Mobile Devices and Home, Motorola Inc., San Diego, CA 92121
USA (e-mail: krit@motorola.com; david.baylon@motorola.com).

M.-T. Sun is with the Department of Electrical Engineering, University of
Washington, Seattle, WA 98195 USA (e-mail: mts@u.washington.edu).

Z. Chen is with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, 639798, Singapore (e-mail:
zzchen@ntu.edu.sg).

H. Li is with the Department of Electrical and Computer Engineering,
North Dakota State University, Fargo, ND 58108 USA (e-mail: hongxi-
ang.li@ndsu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2011.2106290

Motion estimation (ME) is one of the most time-consuming
parts in video coding. Developing fast algorithms for ME to
reduce computational complexity in video coding has been an
important and challenging problem. In the H.264/AVC joint
model (JM) [5], the ME process contains two stages: integer
pixel search over a large area and sub-pixel search around
the best selected integer pixel. Since H.264/AVC uses seven
partition sizes for inter-frame prediction (16×16, 16×8, 8×16,
8×8, 8×4, 4×8, and 4×4), the complexity of multi-partition
ME is high [2]. It is becoming more critical to develop fast and
effective sub-pixel ME algorithms for H.264/AVC. First, the
computation overhead by sub-pixel ME has become relatively
significant while the complexity of integer-pixel search has
been greatly reduced by fast algorithms. For example, there
have been integer-pixel ME algorithms [4], [10], [16] that only
need between three and five integer search points to calculate
the final integer motion vector (MV). The computation in the
16-point sub-pixel search method used in the JM thus becomes
comparatively large. Second, typical sub-pixel searches require
interpolating sub-pixel values for computing the sum of abso-
lute difference (SAD). Reducing sub-pixel search points can
also reduce the interpolation computation time.

In this letter, a novel sub-pixel ME algorithm is proposed for
H.264/AVC, which performs a “rough” sub-pixel search before
the partition selection, and performs a “precise” sub-pixel
search for the best partition. By reducing the searching load
for the large number of non-best partitions, the computation
complexity for sub-pixel search can be greatly decreased.
Experimental results show that the proposed algorithm can
significantly reduce the number of sub-pixel search points
compared to other fast sub-pixel ME algorithms [6]–[9], with
negligible quality degradation.

The remainder of this letter is organized as follows.
Section II reviews existing research on sub-pixel ME. Sec-
tion III provides in-depth analysis on how to further reduce the
search points for sub-pixel ME for multiple partitions. The pro-
posed algorithm is described in Section IV. Section V shows
the experimental results and Section VI concludes this letter.

II. Related Work

Chen et al. [6] analyzed the difference between the integer-
pixel matching error surface and the sub-pixel matching error
surface. According to Chen’s analysis, the integer-pixel match-
ing error surface is far from a unimodal surface inside the

1051-8215/$26.00 c© 2011 IEEE

238 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 2, FEBRUARY 2011

searching window due to the complexity of the video content.
The assumption of unimodal will easily result in trapping in
a local minimum. However, for the sub-pixel matching error
surface, the unimodal surface assumption holds in most cases
because of the smaller search range of sub-pixel ME as well
as the high correlation between sub-pixels due to the sub-pixel
interpolation.

There has been much research on fast sub-pixel ME
[6]–[9], [17]. Most of these methods are based on the unimodal
surface assumption and perform the sub-pixel search in two
steps as follows:

1) predict a sub-pixel MV (SPMV);
2) perform a small area search around the SPMV to obtain

the final SPMV.

The method to get the sub-pixel predicted MV can be
summarized in two ways: using spatiotemporal information
and modeling the SAD surface.

Chen et al. [6] and Yang et al. [8] used spatiotemporal in-
formation to get the SPMVs. In [6], a center-biased fractional
pixel search (CBFPS) fast sub-pixel ME method is studied,
where the MVs of neighboring MBs were used to get the
SPMV as follows:

SPMV = (pred mv − MV)%β (1)

where pred−mv is the MV prediction of the current partition
(in sub-pixel resolution), MV is the best integer-pixel MV of
the current partition (β = 4 in the 1/4-pixel case and β = 8 in
the 1/8-pixel case), and % represents the modulo operation. In
[8], a larger partition MV (e.g., 16×8 inter-mode MV takes a
16 × 16 MV as a reference) or previous frame MV was used
to get the SPMV. If combined with the SPMV from CBFPS,
the accuracy of the SPMV can be greatly increased.

A more popular way to get the SPMV is to use a function (in
most cases a second-order function) to model the SAD surface
[7], [9]. If the matching errors of the best integer-pixel MV
and its neighboring positions are known, the coefficients of
the function can be solved. The position that corresponds to
the smallest value in the SAD surface is then chosen as the
SPMV.

Many functions can be used to model the SAD surface.
Example second-order functions are listed as follows:

f (x, y) = c1x
2 + c2xy + c3y

2 + c4x + c5y + c6 (2)

f (x, y) = c1x
2 + c2x + c3y

2 + c4y + c5 (3)

where x and y are coordinates of the surface, and f (x, y) is the
matching error (SAD) value. Normally, the best integer-pixel
position is set to be located at (0, 0), so its neighboring integer-
pixel positions are at (1, 0), (−1, 0), (0, 1), (0, −1), and so on.
As the number of model function coefficients increases, more
integer-pixel neighboring SADs are needed.

In [7] and [9], (3) was used to determine one of the SPMVs,
which used the best integer-pixel SAD and the SADs of its
four diamond integer neighbors. Given these SAD values, the
coefficients of (3) can be computed. The SPMV can then be

Fig. 1. Fast sub-pixel ME approaches. (a) Process for previous fast sub-pixel
ME. (b) Proposed fast sub-pixel ME process.

calculated as follows:

SPMV = (xp, yp) = arg min
x, y

f (x, y) =

(−B

2A
,

−D

2C

)
(4)

where ⎧⎪⎪⎨
⎪⎪⎩

A = (I + J)/2
B = (I − J)/2
C = (K + L)/2
D = (K − L)/2

⎧⎪⎪⎨
⎪⎪⎩

I = f (1, 0) − f (0, 0)
J = f (−1, 0) − f (0, 0)
K = f (0, 1) − f (0, 0)
L = f (0, − 1) − f (0, 0)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (0, 0) = SAD(0, 0) = c5

f (1, 0) = c1 + c2 + c5

f (−1, 0) = c1 − c2 + c5

f (0, 1) = c3 + c4 + c5

f (0, − 1) = c3 − c4 + c5.

If (xp, yp) is a fractional vector, its components are quantized
into quarter-pixel units.

Furthermore, Xu et al. [17] proposed to use early termi-
nation to further reduce the search points from the CBFPS
method.

III. Analysis on Reducing Sub-Pixel Search Points

with Multiple Partitions

As shown in Section II, most previous fast sub-pixel ME
methods reduce the number of search points by only searching
the reduced area around the SPMV. For H.264/AVC multiple
partition sizes, they attempt to find the “best” SPMV (with the
smallest SAD) for each partition before the partition selection,
as shown in Fig. 1(a).

However, in practice, only the best partition of the MB needs
precise SPMVs. The MVs of other partitions are only used for
the inter-mode selection. They are no longer useful after the
best partition is selected. If a sub-pixel SAD is good enough
to select the best partition, there is no need to search for more
precise sub-pixel points in the first stage.

Therefore, if only a “rough” sub-pixel motion search is
performed for each partition (the resulting MV does not
necessarily have the smallest SAD), and a “precise” SPMV
is determined only for the best partition selected, then the
number of search points for the non-best partitions can be
reduced greatly. As shown in Fig. 1(b), the purpose of the first
stage ME is to obtain a rough sub-pixel SAD which is close to
the best SAD. The integer-pixel SAD surface information can
be used to decide whether the sub-pixel SAD is close to the
best one or not. Based on the above discussion, we propose
a new rough-strategy-based fast sub-pixel motion estimation
algorithm (RFSME) described in detail in the next section.

LIN et al.: A FAST SUB-PIXEL MOTION ESTIMATION ALGORITHM FOR H.264/AVC VIDEO CODING 239

IV. Fast Sub-Pixel ME Algorithm

The entire process of the proposed RFSME algorithm can
be described in Fig. 2. In our algorithm, instead of using only
the SAD to model the surface, we use COST [3], [10] as the
ME matching cost in the rest of this letter. The COST [3],
[10] is defined as follows:

COST = SAD + λMOTION · R(MV) (5)

where R(MV) is the number of bits to code the MV and
λMOTION is the Lagrange multiplier [11]. λMOTION is intro-
duced to balance the importance between SAD and R(MV).
Note that COST can be viewed as a prediction of the total
bits for coding both the matching error (i.e., SAD) and its
side information (i.e., MV).

In Step 1, the difference between the best COST of the
integer position and the two averaged COSTs of its four
neighboring integer positions (the averaged COST of two
vertical neighboring integer positions and the averaged COST
of two horizontal neighboring integer positions) are checked.
If the difference is small, it means that the COST surface is
quite flat, and the best integer COST is close to the optimal
sub-pixel COST (and, therefore, is good enough to estimate
the best sub-pixel COST). In this case, the sub-pixel ME is
skipped for the current partition. The best COST of the integer
position is used in the partition selection in Step 4. The rule
for deciding the COST surface flatness is shown as follows:

COST −Surface =

{
Not Flat, if any of (a), (b), (c) is true
Flat, otherwise

(6)
where the conditions (a), (b), and (c) are as follows:

(a) avg COSTvertical>rF · COSTfull or avg COSThorizontal

> rF · COSTfull

(b) if blocktype(i) min(|COSTfull − avg−COSTvertical|,
|COSTfull − avg−COSThorizontal|) > th1

(c) if blocktype(ii) min(|COSTfull − avg−COSTvertical|,
|COSTfull − avg−COSThorizontal|) > th2

where COSTfull is the best COST after full-pixel ME,
avg−COSTvertical is the COST average of its two vertical full-
pixel neighbors, and avg−COSThorizontal is the COST average
of its two horizontal full-pixel neighbors. rF is a ratio parame-
ter to decide whether avg COSTvertical or avg−COSThorizontal

is close to COSTfull. blocktype(i) represents 8×8, 8×4, 4×8,
and 4×4 partitions, and blocktype(ii) represents 16×16, 16×8,
and 8 × 16 partitions. th1 and th2 are two thresholds. In the
experiment of this letter, th1, th2, and rF are set to 10, 20,
and 5/4, respectively. These values are selected based on the
experimental statistics.

If the COST surface is not flat in Step 1, in Step 2, two
SPMV prediction methods are used to get two SPMVs. The
first SPMV is calculated by the CBFPS method discussed
in Section II, i.e., (1). The second SPMV is calculated by
the second-order surface model discussed in Section II. After

Fig. 2. Proposed RFSME.

TABLE I

Distribution of Absolute Distance Between the Best Sub-Pixel

MV (x1, y1) and MVstep2(x2, y2)

Sequence d ≤ 0 (%) d ≤ 1 (%) d ≤ 2 (%)
News−QCIF 88.14 98.46 99.73
Foreman−QCIF 70.26 89.09 94.9
Mobile−QCIF 76.63 95.37 99.36

Note: d = |x1 − x2| + |y1 − y2| in quarter-pixel units.

these two points are searched, these two points together with
the best integer point are compared and the point that has the
smallest COST is selected, namely, COSTstep2. The MV that
corresponds to COSTstep2 is defined as MVstep2.

Table I lists the distribution of absolute distance (d =
|x1 − x2| + |y1 − y2| between the best sub-pixel (x1, y1)
MV and (x2, y2) MVstep2 (the predicted MV corresponding to
COSTstep2). The test condition is the same as that described in
Section V. It shows that MVstep2 can provide a good prediction
of the best SPMV. For example, we can see from Table I
that more than 70% MVstep2 is exactly the same as the best
SPMV and more than 94% MVstep2 is within two quarter-pixel
distance from the best SPMV. Therefore, after Step 2, the
assumption is made that MVstep2 is close to the best SPMV
(but COSTstep2 is not necessarily close to the best sub-pixel
COST). The absolute difference between COSTstep2 and the
best integer-pixel COST in Step 1 (COSTbest full pixel) is
checked, i.e., D = |COSTstep2 − COSTbest−full−pixel|.

If D is small, this means that the COST does not decrease
much between COSTstep2 and the best integer-pixel COST, and
that COSTstep2 is already close to the best sub-pixel COST
and is good enough for the mode selection. In this case,
COSTstep2 is used in the partition selection in Step 4. The
rule for deciding whether D is small or not can be described
as follows:

D is

{
Large, if any of (a), (b), (c) is true
Small, otherwise

(7)

240 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 2, FEBRUARY 2011

where

(a) avg COSTvertical > rD · COSTstep2 or

avg COSThorizontal > rD · COSTstep2

(b) blocktype(i), D >
1

2
th1

(c) blocktype(ii), D >
1

2
th2

where avg−COSTvertical and avg−COSThorizontal are the same
as in (5). rD is a ratio parameter to decide whether
avg−COSTvertical or avg−COSThorizontal is close to COSTstep2.
It is set to 1.5 in this letter.

If D is large, COSTstep2 may not be close to the best
sub-pixel COST [as shown in Fig. 3(a)]. In this case, the
two points vertically and the two points horizontally next to
MVstep2 in quarter-pixel resolution will be checked. As shown
in Fig. 3(b), the black point is MVstep2, the gray points are
quarter-pixel neighbors of MVstep2, and the white points are
integer neighboring points of MVstep2. In Step 3, two search
points are selected as one point out of V1 and V2, and one
point out of H1 and H2. A bilinear model as described below
is used to select one of the neighboring points. As shown
in Fig. 4(a), the slopes are first computed [based on (9)]
between the two horizontal neighboring integer points (or the
two vertical neighboring integer points) and the best sub-pixel
point from Step 2 (the point by MVstep2). Then, the quarter-
pixel neighboring point is selected corresponding to the slope
with the smaller slope value, as shown in Fig. 4(b) and (8) as
follows:

PHorizontal
step3 =

{
H1, if SH1 < SH2

H2, if SH1 > SH2

and PVertical
step3 =

{
V1, if SV1 < SV2

V2, if SV1 > SV2
(8)

where

Si =

∣∣∣∣
COSTinteger−i − COSTstep2

Coordinteger−i − Coordstep2

∣∣∣∣, i = V1, V2, H1, H2 (9)

where integer−i represents the closest integer-pixel point in
is direction (i.e., V1 and V2 for the vertical direction and
H1 and H2 for the horizontal direction), and Coord is the
coordinate (in quarter-pixel resolution) of the points. The
X-coordinate (horizontal direction) is used for H1 and H2,
and the Y -coordinate (vertical direction) is used for V1 and
V2.

After Steps 1–3, a COST value (COSTrough) can be obtained
for each partition, which is close or equal to the best COST.
The SPMV that corresponds to COSTrough is denoted by
MVrough.

In Step 4, COSTrough is used to select the best partition.
In Step 5, a small area sub-pixel refinement is performed
around MVrough. In the proposed algorithm, the eight quarter-
pixel neighbors around MVrough are searched. Since Step 5
is performed only for the best partition selected, the average

Fig. 3. (a) Example COST surface for COSTstep2 not close to the best sub-
pixel COST (the white and the black dots represent the positions for the
best integer and MVstep2, respectively). (b) MVstep2 and its quarter-pixel
neighboring points.

Fig. 4. Using the bilinear model to select neighboring search points (white
points: integer pixel; black points: MVstep2; gray points: neighboring point
selected). Note that in (a), the left slope is smaller than the right slope,
therefore, in (b), the neighboring sub-pixel point on the left is selected.

search points per partition is reduced compared to conventional
fast sub-pixel search algorithms.

It should be noted that the proposed RFSME algorithm is
just one implementation of our idea described in Section III.
Our method is general and it could also be implemented in
other ways. For example, we can simply skip the sub-pixel
search in the “rough” search step and directly use the best full-
pixel searching results to select the partition, and then perform
the “precise” search for the best partition. This can be viewed
as a simplified version or extension of the RFSME algorithm.

V. Experimental Results

We implemented our proposed algorithm on the H.264/AVC
reference software JM [5]. In the experiments, each test
sequence of 100 frames is coded. The picture coding type
is IPPP. . . , and the frame rate is 30 f/s. The search range is
16 for QCIF and 32 for CIF and standard definition (SD). The
number of reference frames is 1. Full search is used for the
integer pixel ME in our experiment [5]. It should be noted
that our algorithm is general and various other integer pixel
ME algorithms can also be easily implemented, as will be
discussed later. Six methods are compared for each sequence
as follows.

1) JM reference method [5] (sub-pixel full search).
2) The method in [6] (CBFPS).
3) The method in [7] (FPME).
4) The method in [8] (PDFPS).
5) Use the best integer COST directly to select the par-

tition and then use JM’s method to perform the sub-
pixel ME for the best partition (IE+SME-Proposed). As
mentioned, this method can be viewed as an extension
of our RFSME algorithm.

6) The proposed RFSME method (RFSME-proposed).

LIN et al.: A FAST SUB-PIXEL MOTION ESTIMATION ALGORITHM FOR H.264/AVC VIDEO CODING 241

TABLE II

Comparison of Different ME Methods

Sequence Method PSNR (dB) BR (kb/s) SP/PT
Akiyo QCIF (176 × 144) QP = 24 Full Search 40.82 56.05 16

CBFPS 40.8 57.01 6.02
FPME 40.81 57.12 2.92
PDFPS 40.79 57.26 3.30

IE + SME-Proposed 40.77 60.97 0.41
RFSME-proposed 40.8 57.05 0.87

Mobile QCIF (176×144) QP = 28 Full Search 32.95 453.39 16
CBFPS 32.95 453.90 7.02
FPME 32.95 455.82 5.81
PDFPS 32.95 457.17 5.72

IE + SME-Proposed 32.92 484.43 0.51
RFSME-proposed 32.95 456.61 3.1

Football CIF (352 × 288) QP = 28 Full Search 36.03 1440.84 16
CBFPS 36.01 1448.87 7.63
FPME 36.00 1455.60 6.21
PDFPS 36.01 1452.18 6.85

IE+SME-Proposed 36.01 1473.46 1.13
RFSME-proposed 36.01 1451.55 3.13

Football CIF (352×288) QP = 18 Full Search 43.15 4456.43 16
CBFPS 43.15 4459.07 7.96
FPME 43.14 4472.68 6.46
PDFPS 43.14 4469.79 7.08

IE + SME-Proposed 43.14 4516.51 1.35
RFSME-proposed 43.14 4462.82 3.69

Mobile SD (720 × 576) QP = 28 Full Search 33.8 8228.28 16
CBFPS 33.79 8253.38 7.12
FPME 33.78 8289.28 6.22
PDFPS 33.79 8302.22 6.10

IE+SME-Proposed 33.76 8625.27 1.24
RFSME-proposed 33.79 8293.79 2.88

Flower SD (720×576) QP = 24 Full Search 37.95 8428.84 16
CBFPS 37.95 8432.12 6.3
FPME 37.94 8449.21 5.97
PDFPS 37.95 8461.3 5.9

IE + SME-Proposed 37.92 8631.19 0.93
RFSME-proposed 37.95 8431.03 2.39

In Table II, the peak signal to noise ratio (PSNR), BR,
and average search points (SP) per partition size (SP/PT)
[3], [7] for each method are compared for sequences in
different resolutions and with different quantization parameters
(QPs). The rate-distortion (R-D) curves for some sequences in
Table II are shown in Fig. 5(a) and (b). Furthermore, Fig. 5(c)
and (d) shows the BR-SP/PT curves for different methods.

Several observations can be drawn from Table II and Fig. 5.
The previous methods (CBFPS, FPME, and PDFPS) can

reduce the SP by reducing the search area around the
SPMV. However, our proposed methods (IE+SME-proposed
and RFSME-proposed) can further reduce more than half
the SP compared to previous methods (CBFPS, FPME, and
PDFPS) by only performing the “precise” search on the best
partition.

The IE+SME-proposed method can reduce the most number
of search points, but the performance decrease is also large
for some sequences [e.g., for Akiyo QCIF in Fig. 5(a)]. This
implies that only using the best integer-pixel COST may not
always be able to find the best partition mode suitably, and
some sub-pixel motion search may be needed to help select

the best mode. However, due to its smallest number of SPs, the
IE+SME-proposed method can still be very useful in situations
where computation complexity is a crucial factor and some
quality degradation is tolerable.

The RFSME-proposed method has the best overall per-
formance. Compared with FS and other previous methods
(CBFPS, FPME, and PDFPS), the RFSME-proposed method
has much smaller SP while keeping almost the same coding
performance. Compared with the IE+SME-proposed method,
the proposed method has obviously better coding performance.
With the RFSME-proposed method, the SP per partition size
can be reduced to less than three for most sequences. The
SP can be further reduced and becomes close to that of
the IE+SME-proposed method for low motion videos (e.g.,
Akiyo QCIF).

When QP decreases, the SP-per-partition-size for most of
the methods will slightly increase. This is because: 1) the
recovered reference frames are more precise for smaller QPs
(i.e., higher PSNR). Therefore, the chance for the MB to
select a smaller partition size becomes higher, and 2) when the
reference frames are more precise, the COST surface for the

242 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 2, FEBRUARY 2011

Fig. 5. R-D and BR-SP/PT curves comparisons for different methods.
(a) R-D curve for Akiyo QCIF. (b) R-D curve for Football CIF. (c) BR-
SP/PT curve for Foreman QCIF. (d) BR-SP/PT curve for Akiyo QCIF.

interpolated sub-pixel locations may become more “complex,”
and it may take more steps to find the best sub-pixel location.

Besides the above observations, there are also other advan-
tages of the proposed method. First, the proposed RFSME al-
gorithm models the sub-pixel COST surface based on the four-
neighboring integer COST values. Thus, the algorithm can be
easily combined with most of the existing fast integer ME
algorithms. Since most fast integer ME algorithms [4], [10],
[14]–[16] (e.g., simplified hex search [14] and diamond search
[15]) end the ME process by searching the four-neighboring
points around the best integer point, using the four-neighbor
COST information does not introduce any extra cost to the
integer ME process. Furthermore, with the development of new
video coding standards [such as high efficiency video coding
(HEVC) and next generation video coding (NGVC)] [12],
some existing sub-pixel ME methods may no longer work. For
example, with the introduction of adaptive interpolation filter
[13] in HEVC or NGVC, the second-order sub-pixel COST
surface model may become unsuitable since the interpolation
filter will adapt to the frame contents. This will greatly limit
the usefulness of many fast sub-pixel methods [7], [9], which
rely on this second-order model. Compared to these methods,
our proposed methods can still work efficiently after some
simple extensions. This is because: 1) the basic idea of our
method is to reduce sub-pixel SP by performing “rough”
search in the non-best partitions. As long as we can find
some way to perform “rough” search, the proposed method
can be easily applied to the new standards, and 2) there may be
more partition sizes introduced in the future standards. In these
cases, our proposed method can work even more efficiently by
reducing the sub-pixel SP in the non-best partitions.

Table III shows another experiment for a multiple reference
frame case. In this case, our algorithm first performs the
“rough” search for all partitions on all reference frames and
then performs the “precise” search only for the best partition
on the best reference frame. From Table III, we can see that
our algorithm can further reduce SP/PT by performing the
“rough” search on those non-best reference frames.

TABLE III

Results for Football CIF Using Three Reference Frames

with QP = 28

Full Search CBFPS FPME PDFP IE+SME RFSME
PSNR (dB) 36.06 36.03 36.03 36.04 36.02 36.03
BR (kb/s) 1436.21 1442.47 1450.04 1449.15 1478.40 1446.45
SP/PT 16 7.41 6.12 6.76 0.39 2.4

VI. Conclusion

In this letter, a fast sub-pixel ME algorithm is proposed.
The proposed algorithm performs a “rough” sub-pixel search
before the partition selection, and performs a “precise” sub-
pixel search for the best partition, thus can greatly reduce the
sub-pixel SP. Experimental results showed that the proposed
algorithm can reduce SP by more than half compared with the
previous algorithms, with negligible performance decreases.

References

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuit Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[2] J. Zhang and Y. He, “Performance and complexity joint optimization
for H.264 video coding,” in Proc. IEEE Int. Symp. Circuits Syst., vol.
2. May 2003, pp. 888–891.

[3] W. Lin, D. M. Baylon, K. Panusopone, and M.-T. Sun, “Fast sub-pixel
motion estimation and mode decision for H.264,” in Proc. IEEE Int.
Symp. Circuits Syst., May 2008, pp. 3482–3485.

[4] Z. Zhou and M. T. Sun, “Fast macroblock inter mode decision and
motion estimation for H. 264/MPEG-4 AVC,” in Proc. Int. Conf. Image
Process., vol. 2. 2004, pp. 789–792.

[5] JM 10.2 [Online]. Available: http://iphome.hhi.de/suehring/tml/
download/old$ {-}$jm

[6] Z. Chen, P. Zhou, and Y. He, “Fast integer-pixel and fractional pel
motion estimation for JVT,” document JVT-F017, ITU-T, Awaji Island,
Japan, 2002.

[7] J. F. Chang and J. J. Leou, “A quadratic prediction based fractional-
pixel motion estimation algorithm for H.264,” in Proc. IEEE Int. Symp.
Multimedia, Dec. 2005, pp. 491–498.

[8] L. Yang, K. Yu, J. Li, and S. Li, “Prediction-based directional fractional
pixel motion estimation for H.264 video coding,” in Proc. IEEE Int.
Conf. Acou. Speech Signal Process., vol. 2. Mar. 2005, pp. 901–904.

[9] J. W. Suh and J. Jechang, “Fast sub-pixel motion estimation techniques
having lower computational complexity,” IEEE Trans. Consumer Elec-
tron., vol. 50, no. 3, pp. 968–973, Aug. 2004.

[10] W. Lin, K. Panusopone, D. M. Baylon, and M.-T. Sun “A new class-
based early termination method for fast motion estimation in video
coding,” in Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp. 625–
628.

[11] T. Weigand, H. Schwarz, A. Joch, F. Kossentini, and G. Sullivan, “Rate-
constrained coder control and comparison of video coding standards,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 688–703,
Jul. 2003.

[12] Documents of the Joint Collaborative Team on Video Coding [Online].
Available: http://ftp3.itu.int/av-arch/jctvc-site

[13] Y. Vatis and J. Ostermann, “Adaptive interpolation filter for H.264/AVC,”
IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 179–192,
Feb. 2009.

[14] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified
fast motion estimation for JM,” document JVT-P021, Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEG, Poznan, Poland, Jul. 2005.

[15] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no.
2, pp. 287–290, Feb. 2000.

[16] H.-Y. C. Tourapis and A. M. Tourapis, “Fast motion estimation within
the H.264 codec,” in Proc. Int. Conf. Multimedia Expo, vol. 3. 2003,
pp. 517–520.

[17] X. Xu and Y. He, “Improvements on fast motion estimation strategy for
H.264/AVC,” IEEE Trans. Circuit Syst. Video Technol., vol. 18, no. 3,
pp. 285–293, Mar. 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

